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The paper focuses on the study of the effect of long memory and the analysis 

of the multifractal properties of the time series of the most capitalized 

cryptocurrencies for the period from 2010 to 2018. To do this, the Hurst 

exponent is calculated by both R/S analysis and the Detrended Fluctuation 

Analysis being more stable in the case of non-stationary time series. Our 

results show that time series of cryptocurrencies to be persistent during almost 

the whole study period that do not allow accepting the hypothesis concerning 

the efficiency of the cryptocurrency market. We also found that (i) time series 

became anti-persistent during the periods of market crisis phenomena and 

turbulence; (ii) the Hurst exponents showed significant fluctuations about the 

value of 0.5. In addition, we conduct a multifractal analysis of cryptocurrency 

time series that allows us to assess the state and stability of the market.The 

calculated spectrum of multifractality shows that the cryptocurrency market 

comes out of a crisis state, since the width of the multifractality spectrum has 

the maximum value for all cryptocurrencies. 
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1. Introduction 

During its existence, in less than a decade, the cryptocurrencies, primarily, Bitcoin [1] have overcome all the 

records on the growth of exchange rate and capitalization level, while demonstrating significant fluctuations. 

Thus, according to Coinmarketcap, [2] the total market capitalization of the cryptocurrency market was 

approximately $ 15.6 billion at the beginning of 2017; it grew to almost $ 800 billion at the beginning of 

2018; and it was $ 135.9 billion on December 2, 2018. The current level of this market capitalization is in line 

with the capitalization of such companies as Morgan Stanly ($ 97 billion) and Goldman Sachs Group ($ 91.7 

billion) according to Forbs ranking [3]. 

Such a rapid, avalanche-like growth and collapse of the cryptocurrency market capitalization in 2018 as a 

result of a significant fluctuation in their exchange rate (high volatility), on the one hand, and legal 

unsettledness of the transactions with them in most countries of the world, and consequently, significant risks 

of investment in cryptoassets, on the other hand, have led to heated discussions about their place and role in 

the modern economy. The problem of the role and prospects of widespread introduction of cryptocurrency is 

definitely the most acute and controversial today. 
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Therefore, the attention of investors and traders, financial analysts and scientists, has significantly grown to 

the study of the properties of the cryptocurrency market. As Google Trends statistics showed [4], the terms of 

Bitcoin and Blockchain ranked among the top 10 searches of this system in 2017. 

In particular, the spotlight issues are the determination of factors affecting the exchange rate of digital 

currencies, whether they are of fundamental value and what is waiting for them in the future, etc. For 

example, the well-known economists, Nobel Prize Laureates in Economics Paul Krugman, Joseph E. Stiglitz 

and Robert J. Schiller consider cryptocurrencies, primarily, bitcoin, to be extremely unstable and therefore, in 

their opinion, the rapid growth of their exchange rate is a typical financial “bubble” [5]. 

A thorough analysis of the recent research on such aspects of functioning and properties of the cryptocurrency 

market as the stages of its formation and evolution, the features of functioning, the study of efficiency, legal 

regulation, etc., was carried out in [6]. 

Our analysis of literary sources shows that most empirical studies on the cryptocurrency market focus on the 

following aspects:  

(i) the study of efficiency (Efficient Market Hypothesis, EMH) [7]-[10];  

(ii) market testing for the presence of speculative bubbles [11]-[16]; 

(iii) analysis and forecast of price dynamics and volatility [17]-[20]. 

Recently, modern methods digital signal processing and nonlinear dynamics have been actively introduced for 

the study of financial time series, in particular, wavelet analysis, fractal and multifractal analysis, entropy 

analysis, recurrent diagrams and Lyapunov's exponent, etc. [21]-[25]. 

However, unlike other financial assets (stock price, commodity price, exchange rate, interest rate et al.), 

studied by a number of empirical researches (See, e.g., [22]-[25]; and literary review in them), the analysis of 

nonlinear properties of time series of cryptocurrencies is paid much less attention to. At the same time, most 

papers focus on the analysis of Bitcoin. 

Thus, Lahmiri and Bekiros [26] determined chaos in the dynamics of Bitcoin prices during both the period of 

slow growth and exponential growth with the help of entropy analysis and the calculation of Lyapunov's 

exponent. 

Soloviev and Belinskij [27] showed the efficiency of using recurrent and entropy analysis for the 

construction of predicting indicators of crisis phenomena on the cryptocurrency market. 

Several studies have recently been published concerning the diagnosis of long memory on cryptocurrency 

market ([7], [10], [28]- [31]). The analysis of Bitcoin time series in Urquhart, [10]; Yonghonga, et al., [31] 

showed that Hurst statistics was more than 0.5 for all the studied time periods, i.e., the Bitcoin time series was 

persistent. 

However, the additional analysis of Hurst statistics on price and volatility of Bitcoin using Detrended 

Fluctuation Analysis (DFA) conducted by Bariviera, et al., [29], found that by 2014, this series was persistent, 

but after this period, these statistics fluctuated within 0.5, being consistent with EMH. 

In addition to Bitcoin, such cryptocurrencies as Ripple, Litecoin and DAH were studied using R/S analysis in 

the work of Caporale, et al., [30]. The meaning of Hurst's statistics was within the range of 63.06.0 H . 

The purpose of our research is to test the long memory of Bitcoin and other most capitalized cryptocurrencies, 

particularly, Ethereum, Bitcoin Cash, EOS, Ripple, Litecoin, Stellar Lumens and DAH, by R/S analysis and 

DFA, and to study the multifractal properties of the investigated time series by a window procedure using 

Multifractal-DFA. 

 

2. Materials and methods  

2.1. Long-range dependence and EMH  

Long-range dependence is a property that describes the correlation structure of a time series of higher order. 

In case the series has a long memory, there is dependence even between the observations that are remote in 
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time. Since the length of memory creates nonlinear dependence in the first moments of distribution in the 

model for the medium level and, as a rule, generates a component being potentially suitable for prediction in 

the dynamics of a series, its presence in the series of profitability of financial assets, raises doubts in the 

efficiency of the financial market. 

According to EMH  proposed by Fama [32], the price of an asset in an efficient market should be described by 

a random walk process, in which each price change does not depend on the previous values, i.e., it has no 

memory. Due to the fact that the length of memory implies the presence of significant auto-correlation 

between remote observations, its presence leads to the fact that the past values of the series can help in 

predicting future values. 

Since the length of memory is a special form of nonlinear dynamics, its presence raises doubts about the 

application adequacy of linear models that requires the necessity of developing new nonlinear models for 

assessing financial assets to consider the behavior associated with the presence of long memory. 

The stationary process Xt is a process with long memory if there is a valid number , 01, and a constant 

с0, for which the condition is fulfilled: 

,1
*lim 








kc

k

k

          (1) 

where  autocorrelation function, k – lag number. 

That is, autocorrelations of long memory process satisfy the following asymptotic ratio:
  kck

*
when

k . Thus, the reduction of autocorrelation is slow, according to the hyperbolic law. This hyperbolic 

decline of autocorrelations is opposed to their exponential decrease, which is characteristic for processes with 

short memory (ARMA): 
k

K ac* , where с – positive constant and 0а1. 

There are some alternative approaches to determine of long memory and estimating the fractal time series 

structure, in particular, R/S analysis suggested by Hurst, [33], and modified Mandelbrot, [34], for the 

processing of economic time series; standard fluctuation analysis and Detrended Fluctuation Analysis (DFA), 

proposed by Peng, [35]; Multifractal-DFA (MF-DFA) [36], [37].   

 

2.2. R/S analysis  

The method of R/S analysis is definitely the most widespread evaluation of long memory in time series, but it 

is unstable for non-stationary time series (see, for example [38] - [40]). In particular, R/S analysis provides 

biased estimates for Hurst statistics, when the studied series: (i) contains short-term dependencies; (ii) is non-

stationary; (iii) is heterogeneous, i.e., the series contains a heterogeneous sample. 

Depending on the value of Hurst exponent H, we get three types of time series as shown in Table 1. Therefore, 

we use both the standard R/S for estimating the local Hurst exponent and the DFA using a sliding window 

algorithm. 

 

Table 1. Classification of times eries by the value of the Hurst exponent 

Anti-persistent 

(return to the medium value) 

Random (stochastic, Wiener 

noise, intermediate state) 

Persistent (trend stable) 

0 <H<0.5 H =0.5 0.5 <H<1 

 

2.3. DFA method 

DFA is used to determine (mono-) fractal scaling properties and long-time correlations in noisy nonstationary 

time series. However, many economic (biological, medical, etc.) objects do not show simple monofractal 

scaling behavior that can be determined by one coefficient. In some cases, there is a crossover on time scales 

xs , that separates models with different behaviors, i.e., long-time correlations on small time scales xss 

and correlations of another kind or uncontrolled behavior on a larger scales xss  . 
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Moreover scaling behavior may be more complex, and there are different values of scaling coefficients for 

different parts of the sequence (for example, for the first and second halves of the sequence). There are even 

more complicated cases when one-on-one sets with different fractality are considered. It is necessary for such 

cases to calculate the plurality of scaling coefficients for a complete description of the object behavior. A 

multifractal analysis of the detrended fluctuations is used on that. 

2.4. MF-DFA method 

In general, the MF-DFA procedure consists of five steps proposed  Kantelhardt  et al. [37]. The first three 

steps are basically identical to the standard DFA procedure proposed by Peng, [35]. 

Let kx be a sequence of length N that does not have a large number of zero values (compact support). 

Step 1.A profile (accumulation) is determined: 

   



i

k

k xxiY
1

, Ni ..1 .        (2) 

Subtracting the medium x   is optional, as it can be done later by detrending in the third step. 

Step 2. The profile  iY is divided into  
s

NNs int segments (sequences) of identical length s that do not 

overlap. Since the total length of the N sequence does not often divide evenly into s, the remainder at the end 

of the sequence that is smaller than the window width is discarded. To account for the rejected part and thus 

to use all the elements of the sequence, the above procedure repeats also from the end of the sequence. Thus, 

sN2 sequences will be obtained together. 

Step 3. For each of the sN2 subsequences, the local trend is calculated using the least squares method. Then 

the deviation is determined: 

       
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for each segment  , N..1 and 

       

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22 1
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for each ss NN 2..1 .  

 iy is an interpolating polynomial on the  segment. Linear, quadratic, cubic polynomials, or polynomials 

of higher order are used for interpolation (corresponding methods are called DFA1, DFA2, DFA 3, etc.). 

Since the removal of the time series occurs by subtracting the polynomial values from the real values of the 

series, the DFA of different orders, respectively, differ in their ability to seize the trend in a series. In the MF-

DFA of m-order, profile trends of m-order (or, respectively, (m 1)-order for the output time series) are 

deleted. Thus, the comparison of the results of the DFA for different orders is used to obtain the type of trend 

in the initial time series. 

Step 4. The average for all subsequences is found to obtain the function of the fluctuations of the q order: 

    
qN q

s
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1
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1

22 ,
2

1

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





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

 .        (5) 

where, generally speaking, the value of the q variable can be arbitrary, with the exception of zero. 

The standard DFA method is obtained for 2q . To determine how the timeline s influences on the 

generalized dependence  sFq on q at different values of q, it is necessary to repeat steps 2-4 for different 

time scales s. It is clear,  sFq will increase with increasing q. Naturally,  sFq  also depends on the order of 

the DFA method m. According to the construction,  sFq is defined only for 2ms  values. 
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Step 5. The scaling behavior of the fluctuation function is determined by analyzing the  sFq  
dependence on 

q in the double logarithmic scale. If the ix sequence has long-term correlations,  sFq  increases with 

increasing s according to the power law 

   qh
q ssF  .          (6) 

In general,  qh coefficient must depend on q.For stationary time series,  2h  is identical to the Hurst 

exponent. Thus,  qh  function can be considered a generalized Hurst exponent. 

The monofractal time sequence,  qh  depends on q , thus the scaling behavior of  sF ,2   deviations is the 

same for all  segments and the averaging procedure will give the same values of the scaling coefficient for 

all segments of the sequence. Only in the case when the scales of small and large fluctuations are different, 

 qh
 
dependence will be noticeable on q : if positive values of q  are considered,  segments with large 

values of  2
sF

 
(e.g., large deviations from the corresponding interpolation polynomials) will dominate in 

the mean value of  sFq . 

Thus, for positive values of q ,  qh  describes the scaling behavior of segments with large fluctuations. 

Large fluctuations are usually characterized by smaller scaling coefficients of  qh  for multifractal series. On 

the contrary, for negative values of q ,  segments with small deviations of  2
sF  will dominate in the 

mean value of  sFq . Thus, for negative values of q ,  qh describes the scaling behavior of the segments with 

small fluctuations, which are usually characterized by a larger scaling coefficient. 

However, the MF-DFA method can only determine the positive generalized Hurst exponents of  qh , and 

becomes inaccurate for strongly anti-correlated signals when  qh  is close to zero. In such cases, a modified 

MF-DFA analysis is used. A simpler way to analyze such data can be the integration of the time series before 

doing the MF-DFA procedure (finding the accumulations). Hence, the simple finding of the sum in (5), 

which describes the profile of the initial data, is replaced by a double finding of the sum: 

    



i

k

YkYiY
1

~
.         (7) 

After this, the procedure of the MF-DFA is done, described above, and as a result, a generalized fluctuation 

function is obtained: 

     
.

~ 1
~

 qhqh
q sssF          (8) 

Thus, the scaling behavior can be precisely determined even when  qh  is close to zero (but more than 1) for 

some values of q . We should note that 
 

s

sFq

~

 corresponds to  sFq in (6). If the average value is not 

deduced from in each step, such a sum will, moreover, give a quadratic trend in  iY
~

 profile. In this case, it is 

necessary to use, at least, MF-DFA of the second order to remove such an artificial trend. 

The  f
 
spectrum of multifractality (singularity) is obtained as a result of applying the following (9): 

 q  ,    qqf   .        (9) 

There is a correlation between  q  and the generalized Hurst exponent:  

    1 qqhq .          (10) 

Linear behavior of  q  means the monofractality of the time series, while the nonlinear - multifractal. 

3. Results and discussion 

3.1. Data set 

For analysis, we selected the time series of the daily quotations of 8 most capitalized cryptocurrencies from 

the date of their output to stock exchange on the 4-Nov-2018, according to Coinmarketcap, [2] (Table 2). The 
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studied time series of  tX  indices of cryptocurrencies (cryptocurrency quotes to $ USA) were converted to 

logarithmic returns, or profitability: 

     
   

 
,lnln

tX

tXttX
tXttXtG


       (11) 

where t is a time interval of delay, which is equal to the 1st day in our case. 

3.2. R/S analysis 

The results of calculating the local Hurst exponent by R/S using Multifractal Analysis MatLab Toolbox are 

given in Table 2. All the obtained values of the Hurst exponent can be seen to fall into the range of 0.5 

<H<1.0. Namely, in fact, the time series can be attributed to persistent, i.e., trend-resistant, to a greater or 

lesser extent. Trend-resistant behavior, or persistence power, increases with the approach of the Hurst 

exponent H to 1. The closer the value of H to 0.5, the noisier the series is and the less pronounced its trend is. 

Thus, the most trend-resistant cryptocurrencies were ETH and LTC, and the least trend-resistant - XRP. 

 

Table2. Calculated values of the Hurst exponent H for the most capitalized cryptocurrencies 

 Cryprocurrencies Market cap, US $ 

billionon 

4-Nov-2018 

Data Start From Н H, 

Caporale, et 

al., [30] 

BTC Bitcoin 110,526  16-Jul-2010 0.751 0.59 

ETH Ethereum 20,591  6-Aug-2015 0.833  

XRP Ripple 18,239 21-Jan-2015 0.659 0.64 

BCH Bitcoin Cash 8,605  31-Jul-2017 0.667  

EOS EOS 4,809  28-Jun-2017 0.739  

XLM Stellar Lumens 4,471 17-Jan-2017 0.681  

LTC Litecoin 3,008  23-Oct-2013 0.788 0.63 

DASH DASH 1,300 8-Feb-2014 0.712 0.60 

 

For comparison, Table 2 also shows the results of the estimation of the Hurst exponent, calculated by 

Caporale, et al., [30], for the period from the beginning of the cryptocurrency operation to 27-Oct-2017. One 

can see that the persistence of such cryptocurrencies like BTC, LTC and DASH increased during the last year. 

This can be explained by the fact that a clear downward trend of their exchange rate value was formed in 

2018. 

3.3. DFA method 

In addition, we calculated the Hurst exponent H by DFA method. These results, along with the price dynamics 

(exchange rate), are shown in Fig.1. 

 
   а)      b) 
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   c)      d) 

 
   e)      f) 

 
   g)      h) 

Figure 1. Comparative dynamics of cryptocurrency pair index with local Hurst exponent: 

a) BCH/USD, b) BTC/USD, c) DASH/USD, d) EOS/USD; e) ETH/USD; f) LTC/USD; g) XLM/USD; h) 

XRP/USD. 

 

The calculations were made using a sliding window with the following initial data: the width of the window is 

250 points, the step is 5 points. That is, the Hurst exponent is calculated for the first 250 observations, and 

then sliding window is shifted by 5 observations and is calculated again for the next 250 observations until the 

end of the sample is reached. 

The analysis of Fig.1 allows concluding that the Hurst exponent, calculated by DFA, is sensitive to changes in 

the cryptocurrency market;at the same time, it shows a tendency to a sharp decline in the periods of crisis 

phenomena for the most investigated cryptocurrencies. Although most series are persistent during the period 
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under study, the series become anti-persistent for such currencies as BTC, BCH, LTC, XLM, XRP in periods 

of crisis phenomena and increased turbulence in the market; the Hurst exponent shows significant fluctuations 

near the value of 0.5, and the price dynamics becomes trend-unstable and unpredictable. 

Our results are consistent with Bariviera, et al., [29] who also used DFA for both returns and volatility of 

Bitcoin time series.According to their results, the Hurst exponent for the BTC for the period from 18.08.2011 

to 2.02.2017 was too volatile .72.042,0 H  However, in contrast to their results, we did not find a steady 

trend for the Hurst exponent up to 0.5 for BTC after 2014, that would be in the case of EHM. 

 

3.4. MF-DFA method 

To analyze the current market condition, we conducted a dynamic MF-DFA of the time series studied, the 

results of which are shown in Fig. 2. It shows the change in the average value of the width of the spectrum of 

multifractality and the average value of the spectrum width in time. 

We should note that the studied series have a wide spectrum of multifractality. If multifractalityis treated as a 

time series behavior, this spectrum indicates a tendency to hold the trend. The width of the spectrum begins to 

decrease before the crisis, and it reaches its minimum width before the collapse of the index. After the 

collapse of the index, there is a gradual return of the spectrum width of multifractality to its original value. 

 
a) 

 
b) 
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c) 

 
d) 

 

Figure 2. Multifractality spectrum dynamics for cryptocurrency pairs: 

a) BTC/USD, b) ETH/USD, c) LTC/USD, d) XRP/USD. 

 

This can be explained by the fact that after the crisis (and the spectrum width of multifractality increases only 

in this period), the system goes into an unstable state, as a result of which system agents begin to look for the 

way out of the current state for the system. 

The analysis of Fig. 2 shows that the cryptocurrency market is out of crisis state at present, since, as we can 

see, the spectrum width of multifractality for all cryptocurrencies has the maximum value. At the same time, 

this indicator clearly demonstrates previous crisis periods (the spectrum of multi-fractality has narrower 

width). We can observe that the most vulnerable were cryptocurrencies of BTC, LTC, and XRP. 

 

4. Conclusion 

In this paper, we analyzed the time series of the most capitalized cryptocurrencies in order to diagnose long-

range dependence. To do this, we used both standard R/S analysis and DFA, which is more robust, and allows 

us to evaluate the dynamic properties of the Hurst exponent. The results obtained show that during the study 

period, most of the time series of cryptocurrencies were persistent, indicating the availability of long memory. 

However, during periods of crisis and market turbulence, the series become anti-persistent, the Hurst exponent 

shows significant fluctuations near the value of 0.5, and price dynamics becomes trend-unstable and 

unpredictable. 

In addition, we conducted the Multifractal DFA (MF-DFA) and calculated the spectrum of multifractality, 

which allowed us to assess the state and stability of the market. The studied series have a wide spectrum of 

multifractality, showing the relaxation and stabilization of the market. 
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Thus, on the basis of our analysis, we can identify all the phases of the deployment of crisis phenomena on the 

cryptocurrency market: pre-crisis state, fall (recession) and relaxation. These states can be determined by the 

window procedure of multifractal analysis and the calculation of the local Hurst exponent. 

In conclusion, it should be noted that our analysis of the fractal properties of cryptocurrencies allows us to 

make more reasonable decisions for using them as payment instruments or investment assets. Implantation of 

cryptocurrencies in the e-commerce market allows us to carry out business activities on a global scale [41], to 

offer enterprises goods and services regardless of spatial and temporal constraints, to reduce the costs of 

conducting and maintaining operations. 
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