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Abstract 

Development of effective treatment agents for the alcohol use disorders requires the detailed understanding of molecular 

targets of alcohol in the brain. The gamma-aminobutyric acid type A receptors (GABAARs) are the major molecular 

targets of alcohol in the central nervous system. Mediating inhibitory neurotransmission upon GABA binding in the 

vertebrate central nervous system, GABAARs are heteropentameric chloride channels, assembled from a large subunit 

pool encoded by 19 distinct genes. It is the subunit composition that determines the receptor’s biophysical properties, 

neurotransmitter affinity, the pharmacology, and the position on the cell i.e., synaptic or extra-synaptic.  This review 

paper briefly presents the alcohol modulation of a specific GABAAR subtype located at the extra-synaptic sites with a 

subunit composition of and 
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1. Introduction  
 

Affecting about 18 millions of adult Americans, alcohol 

abuse and alcohol dependence are classified as alcohol 

use disorders (AUD), which are not satisfactorily 

treatable. For example, Benzodiazepines (BZs), used for 

the treatment of symptoms of AUDs, cause addiction 

and Naltrexone, despite being an effective therapeutic 

agent, has severe side effects (Liang and Olsen, 2014). 

Thus, development of better treatment agents for the 

AUDs is essential which requires a detailed 

understanding of molecular targets of alcohol.  

 

Accumulating evidence in the literature suggests that 

gamma-aminobutyric acid type A receptors (GABAARs) 

are the major target of alcohol in the brain (Mihic and 

Harris, 1997; Boehm et al., 2004; Kumar et al., 2009). 

GABAARs are the member of  “Cys-loop receptors” 

together with nicotinic acetylcholine receptors (nAChR), 

the 5- hydroxytryptamine type 3 (5-HT3) receptors, the 

zinc-activated ion channel (ZAC) and the glycine 

receptors (GlyR) (reviewed in Sine and Engel, 2006). 

They are GABA-gated heteropentameric chloride 

channels responsible for the fast inhibitory synaptic 

transmission in the vertebrate central nervous system 

(CNS) (reviewed by Sieghart and Sperk 2002). The 

GABAARs display a rich molecular and cellular 

diversity, which result in distinct functional roles. 

Assembled from a large subunit pool, receptor subunit 

composition affects the receptor gating, kinetics and the 

response to allosteric modulators (Haas and Macdonald, 

1999; Lavoie, et al., 1997). Besides, subunit composition  

 

is a determinant of the cellular and subcellular 

localization of the receptor, i.e., synaptic or extra-

synaptic sites (Jones et al, 1997; Brickley et al., 2001; 

Goetz et al., 2007). 

 

2.   The Subunit Composition of GABAARs: Synaptic 

and Extra-synaptic Receptors 

 

One of the most distinguishing features of GABAARs is 

the wide repertoire of subunits from which the receptor 

assembles (Seeburg et al., 1990). The GABAARs are 

assembled from a pool of 19 subunits 

() (Rudolph and 

Mohler, 2006). The expression of the subunit genes is 

age- and region dependent (Wisden et al., 1992; Laurie 

et al., 1992a, b; Fritschy and Mohler, 1995; Schwarzer et 

al., 2001). The most abundant GABAARs in the 

mammalian brain seem to be the combination of 2 

subunits with a subunit ratio of  (Ernst et al., 

2003). These 2 containing GABAARs (2-GABAARs) 

mediate classical fast synaptic inhibition (phasic 

inhibition)  and massively clustered in the synapses. On 

the other hand  subunit containing GABAARs receptors 

(-GABAARs), typically in combination with 6 and  

subunits in the cerebellum (Jones et al, 1997; Brickley et 

al., 2001); and in combination with 4 and  subunits 

(Patel et al., 2014) in the forebrain, are located extra-

synaptically or perisynaptically (Nusser et al., 1998; Wei 

et al., 2003). Activated by GABA diffusing out of the 

synaptic cleft, these receptors mediate a special form of 

inhibition called the tonic inhibition characterized by a 

higher affinity for GABA and with a slower 
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desensitization rate (Nusser and Mody, 2002). Tonic 

inhibition is critical for the threshold for the action 

potential generation. It shunts the excitatory synaptic 

signals controlling neuronal excitability (Hamann, et al., 

2002, Semyanov et al., 2004). Thus the extra-synaptic 

GABAARs mediate a physiologically different form of 

GABAergic signaling than the synaptic receptors 

(Brickley and Mody 2012). The diversity of GABAAR 

subunits with distinct physiological functions (Mody and 

Pearce, 2004) is also apparent at the level of its ligands.  

Benzodiazepines, barbiturates, alcohol and neurosteoids 

are the modulators of GABAARs with differences in 

efficacy, potency and binding sites in a subunit 

dependent manner (Goetz et al, 2007).  In this study we 

will present the alcohol modulation of extra-synaptic 

receptors containing  or subunits (-

GABAARs). 

 

3.  The structure of the GABAARs  

 

Until last year, the molecular structure of a GABAAR 

subunit complex was based on the studies of the muscle 

nAChR from the electric organ of the torpedo ray and 

the snail acetylcholine receptor binding protein 

(AChBP) (Brejc et al., 2001; Cromer et al., 2002; Ernst 

et al., 2003; Unwin, 2003, 2005; Sine and Engel, 2006). 

However, the recent work done by Miller and Aricescu 

(2014) reports the crystallized structure of 

homomeric3 subunit containing GABAARs 

(GABAAR-3cryst) at 3Å resolution which provides a 

direct overview for the receptor structure for the first 

time. Together with the recent structural data from 5HT3 

receptors (Hassaine et al., 2014), these studies confirm 

the characteristics of eukaryotic Cys-loop receptors 

(reviewed by Lynagh and Pless, 2014).  

 

GABAARs are pentamers consist of five subunits 

arranged counterclockwise (i.e., ,) around a 

central pore.  Each subunit comprises a long N- terminus 

located at the extracellular domain (ECD), followed by 

four transmembrane domains (TM1–TM4), and a short 

extracellular C-terminal. There is a large intracellular 

loop between the third and fourth transmembrane 

domains. According to Miller and Aricescu (2014) the 

receptor looks like a cylinder with a height of 110Å and 

with a diameter of 60 to 80Å.  From the extracellular 

side, the receptor is surrounded by 15 N-linked glycans. 

Each extracellular domain (ECD) comprises an amino-

terminal -helix (1) followed by ten strands in 

parallel with the structure of other family members 

(reviewed in Lynagh and Pless, 2014). A second helix 

(2), between -strands 3 and 4, is located under the 1 

helix. The pentameric transmembrane domain (TMD) is 

composed of four additional helices (M1–M4) from each 

subunit that come together to form a lining a pore with 

M2 segments. The subunit assembly is mediated by 

hydrogen bonds, van der Waals forces and salt bridges 

in the subunit ECDs, which also involve the 

neurotransmitter binding pocket. 

 

When subunits are assembled in to the heteropentameric 

receptor, the neurotransmitter binding pocket, i.e., the 

GABA binding site, is located at the interface between N 

terminus extracellular domains of the  and  subunits, 

which constitutes a “principal face” and a 

“complementary face”, respectively. As reported by 

Miller and Aricescu (2014), the principal face of human 

GABAAR involves the 4 strand and residues Asp95-

Leu99, Glu155-Tyr159, Phe200-Tyr205 in the  

subunit. The complementary face corresponds to the 

residues Tyr62-Gln64 and Leu125-Arg129 in the  

subunit. On the other hand, agonist sensitivity seems to 

be affected also by the motifs, which are not located in 

the neurotransmitter binding pocket (Korpi and 

Luddens, 1993; Böhme et al., 2004). For example a 

domain (S238-V264) in the  subunit might be 

important for the high agonist affinity of the extra-

synaptic receptors (You and Dunn, 2007) 

compared to synaptic 2 containing receptors. Thus, 

following the formation of receptor and agonist complex 

at the neurotransmitter binding site, the agonist affinity 

and efficacy might be affected by all subunits (see 

Unwin 2005). 

 

4. Alcohol modulation GABAARs  

 

Alcohol has profound effects in the brain. Interacting 

with multiple neurotransmitter systems (Valenzuela CF., 

1997), its impact is characterized by intoxicating, 

sedative, anxiolytic and addictive features in the 

behavioral level (Bayard et al., 2004). Ethanol affects 

many ion channels, including the NMDA glutamate 

receptors (Hanchar et al., 2005). In the CNS, GABAARs 

are the major targets of alcohol (Mihic and Harris, 1997; 

Boehm et al., 2004; Hanchar et al., 2005; Kumar et al., 

2009). In addition to direct allosteric effect of ethanol on 

GABAARs (Deitrich et al., 1989), there are also indirect 

effects on the receptor due to ethanol mediated increase 

in the levels of presynaptic release of GABA (Yang et 

al., 2000; Roberto et al., 2003; Ming et al., 2006; Theile 

et al., 2008; Mameli et al., 2008) and neuroactive 

steroids (Caldeira et al., 2004; Mameli and Valenzula 

2006; Izumi et al., 2007), which are the modulators of 

GABA receptors.  Besides, ethanol affects the 

phosphorylation of GABAARs, which in turn lead to an 

increase in the GABA sensitivity (Hodge et al., 1999, 

2002; Kumar S., 2009). For allosteric effects, ethanol 

sensitivity depends on the GABAAR subtypes.  In 

general 2- GABAAR subtypes are sensitive to ethanol at 

doses attained by severe intoxication (Kumar S., 2009). 

The extra-synaptic GABAARs are thought to be most 
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sensitive to ethanol, which will be discussed in the 

following section. 

 

5. Alcohol and extra-synaptic GABAARs  

 

In general, 1-3 mM blood ethanol levels can result from 

drinking half a glass of wine or less (Goetz et al 2007). 

This is especially important as the extra-synaptic 

GABAARs are thought to be most sensitive to ethanol 

at levels of social drinking, i.e., less than 30 mM 

(Sundstrom-Poromaa et al., 2002; Wallner et al., 2003, 

2006; Wei et al., 2003; Hanchar et al., 2005; 2006; 

Santhakumar et. al., 2007; Glykys et al., 2007; Mody et 

al., 2007; Olsen et al., 2007). Studies of δ subunit knock 

out mice have shown the impact of extra-synaptic δ -

GABAARs for mediating the effects of ethanol (Mihalek 

et al., 2001). These mice show less responsiveness to the 

anticonvulsant effects of ethanol, a decreased response 

of excitability to ethanol withdrawal, and a less 

preference for ethanol compared to wild-type mice. This 

phenomenon is dependent on subunit with 3 isoform 

providing maximal sensitivity to ethanol (Wallner et al., 

2003).  

 

A direct evidence of the effect of ethanol via -

GABAARs on cerebellar granule cells has been shown 

by the R100Q mutation in the 6 subunits of the alcohol 

non-tolerant rats. Cerebellar granule cells express the 

extra-synaptic receptors with a specific partnership of 

 and  subunits together with the subunit (Jones et 

al., 1997; Brickley et al., 2001). Rats homozygous for 

the mutation (α6-100QQ) have an increased alcohol-

induced ataxia and they have an increased activity of 

α6βδ receptors enhanced by alcohol in cerebellar 

granule cells (Hanchar et al., 2005, 2006).  On the other 

hand 6 knock-out mice do not show any distortion of 

alcohol sensitivity (Homanics et al., 1997). However, 

this may result from the adaptive responses of the 

cerebellar granule cells to the absence of 6 subunits, 

which could mask the relation of corresponding 

receptors (6 and  subunits which has a specific 

partnership with subunit in the cerebellum) and 

ethanol actions. Indeed, the 6 subunit knock-out mice 

have increased expression of TASK-1 channel in these 

cells, which may impact on ethanol sensitivity. In line 

with this, TASK-1 knock-out mice are more sensitive to 

ethanol in behavioral level, which might explain the 

unchanged ethanol sensitivities of6 knockout mice of 

GABAAR (reviewed by Korpi et al., 2007). Other 
experiments done with the recombinant expression 

systems have shown that 3-30 mM alcohol is enough to 

activate  and subunit containing receptors 

(Wallner et al., 2003; 2006; Sundstrom-Poromaa et al., 

2002). This effect is shown to increase the tonic 

inhibition (Wei et al., 2003; Hanchar et al., 2005; 

Glykys et al., 2007; Santhakumar et al., 2007; Liang et 

al., 2008), the specific form of inhibition mediated by 

the -GABAARs. 

 

As a result, several lines of evidences from the studies of 

recombinant expression systems and 

electrophysiological recordings converge on the 

hypothesis that physiologically relevant, low dose (less 

than 50 mM) actions of ethanol is mediated by extra-

synaptic - GABAARs. Thus, a glass of wine activating 

the extra-synaptic receptors could potentiate GABAergic 

tonic inhibition in the striatum and cerebellum via 

 and  receptors respectively (Hanchar et al., 

2005, 2006; Olsen et al., 2007).  

 

On the other hand, these results generated some 

controversy in the field as the findings regarding the 

high alcohol affinity of the extra-synaptic receptors have 

not been replicated by some groups and presynaptic 

mechanisms have been proposed for the alcohol 

potentiation of GABAergic system (Carta et al., 2004; 

Borghese et al., 2006; Botta et al., 2007a, b; Korpi et al., 

2007; Baur 2009). Several experimental errors or 

methodological issues may cause this contradiction. For 

example, in one of the studies who fail to replicate the 

physiologically relevant alcohol potentiation of extra-

synaptic receptors (Botta et al., 2007), the magnitude of 

GABAergic tonic currents has been described as 55 pA, 

which is much higher than tonic currents (i.e., less than 

30 pA) described in many other studies for the 

comparative age and cell types of rodents (cited in Otis, 

2008).  subunit is a rare isoform of GABA receptor 

subunits by means of its distribution in the brain: Its 

expression is restricted to cerebellar granule cells (Jones 

et al., 1997), dentate gyrus granule cells in the 

hippocampus (Sun et al., 2004) and ventrobasal nucleus 

of the thalamus and neocortex (Cope et al., 2005; 

Glykys et al., 2007). Thus, it is reasonable to expect 

some experimental caveats for the in vitro ectopic 

expression of - GABAARs (Arslan et al., 2014). For 

example, in vitro expression of recombinant subunit is 

generated variable results by means of clustering on 

the cell membrane. Regarding this, one study 

reported that in vitro expression of recombinant  

subunit shows a diffusely distributed pattern on the 

cell membrane but in vivo studies show that  

subunit containing receptors form clusters (Sun et 

al., 2004). In parallel with the latter finding, Arslan 

et al., (2014) reported that recombinant  subunit 

when expressed in the primary cultures of 

hippocampal neurons gave a punctate 

immunostaining on non-permabilized cells. Here it 

is important to consider many factors that could 

contribute to this discrepancy.  For example Arslan 

et al. (2014) used N-terminus GFP tagged version 

of  subunit where as Christie et al (2006) used the 
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C-terminus GFP tagged version of this subunit. 

Also, low in vitro expression profile of recombinant 

 subunit (Arslan et al., 2014) and its restricted 

ability to form functional receptors in vitro may 

produce experimental failures (Olsen et al., 2007; 

Santhakumar et al., 2007; Otis, 2008). Moreover 

there are some possible effect of species differences 

in alcohol and alcohol antagonist responses 

(Wallner, et al., 2014). For example, a recent study 

suggests that there are some significant differences 

in the pharmacology of murine and human α4β1δ 

receptors (Villumsen et al., 2015). Therefore, it is 

clear that methodological issues should be carefully 

considered for studies with - GABAARs in general 

and for the effects of alcohol on these receptors in 

particular. 
 

6. Alcohol binding site 

Perhaps a direct evidence for the ethanol enhancement 

of -GABAARs would come from studies showing the 

alcohol binding site on the -GABAARs. For the 

synaptic receptors like  containing ones, 

mutagenesis and labeling studies have led to the 

identification of several amino acid residues in 

transmembrane domain critical for alcohol modulation.  

For example, site directed mutagenesis studies identified 

S270 and A291 on the second and third transmembrane 

domain of  subunit of GABAARs critical for allosteric 

modulation by alcohol (and volatile anesthetics) (Mihic 

et al., 1997). Many of these residues are involved in the 

enhancement of receptor function by alcohol as positive 

allosteric modulator (Mihic et al., 1997; Jenkins et al., 

2001; 2002; McCracken et al., 2010). 

 

Regarding extra-synaptic -GABAARs several studies 

have reported that a competitive antagonist of ethanol, 

Ro15-4513, prevents many of the behavioral aspects of 

ethanol intoxication (Suzdak et al., 1986; Lüddens et al., 

1990; Hanchar et al., 2006, Wallner et al., 2006). 

Experiments utilizing the radiolabeled Ro15-4513 have 

shown that ethanol can displace Ro15-4513 on the δ 

subunit  (Hanchar et al., 2006, Wallner et al., 2006). 

Addressing this, a new extracellular 

alcohol/imidazobenzodiazepine (Ro15-4513) site has 

been identified for the -GABAARs (Wallner et al., 

2014). By the use of site directed mutagenesis 

experiments and homology modeling, Wallner et al. 

(2014) have shown that this site, involving the residue 

Y76in the 3 subunit, is located at the interface between 

the  and 3 subunit of -GABAARs and matches 

with the residue (2 T81) of benzodiazepine site of 2 -

GABAARs. Thus the binding site of ethanol is likely 

located at a site on extra-synaptic -GABAARs 

corresponding to benzodiazepine site of synaptic 2 -

GABAARs.  

 

7. Conclusion 

 

The current pharmacotherapy for AUDs is not effective 

satisfactorily (Liang and Olsen 2014). Development of 

better treatment agents for the AUDs requires the 

detailed understanding of molecular targets of alcohol 

relevant to its effects in the brain. Accumulating 

evidences from the studies of recombinant expression 

systems, electrophysiological recordings from the 

neurons and labeling experiments converge on the 

hypothesis that physiologically relevant, low dose 

actions of ethanol is mediated by extra-synaptic - 

GABAARs. This action is likely to occur by an allosteric 

mechanism corresponding to a BZ site in the ECD of the 

- GABAARs (Wallner et al., 2014). But the ethanol 

action on GABAARs does not seem to be limited to one 

site. Probably there are multiple sites, some of which are 

physiologically critical while others not (Mihic et al., 

1997; Jenkins et al., 2001; 2002; McCracken et al., 

2010;  Wallner et al., 2014). Current developments in 

our understanding of the structure of GABAARs (Miller 

and Aricescu, 2014) and related proteins from 

eukaryotic and prokaryotic organisms (reviewed by 

Lynagh and Pless, 2014) will likely answer these 

questions and initiate new opportunities addressing the 

alcohol actions on GABAARs. Based on the available X-

ray data, molecular dynamics (MD) simulations have the 

potential to offer an atomic level dynamics of the 

conformational changes on the receptor during the 

process of signal transmission, and the effect of 

allosteric modulators on this process. These 

opportunities will not only lead to the verification of 

present data and clarification of inconsistencies in the 

literature described so far but also elucidation of 

allosteric interactions of ethanol besides to other 

GABAAR modulators at level of atomic scales for better 

perspectives of drug design. Thus, a significant progress 

is expected in the field to address the mechanism of 

allosteric modulation of various ligands besides to 

ethanol on different subtypes of GABAARs, including 

extra-synaptic -GABAARs. 
subtypes.  
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