
ISSN 2303-4521

Periodicals of Engineering and Natural Sciences Original Research

Vol. 12, No. 1, February 2024, pp.75-100

© The Author 2024. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's

authorship and initial publication in this journal.

 75

A survey about deep learning and federated Learning in cyberse-curity

Imad Tareq1, Bassant M. Elbagoury1,2, Salsabil El-Regaily1, El-Sayed M. El-Horbaty1
1Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

 2Faculty of Computer Science and Computer Engineering King Salman International University, EI-Tor, Egypt

ABSTRACT

Advances in Artificial Intelligence (AI) technology have led to the strengthening of traditional systems'

cybersecurity capabilities in a variety of applications. However, these embedded machine learning models

have exposed these systems to a new set of vulnerabilities known as AI assaults. These systems are now

attractive targets for cyberattacks, jeopardizing the security and safety of bigger systems that include them.

As a result, DL approaches are critical to transitioning network and system protection from providing safe

communication between systems to intelligence systems in security. Federated learning (FL) is a new kind

of AI based on heterogeneous datasets and decentralized training. FL is a unique research topic that is

currently in its early phases. It has not yet gained wide acceptance in the community, owing mostly to

privacy and security considerations. In this research, we first shed light on its privacy and security risks that

must be discovered, analyzed, and recorded. FL is favored in scenarios where privacy and security are

paramount issues. An extensive understanding of risk factors allows an FL adopter and implementer to

construct a safe environment successfully while giving researchers a clear perspective of possible study

domains. The survey in this paper intends to include an analysis of cybersecurity and DL approaches and

modern advances to improve enhanced protection methods. It proposes a complete examination of FL's

security and privacy issues to assist in bridging the gap between the current level of federated AI and a

future in which broad adoption is achievable. We also propose a range of cybersecurity datasets and the

most recently used rating standards.

Keywords: AI, Cybersecurity, Deep Learning, Federated Learning

Corresponding Author:

Imad Tareq

Faculty of Computer and Information Sciences

Ain Shams University

Cairo, Egypt.

E-mail: emadtariq1982@gmail.com

1. Introduction

Since the introduction of artificial intelligence (AI) in 1956, AI technology has increasingly influenced human
existence. As AI technology has advanced recently, different application industries have entered intelligence.
With this advance, the frequency and range of cyberattacks have recently increased, quickly rendering
conventional security techniques obsolete. As a result, the most cited dimension in the literature is controlling
the security of networks and systems to identify cyberattacks after selecting and monitoring behavior sources.
Artificial Intelligence (AI) techniques, notably Deep Learning (DL), have grown in popularity in the past few
years [1]. Most malware detection systems that use AI rely on a central organization that collects data from
many devices and trains global models. Nonetheless, this method is inappropriate for circumstances where
device actions contain confidential or sensitive data that, if compromised, would dramatically impact security
and privacy where integrity is critical [2]. As a result, there is an urgent need for a practical and effective

https://creativecommons.org/licenses/by/4.0/
mailto:emadtariq1982@gmail.com

 PEN Vol. 12, No. 1, February 2024, pp.75-100

76

approach to alleviate the issues above and re-store the AI's life. The notion of "federated learning (FL)" arose
against this backdrop. Google originally introduced the concept of FL in 2016, primarily to allow Android
mobile phone users to upgrade models locally without disclosing sensitive personal data. Google then created
an application-oriented FL system. FL is one of the most closely scrutinized technologies in privacy
computing. FL has been the standard solution and product choice in many privacy computing applications due
to its lightweight technological pathways and deployment strategy benefits. Moreover, as FL applications
have evolved and im-proved, many research successes in the FL sector have developed [3]. Today’s artificial
intelligence is becoming more decentralized. New AI models are being trained collaboratively. Federated
learning has evolved as a distributed confidentiality meth-od in recent years. As illustrated in Figure 1, In FL,
algorithms are trained across servers or different devices utilizing decentralized data samples without sending
actual data. This concept differs significantly from previously known strategies, like keeping data in a
distributed architecture or uploading data to servers.

On the contrary, FL creates more secure models without sharing data, which leads to privacy protection while
increasing security privileges and data access, which is the desired outcome [4]. Federated learning has been
applied in multiple applications, like IoT, transportation, medical, healthcare, defense, and mobile apps.
Despite FL's tremendous technique, certain technical components, including platforms, software, hardware,
and others concerning data privacy and access, are still poorly understood [5]. This paper will discuss the
benefits of the FL technique and explore many of the most significant cybersecurity applications these
features enable. We then examine some ongoing obstacles in systems, networking, cybersecurity, practical
concerns in real-world implementations, tool development that function as significant obstacles to federated
learning, and the potential for overcoming these obstacles.

Figure 1. The federated learning

The study offers an overview of cybersecurity and Federated Learning, applications, FL platforms, challenges,
algorithms, a wide range of datasets, and the most recently used evaluation criteria. Compared to previous
survey papers, this work aims to present a thorough understanding of the most significant deep learning (DL)
applications in cybersecurity and real-world FL use cases to assist data scientists in designing better privacy-
preserving strategies for data that rely on FL. In addition, we present a summary of major challenges
mentioned in recent literature. While considerable studies have been conducted on this subject, there has not
been enough progress regarding knowledge of federated learning on a deeper level. Federated learning is new
and poorly understood, with little application in most industries. As a result, we lack a comprehensive
understanding of federated learning and cannot see the big picture of FL. We believe the proposed survey will
provide a comprehensive overview of the issues and contributions raised. Compared to existing surveys, the
following are the important contributions of this work.

1- We explain DL algorithms and review cybersecurity. In addition, it highlights DL use cases and
cybersecurity attack detection using FL.

2- Compared to other survey studies, this report describes the more relevant FL platforms, software, and
hardware, allowing researchers to learn about FL techniques.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

77

3- We review to identify and analyze the critical contributions that address security and privacy issues.
These are important considerations in FL because malevolent parties can still leak and taint data.

4- We thoroughly analyze the most used dataset in cybersecurity applied and evaluation criteria. The rest
of the survey is organized as follows. The basic knowledge of cybersecurity is introduced, and
datasets most used in Sect. 2. Sect. 3 introduces AI systems support to Cybersecurity and Applications
for DL in Cybersecurity. Sect. 4 Overview of Federated Learning and FL's Motivations for
Cybersecurity, Types, and FL Applications. Sect. 5 discusses Commonly used evaluation criteria. And
conclusion in Sect. 6.

2. Cybersecurity

Cybersecurity is a skill set, procedures, and strategies to protect computers, data, and networks from malicious
malware, disruption, and other dangers. Our lives have be-come more luxurious because of AI's fast growth,
yet numerous hazards exist. AI attacks, Malware, IoT attacks, third-party attacks, MITM attacks, phishing,
ransomware, denial-of-service attacks, and supply chain attacks are all examples of cyberat-tacks. Developers
may find it challenging to incorporate essential cyber security in IoT networks with numerous levels and
topologies [6]. Intelligent devices and connected technology are at the heart of the bulk of IoT applications
and systems. Cyber-security is critical in AI applications because it ensures efficient management of
interactions with people and goals. In cyberspace, intrusion detection systems are com-monly used to identify
and manage hazards. It allows programmers to ensure safe functioning and the capacity to address any online
threats that may jeopardize the system [7], as shown in Figure 2.

Figure 2. A form of cyberattack

2.1. Cybersecurity security dataset

Conducting relevant security research necessitates the proper selection and application of data. The
size of the data set also influences DL model training. In most cases, there are two ways to collect
security information: directly, which is extremely specific and ideal for gathering short-term or tiny
quantities of data, and leveraging a current public dataset, which enables quick access to the various
datasets required for research, this can minimize the time spent on data gathering and enhance the
effectiveness of research.

2.2. Most used datasets

The process of protecting networks and connected Internet devices from cyber-attacks by identifying and
monitoring risks and assisting in patching security flaws is known as security. Because of the dramatic
increase in cybercrime, DL techniques are now being used to provide early detection solutions for cyber risks
and to prevent them. DL algorithms perform best when trained on great, diverse data sets. The more
commonly used data sets in security applications are briefly overviewed in this section and represented in
Table 1.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

78

Table 1. The most often used datasets in cybersecurity applications.

Dataset year Attack Feature Training set Based dataset

NSL-KDD 2009 4 43 Feature Network traffic-based

Botnet-IoT 2014 5 115 Feature Internet-connected device

UNSW-NB15 2015 9 49 Feature Network traffic-based

CICIDS-2017 2017 15 83 Anomaly Network traffic-based

BOT-IOT 2018 5 43 Feature IoT traffic-based dataset

N-BaIoT 2018 2 115 Feature IoT Network traffic

CSE-CIC-IDS2018 2018 7 80 scenarios Network traffic

IoTID20 2020 5 83 Feature IoT network communication

IoT-23 2020 12 21 scenarios Network traffic-based

MedBIoT 2020 3 - Classifier IoT Network traffic

MQTT-IOTIDS2020 2020 5 - sensors MQTT-based network

DS20S 2020 8 13 Scenarios IoT-based services

TON-IoT 2021 10 - Feature Heterogeneous dataset

WUSTL-IIoT 2021 5 41 attributes IIoT architected environment

Edge-IIoT 2022 5 61 Scenarios IoT, IIoT protocol

• NSL-KDD dataset: This dataset addresses some of the flaws in the KDD Cup 99 dataset. The dataset

contains network data attributes for each instance. It has 22 attack kinds di-vided into four basic attack

groups. There are 127973 records in the training and 22544 records in the testing. Each traffic record

has six symbolic features and 35 continuous features. These are the fundamental content and traffic

characteristics [8].

• Botnet dataset: Diverse data is needed to imitate real-world traffic correctly for botnet detection

systems. This dataset was suggested by Beigi et al [9] and is separated into training dataset that

consists of seven distinct types of botnets (Neris, Virut, Rbot, Zeus, SMTP Spam, NSIS, and Zeus

control) and sixteen test datasets (Menti, Neris, Sogou, Rbot, ...etc). Botnet topologies might be

centralized, distributed, or random.

• The UNSW-NB15: The dataset was generated using the IXIA Perfect Storm tool, including attack

traffic and normal user network traffic. Nine attack scenarios were deployed: DoS, analysis, fuzzes,

backdoors, generic, exploits, shellcode, reconnaissance, and worms. The dataset has 2,540,044

streams, including 321,283 harmful and 2,218,761 benign, and it was used to extract 49 network

traffic features [10].

• CICDS2017: contains network traffic samples gathered for the intrusion detection job. The dataset,

which comprises almost 1.5 million PCAPs data simulating real-world traffic data transfers, extracts

83 network flow features with 15 class labels (14 attack+1 normal labels) and 3119345 instances after

analyzing 25 user behaviors spanning a di-verse of network protocols, including HTTP and SSH

protocols [11].

• Bot-IoT: The UNSW Canberra Cyber Center collected the Bot-IoT dataset using smart home

equipment. The network environment contained both botnet traffic and normal. Among the over

72.00.000 records in this collection are DDoS and DoS, Service Scan, OS, Data Exfiltration attacks,

and Keylogging. The authors used an MQTT protocol-based dataset to simulate the model behavior of

IoT devices. Smart fridges, weather stations, motion-activated lights, smart thermostats, and remotely

operated garage doors are also included in the dataset [12].

• N-BaIoT 2018: The dataset includes unusual network traffic collected from nine hacked Internet of

Things devices (i.e., thermostats, doorbells, baby monitors, security, and web cameras). IoT devices

 PEN Vol. 12, No. 1, February 2024, pp.75-100

79

were linked with several access points, switches, routers, and servers to simulate a typical network

data flow. BASHLITE and Mirai, two IoT-based botnets, were used to launch attacks on IoT devices.

A separate CSV file containing the 23 features and every network traffic feature is provided for each

attack [13].

• CSE-CIC-IDS2018: consists of seven attack scenarios, such as Heartbleed, DDoS, Web at-tacks,

brute-force attacks, DoS, botnet attacks, and penetration. The dataset comprises 16,000,000 instances

collected over ten days, 80 characteristics extracted from captured traffic using CICFlowMeter-V3,

and each computer's network traffic and system logs [14].

• IoTID20: The dataset includes IoT hardware and network infrastructure built with the smart home

devices SKT NGU. A smart home Wi-Fi router and EZVIZ Wi-Fi camera link these two IoT devices.

Smartphones, tablets, and laptops are among the additional devices linked to the smart home router,

which uses the CIC flowmeter program to create a CSV dataset format by extracting features from

Pcap files. They comprise 80 net-work attributes and three label features containing various IoT attack

types and families (Normal, DoS, Mirai, MITM, Scan) [15].

• IoT-23: This IoT device network traffic collection includes 23 different samples of IoT network

traffic. Three network traffic samples from actual IoT devices and twenty net-work grabs from

malicious IoT devices are employed in these scenarios. Three IoT de-vices— a smart door lock, an

Amazon Echo Home intelligent personal assistant, and a Philips HUE smart LED bulb—were

employed to gather network traffic in benign situations. It is critical to note that these three IoT

devices are real, not simulated hardware. There are a total of 30,858,735 benign flows. Nonetheless,

the dataset contains twenty-one feature attributes. The types of qualities vary, with some having time-

stamp values and others being nominal or numerical [16].

• MedBIoT Dataset: A medium-sized dataset extracted from an IoT botnet; Tallinn University of

Technology in Estonia will release this dataset in 2020. The Mirai, BashLite, and Torii botnets make

up the entire dataset. This collection includes 83 genuine and simulated IoT devices. Furthermore, the

spread of the botnet and C&C communication are the main topics of this dataset. The emulated

devices (TP-Link smart switch, intelligent Tasmota Sonoff switch, and TP-Link light bulb) are used in

addition to the actual devices (Lock, Switch, Fan, and Light). Each data source, botnet phase, and

device type have its own set of pcap files. Every pcap file contains both legitimate and malicious

traffic. During malware deployment, all network traffic was collected [17].

• MQTT-IOT-IDS2020: A simulated MQTT network topology is used to generate the dataset. The

network comprises a fictitious camera, a broker, 12 sensors, and an attacker. Aggressive scan, regular

operation, UDP scan, Sparta SSH brute-force, and MQTT brute-force assault are the five situations

that have been observed. The features are extracted following the saving of the raw pcap data.

Unidirectional flow features, bidirectional flow features, and packet features are all features that raw

pcap files extract [18].

• DS2OS dataset: The DS2OS dataset contains various IoT-based services, such as temperature,

window, and light controllers. The user's interactions with the services are recorded and saved in CSV

file format. The dataset includes 357952 samples and 13 characteristics. The dataset contains eight

classes, 10017 data anomalies, and 347935 normal data. The eight types of assaults are Data Type

Probing, DoS, Malicious Control, Spying, Wrong Setup, Scan, Malicious Operation, and Normal [19].

• TON-IoT: The TON-IoT data collection includes heterogeneous data gathered from various sources

and is intended to gather and evaluate different data sources from the IIoT and IOT. System network

traffic, Linux system logs, Windows, and telemetry data from connected devices TON-IoT is a CSV

dataset with a categorized column indicating the normal or attack behavior and the kind of attack

subclass, consisting of nine various kinds of attacks, including DOS, XSS, Password Cracking Attack,

DDOS, Reconnaissance, Backdoor, Injection Attack, MITM, and Ransomware [20,21].

• WUSTL-IIOT: Washington University in St. Louis developed a cybersecurity-focused network-

driven dataset of IoT applications. Through the simulation and modeling of re-al-world industrial

 PEN Vol. 12, No. 1, February 2024, pp.75-100

80

systems, the architecture used to simulate actual industrial applications includes a variety of IoT

sensors and actuators, a logger, an HMI, a PLC, and an alarming device. The data set contains

1,194,464 observations, with 87,016 for malicious and 1,107,448 for benign samples. It is made up of

2.7 GB of data that was collected over 53 hours. The dataset contains forty-one attributes chosen

based on how their values changed throughout the attack phases. Attacks such as command injection,

denial-of-service, reconnaissance, and backdoors are used in the testbed [22].

• Edge-IIoTset: This database examines and categorizes fourteen distinct kinds of attacks on IIoT and

IoT protocols into five categories, like DoS, information gathering, MITM at-tacks, DDoS attacks,

Injection attacks, and Malware attacks, which are used in intrusion detection systems. IoT data was

collected from over ten devices (Humidity sensors and Low-cost digital temperature, Heart Rate

sensors, PH Sensor Meters, Ultra-sonic sensors, Soil Moisture Sensor, Water level detection sensors,

Flame sensors et). There is a strong correlation between 61 of the 1176 characteristics. Edge-typical

IIoT set's attack statistics are 20952648, 11223940 normal, and 9728708 attacks [23].

3. AI support to cybersecurity

In this environment, organizations have begun utilizing AI to help them deal with an expanding range of
cybersecurity threats, technological difficulties, and resource restrictions by boosting their systems' durability,
resilience, and response. AI systems collaborate with security analysts to alter the rate at which tasks are done.
In this sense, the interaction between security operators and AI systems should be viewed as a synergistic
integration in which the specific added value of both AI systems and humans is kept and developed instead of
being a rivalry between the two [24]. In cybersecurity, there are three primary types of AI applications. The
following are the primary reasons for the increased use of AI in cybersecurity.

• Cybersecurity skill shortages continue to be a challenge: There is a global scarcity of cybersecurity
expertise. This shortage forces the sector to automate procedures more quickly.

• Impact speed: In certain large assaults, the average effect time on organizations is four minutes. In
addition, today's attacks are not confined to ransomware or focusing on vulnerabilities or certain
systems; they may change and move in reaction to what the targets are doing. These attacks have a
very quick impact, and few human contacts may occur in the interval.

• Operational complexity: Given the growth of cloud computing systems and the reality that these
systems can be operationalized and provide services in milliseconds, there can only be a few humans
in that loop, and you need to explore a more analytics-driven capability.

AI might assist security teams in the following manner: It can improve systems' robust-ness, resilience, and
reactivity. First, AI may boost system resilience or its ability to pre-serve its original believed stable
configuration even when it processes incorrect inputs due to self-assess and self-treatment software. This
suggests that by outsourcing verification and validation to machines, AI systems might be used to increase
robustness testing. Second, by increasing threat and anomaly identification, AI can increase system resilience,
or a system's ability to withstand and sustain an attack. Third, AI can improve the ability of a system to
respond independently to attacks or system reactions, detect vulnerabilities in other machines, and act strategi-
cally by selecting what weaknesses to exploit and execute more aggressive retaliation. An organization's need
to conduct a risk-impact assessment is linked to whether to transfer making choices and reactive actions to
artificial intelligence [25].

3.1. Applications for artificial intelligence in cyber security

Artificial intelligence is crucial for identifying and preventing cyberattacks. AI may be applied in various
cyber security solutions, including spam filtering software, fraud detection software, bot detection software,
secure user authentication software, intrusion detection, and advanced malware detection [26]. Figure 3
depicts a few DL methods.

• Spam filter: Gmail employs artificial intelligence to prevent and detect spam and fake emails. Gmail's
AI was trained by billions of actual Gmail consumers - every time you select "Spam" or "Not Spam"
on an email, you're actually assisting the AI in identifying spam in the future. As a result, artificial
intelligence has progressed to the point where it can recognize most minor spam emails disguising as
"regular" emails.

• Improving Network Security: Network security prevents unauthorized access to data and files in the
system and their malicious exploitation. It also safeguards the secrecy of an organization's network.
Artificial intelligence may automatically ana-lyse network traffic for possible violations or

 PEN Vol. 12, No. 1, February 2024, pp.75-100

81

unauthorized access. In network security, your network architecture and security policies are crucial.
The network architecture controls how a computer connects to the internet. A network policy is
frequently used to formalize the ideas and practices necessary to maintain network security while
managing network security. AI can apply security restrictions, and network traffic patterns can be
mapped to them.

Figure 3. Some AI applications in cybersecurity

• Fraud Detection: Online financial transactions are growing more popular and rapid-ly expanding. And
so is deception. Detecting the fraud after the incident has occurred is pointless. The capacity to detect
suspicious conduct and prevent it from occurring is a blessing made available by AI. Fraudsters
employ real-time technology such as machine learning and big data analytics. Fraudsters target the
weakest link in the chain. Machine learning makes fraud detection and prevention much easier. With
various machine learning approaches, big data analysis is feasible. With the analysis, suspicious
behavior may be brought to the notice of authorities and remedied. Machines identify and prevent
threats rather than depending solely on people. Streaming data may be analyzed in real-time, and fake
signal patterns can be identified. A vast amount of data must be supplied to the machines to achieve
high accuracy. Accuracy improves when the system self-learns and discovers defects on its own,
solving them.

• Detecting Malware: Malware is a severe danger to organizational security that is rapidly spreading.
One of the more notable successes of artificial intelligence in Cybersecurity is the exact identification
of malware, which is made possible by the availability of massive quantities of data for training deep
learning models. Artificial intelligence cybersecurity danger detection systems are particularly good at
detecting malware pro-grams that may alter frequently to avoid detection (e.g., meta-morphic
malware and polymorphic). Metamorphic malware is a harmful program that changes to evade
detection. However, it is much more difficult to detect than polymorphic malware. The primary
distinction between polymorphic and metamorphic malware is that the first scenario completely
changes its source code. In contrast, the latter retains certain sections while simply altering others.
The rationale for rewriting the complete source code is to elude anti-malware technologies more
successfully. Traditional cybersecurity techniques make it incredibly tough to identify this malware.
As a result, AI cybersecurity's adaptive and learning capabilities are required to detect and respond to
these constantly developing threats.

• Botnet Detection: An infected computer network is nothing more than a botnet. It transmits infection
via DDoS attacks and spamming tactics such as overflowing mailboxes or distributing infections. A
botnet is a network of computers (bots) infected with the same software and controlled by hackers.
Botnet detection is often based on network request patterns and time. A master script of orders
frequently administers the botnets. A large-scale botnet assault will generally involve numerous
"users" executing the same or similar website requests. This might involve failed login attempts (a
botnet brute-force attack), network vulnerability assessments, and other vulnerabilities. As a result,
botnet identification and removal is a critical duty in the cyber security arena. The deep learning
algorithm determines the accuracy of botnet identification and removal utilized.

• Network Intrusion Detection: Intrusion detection identifies actions that seek to compromise a
resource's confidentiality; the purpose is to detect malicious activities. The intrusion detection system
(IDS) is the most significant component that may be utilized to identify cyber-attacks or malicious
activity. AI is crucial in this case for identifying intrusions and customizing IDS.

• Secure User Authentication: AI and its subsets, such as ML and DL, provide accurate identification
processing, verification, and authentication. Machine learning is particularly beneficial in determining

 PEN Vol. 12, No. 1, February 2024, pp.75-100

82

whether a consumer is genuine. At the time of the transaction, AI software examines the person's
regular behavior, how they conduct their transaction, the devices they utilize, and how they move the
mouse or tap the screen. The program does the checks to ensure that the user or per-son is an
authorized user of the accounts.

• Hacking Incident Forecasting: may anticipate a hacking event before it occurs. In the re-al world, such
foresight may save a lot of money. To accomplish this, we need a comprehensive dataset that includes
the most recent occurrences, reports, and other attributes that can be seen outside. Passively collected
data is used to establish a forecasting system for cybersecurity infrastructure. As the major goal of the
rating system is to evaluate cyber security infrastructure using some metrics based on data obtained
passively from the internet, it may be regarded as one of the processes in predicting.

3.2. Deep learning in cyber security

What is more intriguing about DL in cybersecurity is its capacity to detect and prevent as-saults before they
occur. Most cyber technologies are reactive, relying on symptoms of a breach to detect a danger. They
normally only recognize known threats but are ineffective versus zero-day or unknown attacks. Deep learning
methods employ deep neural networks to "think" like a human mind and may adapt to the data qualities on
which they are trained. This makes it simpler to adapt to the large number of dangers automatically. While
machine learning needs more human interaction to respond quickly enough, DL evolves and learns over time
to recognize hazards it has not encountered be-fore and prevent them from taking effect. DL can be successful
for intrusion detection and prevention, as it identifies harmful network activity and stops bad actors from
entering a network. Previously, machine learning was utilized for these defenses. However, ML methods
produced too many false positives, making it more difficult for security personnel to isolate the true issues.
Deep neural networks can make IP/ID systems intelligent by analyzing traffic more precisely and
distinguishing between good and harmful behavior. Early cyber-attack detection is critical in the event of an
attack to limit damage to both individuals and businesses [27].

3.3. Deep learning algorithms

DL techniques need vast processing power and data to solve complex problems. However, they can work with
almost any data type. The usual unsupervised, supervised, and hybrid techniques are all used to secure
networks and systems, with the following deep learning algorithms being the most popular.

3.3.1 Convolutional neural networks (CNN)

CNN is one of the most significant deep learning models. It refers to a neural network model that operates on

two-dimensional data. It can, however, work with both one-dimensional and three-dimensional data. A CNN's

pre-processing requirements are far lower than those of other classification algorithms. Even though the filters

are hand-engineered using simple approaches, CNN can learn these filters/characteristics with the right

training. CNN and FNN are comparable in the following ways: each neuron includes inputs, an activation

function, which is utilized in many products, neurons where weights and bias must be learned, and a loss

function in the final layer (completely connected) that detects and evaluates the difference between anticipated

and predicted value. CNNs are multi-layer neural networks; the first layer is a convolutional layer that is in

charge of extracting features; if we have a CNN input shape i × i × d, where i is the input size, and d is the

dimension of the convolution layer, it operates as follows:

 𝑖𝑜𝑢𝑡
𝑖−𝑓+2𝑝

𝑠
+ 1 (1)

Where 𝑓 is the kernel size, 𝑝 is padding, 𝑠 is stride, 𝑖 is the input, 𝑑 is the dimension, and 𝑖_𝑜𝑢𝑡 It is the output

of the convolution layer.

The second layer is a pooling layer that reduces the dimensionality of the down-sampled features while

maintaining the most significant information. If we have an 𝑖 × 𝑖 × 𝑑 feature map, stride 𝑠, and a kernel size

of 𝑓, the output of max pooling can be:

 𝑖𝑜𝑢𝑡
𝑖−𝑓

𝑠
+ 1 (2)

Where 𝑖 is the input, 𝑠 is stride, 𝑓 is the kernel size.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

83

Finally, the third layer, the 3-layer, is a fully linked categorization layer that provides the most crucial

information. Deep convolution, pooling, and classification layers have enabled the development of novel

CNN applications. This type of network has been used in gaming, video recognition, and image processing.

CNN's main benefit in pattern recognition tasks such as object detection and picture recognition are its

accuracy; CNN is superior to FNN since it requires fewer parameters than FNNs. Otherwise, they have

downsides, such as high processing costs, massive quantities of training data, and the effort required to set up

the network effectively for the situation at hand [28].

Figure 4. An example of CNN architecture

CNNs are built on three functional concepts: (a) linked weights, (b) spatial sub-sampling, and (c) local

receptive fields. Every unit in the convolutional layer gets input from a collection of neighboring units in the

previous layer via local receptive fields. This helps cells remove fundamental visual features like borders and

corners. Following convolutional layers incorporate these qualities to discover higher-level features;

moreover, the theory of bound weights adds the assumption that basic feature detectors that work well on a

portion of a picture are probably beneficial throughout the full image. The definition of connected weights

requires a collection of units to weigh the same. A convolutional layer's units are arranged in levels. All levels

of units are the same weight. As a result, each level is responsible for building a unique feature. Feature maps

are the outputs of levels. A convolutional layer can be composed of many levels, allowing the development of

numerous feature maps in each place. The vast number of parameters that need to be learned, which might

lead to over-fitting difficulties, is one of the obstacles that may arise with CNN training. Strategies such as

data augmentation, stochastic pooling, and dropout have been developed for this purpose. Furthermore, CNNs

are typically subjected to pre-training, which starts. Pre-training will accelerate the learning process and

increase the network's generalization capacity. The most prevalent CNN designs are GoogLeNet (inception),

ZFNet, VGGNet, ResNet, and AlexNet [29].

3.3.2 Recurrent neural networks (RNN)

RNN is a form of neural network that can successfully handle sequential input by employing recurrent

connections to acquire and use information from previous time steps. RNNs may successfully handle

sequences of any length by unfolding the recurrent connections over time. This is accomplished by applying

the same weights to all time steps, allowing the network to learn and capture long-term relationships in the

data. The inclusion of recurrent connections allows the network to absorb and use information from earlier

time steps while processing the present input. This enables RNNs to model the temporal dependencies present

in sequential data [30,31]. Figure 5 shows the basic architecture of RNN.

Figure 5. RNN architecture layer

 PEN Vol. 12, No. 1, February 2024, pp.75-100

84

The layer structure of the network is replicated during the period. 𝐴 is the concealed state at time-step 𝑡,

regarded as the network's memory. 𝑋_𝑡 is the vector of size 𝑁 at time-stamp t in this case. The memory state is

calculated using the previous concealed state and the current time-step input. Eq3. shows the computation.

 𝐴𝑡 = 𝑓(𝑊𝑋𝑡 + 𝑈𝐴𝑡−1) (3)

Where 𝑊 are the input weights, and 𝑈 are the weights of the previous state. f is a nonlinearity that is

employed to produce the ultimate cell condition. RNN can handle long-term dependencies and is beneficial

for predicting time-series. It accepts input of any length, and the model size remains constant as the input size

expands. The weights remain static over time and provide prior information weight. RNN operations are

slower, and training may be difficult. It has explosion and gradient fading issues.

3.3.3. Long short-term memory networks (LSTM)

Schmid Huber and Hochreiter presented LSTM as an upgraded variation of RNN in 1997 that tackled the

problem of bursting and vanishing gradients. LSTM aims to prevent long-term dependency difficulties so that

long-term dependencies can be learned and remembered. This is because patterns can be remembered

specifically and for an extended period. They are also useful for time series prediction due to their ability to

retain past inputs. The three layers (Input Gate, Forget Gate, and Output Gate) of an LSTM interact uniquely

compared to other structures. Standard applications for LSTMs include the detection of irregularities in

network traffic or standards (sneak detection systems) [30, 32]. Figure 6 displays the three cells, which are

also known as gates, of the LSTM:

Figure 6. The gates in long, short term memory

• Forget Gate: The cell determines whether the previous cell's information should be retained or
forgotten. A sigmoid function is used, which examines the concealed state of the preceding time-
stamp ℎ𝑡 − 1 and current time-stamp and returns a value between 0 and 1 as output, with one
representing storing the state and 0 representing erasing the state. The forget gate is calculated using
Eq. 4.

 𝑓𝑡 = 𝜕(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4)

• Input Gate: the input gate controls the storage and quantification of new data. The initial layer uses a
sigmoid function to identify which cell values must be changed. In contrast, the subsequent layer
takes the new data. It employs the tanh activation function, which converts the new data between −1
and 1. The two sections are joined, and the state is updated.

 𝑖𝑡 = 𝜕(𝑊𝑡 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), ∁̂𝑡= 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5)

 The formulation input gate is presented in Eq5.

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡 (6)

• Output Gate: The output layer uses a sigmoid function to select which features of the cell condition
will be output. The cell condition is transmitted via the tanh activation function, which returns values
ranging from −1 𝑡𝑜 1.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

85

 𝑜𝑡 = 𝜕(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) , ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡) (7)

3.3.4 Deep belief networks and deep Boltzmann machines

Deep Belief Networks (DBN) and Deep Boltzmann Machines (DBM) are deep learning architectures from the

"Boltzmann family," with the Restricted Boltzmann Machine (RBM) being used in the learning module. The

RBM is a type of randomized neural network. Direct connections to the lowest levels and undirected

connections to the upper two layers construct an RBM. The DBM's tiers all feature undirected connections.

Figure 7 depicts a graphical depiction of DBNs and DBMs. After introducing the RBM to their fundamental

model, we will define the DBNs and DBM in the following parts.

Figure 7. Architecture for deep belief network and deep Boltzmann machine

RBM can also be referred to as a stochastic neural network; this is a popular DL framework due to its ability
to learn about the distribution of supervised and unsupervised input probabilities. RBM differs from
Boltzmann machines in that the restricted connection exists inside the layer between the modules. RBM is an
undirected two-layer visual model with visible and concealed variables. An RBM is distinct from a Boltzmann
machine because it requires the hidden and visible units to create a bipartite graph [33]. This constraint
improves the effectiveness of training methods where Eq8 defines the function 𝐸 (𝑣, ℎ).

 E (v, h; θ) = − ∑ ∑ 𝑊𝑖𝑗
𝐹
𝑗=1

𝐷
𝑖=1 𝑣𝑖 ℎ𝑗 − ∑ 𝑏𝑖𝑣𝑖 − ∑ 𝛼𝑗

𝐹
𝑗=1

𝐷
𝑖=1 ℎ𝑖 (8)

Where 𝐹 and 𝐷 are the numbers of concealed and visible units, where 𝜃 = {𝑎, 𝑏, 𝑊} are the model
parameters; that is, 𝑊𝑖𝑗 are real-valued weights that indicate the relationship between hidden unit 𝑗 and visible
unit 𝑖, and 𝑏𝑖, 𝑎𝑗 are real-valued prejudices. The following equations can be used to compute the joint
distribution through hidden and visible units: Eq9.

 P (h, v;θ)=
1

Z(θ)
 exp (-E (h, v; θ)), Z(θ)=∑ ∑ exp(−E(v, h; θ))hv (9)

Where 𝑍(𝜃) is the normalizing constant, Eq9 and Eq10 may be used to calculate conditional distributions over
visible 𝑣 and hidden ℎ vectors.

 P(h|v;θ)=∏ p(hj | v)F
j=1 , P (v | h; θ) = ∏ p(vi | h)D

i=1 (10)

DBMs are deep models that use RBM as their building component. DBM is similar to RBM, except DBM
includes more hidden layers and variables. The DBN design differs because the lowest levels create a driven
generative model. At the same time, the two upper layers form an undirected graphic model. In contrast, all
connections in the DBM are undirected. Undirected connections are employed throughout all tiers. A DBM
trains layers of a shared unsupervised model concurrently during network training, and the DBM uses a
randomized maximum probability approach to maximize the lower limit on probability. Because of the

 PEN Vol. 12, No. 1, February 2024, pp.75-100

86

connections between the concealed neurons, estimating the distribution across the posterior hidden neurons
from the visible neurons is sometimes impossible. DBM can discover more complicated internal
representations, which are a promising solution to handle recognition difficulties. Furthermore, in semi-
supervised learning circumstances, high-level representations are frequently created from relatively little
labeled data, and a substantially large amount of unlabeled inputs may subsequently be utilised to modify the
model for particular tasks. Furthermore, it may include top-down feedback and an initial bottom-up pass,
allowing DBM to more robustly disperse, distribute, and cope with ambiguous inputs [34]. DBNs are
generative models that offer a probability distribution on labels and data, and they are another sort of RBM.
They are built by stacking and greedily training RBM, with the numerous hidden layers learning by utilizing
the hidden output of one RBM as input data for training the following layer of RBM. A DBN utilises an
effective layer-by-layer greedy learning technique to initialise the deep network and complete all weights and

outputs in the sequel [35]. A DBN with l hidden layers reflects the sum of the hidden layer. ℎ𝑘, and the visible
layer 𝑥, distributions. where 𝑘 = 1, 2, . . . , 𝑙, as follows:

 𝑃 (𝑥, ℎ1 , … , ℎ𝑙) = (∏ 𝑝 (ℎ𝑘 | ℎ𝑘+1) 𝑙−2
 𝑘=0) 𝑃 (ℎ𝑙−1, ℎ𝑙) (11)

where 𝑥 = ℎ𝑜, 𝑝(ℎ𝑘𝑅 ∕ ℎ(𝑘+1)) 𝑖𝑠 a conditional distribution for level 𝑘 of visible units dependent on hidden

RBM units at level 𝑘 + 1, and 𝑝(ℎ(1−1) ∕ ℎ1) is a combined distribution between visible and hidden layers at
the top-level. DBNs with RBMs may be implemented as the constructing blocks for every layer using greedy,
layer-wise, unsupervised training ideas.

3.3.5 Generative adversarial networks (GANs)

GAN is a framework for machine learning in which two networks of neurons compete to enhance their

prediction accuracy utilizing deep learning techniques. GANs are frequently unsupervised and learn in a

cooperative zero-sum game setting in which one individual's gains equal another individual's losses. A GAN

comprises two neural networks: the discriminator and the generator. The discriminator is a deconvolutional

neural network, while a convolutional neural network is the generator. The generator's objective is to produce

outputs that may be mistaken for genuine data. Generative models, in essence, create their training data. The

discriminator's objective is to identify if the outputs it receives were created on purpose. The discriminator

network is taught to distinguish between the generated data and genuine samples. At the same time, the

generator is trained to generate phony data. The generator is penalized if the discriminator rapidly recognizes

the generator's deceptive data, such as a picture that is not a human face. When the adversarial networks

continue their feedback loop, the discriminator becomes increasingly skilled at identifying wrongly created

data. At the same time, the generator produces output that is more reliable and of greater quality [36,37].

Figure 9. GAN architecture
GANs are often classified into three categories:

• Generative. This discusses data using a probabilistic model.

• Adversary. In an adversarial scenario, a model is trained.

• Networking. Deep neural networks can train artificial intelligence (AI) algorithms.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

87

Establishing the intended result and compiling an initial training data set based on those parameters constitute
the first step in creating a GAN. After that, the generator is fed this data randomly until the desired level of
basic output accuracy is reached. The discriminator is then fed the generated samples or visuals with actual
data points from the original notion. Following the data digestion process of the generator and discriminator
models, backpropagation optimisation takes place. As it goes through the data, the discriminator gives each
picture a probability between 0 and 1, indicating its validity: 1 for real photographs and 0 for fakes. Once the
intended result is achieved, these values are manually verified, and the process is repeated.

3.3.6 Autoencoders (ACOD)

Autoencoder is a neural network that learns how to understand the dimensionality reduction in the input
dataset and rebuild the original dataset using an unsupervised technique. The learning algorithm is based on
using backpropagation. It is a generative model using a non-linear feature extraction method, Autoencoder,
which uses data-driven learning to extract features. It is unsupervised since it is trained to replicate the input
vector instead of applying class labels. The number of neurons in the input layer is the same as in the output
layer, as illustrated in Figure 10, with complete neuronal connections from one layer to the next. Autoencoder
contains three layers: the input layer, the hidden layer, and the output layer. That tries to recreate its output
layer input. As a result, the output layer has the same number of units as the input layer. Typically, the visible
layer contains more neurons than the hidden layer. Try encoding or expressing the input more compactly. It
has certain principles with RBM; instead of stochastic units with a specified distribution, it generally utilises a
deterministic distribution, like in RBM. This network uses nonlinear mapping to approximate an ideal
function to minimize input and output errors. As a result, it is clear that the abstract representation at the
hidden layer contains critical data about the original input and may be regarded as a high-level function [38].

Fig 10. Autoencoder structure

In general, the functioning of an autoencoder, as illustrated in Figure 10, may be separated into two stages:
encoding and decoding. Both encoding and decoding are forward propagation techniques that execute non-
linear transformation using an activation function. Encoding converts the original input into an abstract
representation, and decoding returns the representation while attempting to minimise reconstruction error. The
following equations describe an encoding and decoding operation during the encoding process.

 𝑦′ = 𝑓 (𝑤 𝑥 + 𝑏) (12)

Where 𝑥 is the input vector, 𝑤 is the weight matrix, 𝑓 is a nonlinear activation function, 𝑏 is the bias vector is
the parameters to be modified, and 𝑦 is the hidden representation in decoding stages.

 𝑥′ = 𝑓 (𝑤′ 𝑦′ + 𝑐) (13)

Where 𝑥' Is the reconstructed input at the output layer, 𝑐 is the bias to the output layer, and 𝑤′ Is the
transposition of 𝑤; using the following equations the autoencoder parameters can be updated:

 𝑤_𝑛𝑒𝑤 = 𝑊 − 𝜂𝜕𝐸/𝜕𝑊, 𝑏_𝑛𝑒𝑤 = 𝑏 − 𝜂𝜕𝐸/𝜕𝑏 (14)

 PEN Vol. 12, No. 1, February 2024, pp.75-100

88

Where 𝐸 is the reconstruction error of the input at the output layer, 𝑤_𝑛𝑒𝑤 𝑎𝑛𝑑 𝑏_𝑛𝑒𝑤 At the end of the

current iteration are the modified parameters for 𝑤 and 𝑏.

4. Overview of federated learning

FL is a decentralized ML technique that permits several devices or entities to train a shared model while

maintaining their data locally collaboratively. It addresses privacy and data ownership issues by minimizing

the need to share raw data. Deep learning algorithms can be applied within the context of FL to train complex

models. This allows enterprises to create a common global model without storing training data in a centralized

location. FL enables multiple players to collaborate on constructing a single, robust system without sharing

data, privacy, access to heterogeneous data, and addressing critical challenges to data access rights and

security are just a few examples.

A centralized server or coordinator in FL initializes the model architecture and distributes it to the entities or

participating devices. This model serves as a foundation for training. Each training cycle involves the

participation of a subset of devices. This choice process can be based on various criteria, such as device

capabilities, availability, or data diversity. Each selected device downloads the current model and performs

training on its local data. DL algorithms can be used for this training. The devices use their local data to

update the model parameters iteratively, typically through techniques like stochastic gradient descent (SGD)

or its variants [38]. After local training, the devices return their updated model parameters to the centralized

server. The server aggregates these model updates using techniques like Federated Averaging. This involves

averaging the model parameters from cooperating devices to make a globally updated model. The centrally

aggregated model is then distributed back to the participating devices, replacing their previous models. The

devices repeat the local training process with the updated model in the next training round; this work is

repeated for multiple rounds to refine the shared model further. The number of rounds can be pre-determined

or based on convergence criteria. Federated Learning protects privacy by storing the training data on local

devices. The central server only periodically receives model updates, typically encrypted to protect sensitive

information, to the model evaluation; a separate validation dataset or a subset of devices may be employed to

evaluate the efficacy of the shared model. This evaluation helps monitor progress and determine convergence.

Federated Learning with deep learning algorithms offers several advantages, including data privacy, reduced

communication overhead, and leveraging distributed computing resources. It enables the training of complex

deep learning models while respecting privacy constraints, making it suitable for scenarios where data cannot

be directly shared or centralized [4,39]. Federated learning helps AI systems learn from a wide variety of data

from many locations. Google already uses FL, enabling incredible predictive input features for the Android

keyboard (Gboard), on-device search for phones, and other applications. Recent advancements have

concentrated on eliminating statistical barriers and increasing FL security. To enable sensitive-privacy

systems where training data is decentralized at the edge and where the costs and dangers involved with

sensitive data management are high, leading service providers have employed FL methods. Additionally, it

allows for the development of intelligent apps while giving consumers control over their data [40].

4.1 FL's motivations for cybersecurity

The traditional approach to cybersecurity makes it more difficult to acquire and share data in a privacy-

invading manner. Similarly, data aggregation from several data providers is a difficult undertaking. FL might

be used to mitigate cyber-attacks while simultaneously protecting data privacy and security. Various variables

impact the usage of FL for Cybersecurity and the methodologies employed. The following are the reasons for

adopting FL for Cybersecurity[40].

• Data Privacy: User information is distributed among several entities in the feature space, with each

entity monitoring a unique data characteristic relevant to all users. Instead of transferring raw data to

the server, every entity in the fundamental network communicates the parameters of the local model

learned using locally gathered data characteristics. This helps to safeguard privacy.

• Confidentiality: Any unauthorised access to data creates a data breach and a cyber threat. Only

authorised individuals have access to privileged and sensitive information. While FL is used, local

training of edge device models ensures authorized access.

• Data Security: Using FL to secure information from different assaults is possible since raw

information and data are not exchanged via the network; only updates are delivered to the server.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

89

• Availability: Access to user information must be available when needed. Availability is tied to system

uptime and dependability, both harmed by malicious threats such as cyber-attacks and unauthorized

access. The local model is available on the edge device when FL is employed. In contrast, the global

model is accessible to users via the cloud.

• Integrity: Keeping data consistent, correct, and complete is crucial in cybersecurity. A hacker may

modify the data sent by the sender before it reaches the receiver. Because the FL approach safeguards

privacy, sensitive data is not transmitted outside the local context.

4.2 Centralized vs decentralized vs federated approach

To comprehend federated learning, we will contrast it with more traditional centralized and decentralized

approaches. as shown in Figure 11.

• Centralized learning: This method gathers data for learning models from many sources and connects it

to a cloud server to produce a common model that may be applied to various devices. The key feature

of centralised learning is that the model may employ generalisation information from a group of

devices and immediately work with more pertinent ones. On the other hand, traditional centralized

learning has certain drawbacks, such as bandwidth, privacy, latency, and connectivity [22].

• Distributed Learning: Distributed models are trained the same way as centralised models, only that

they are trained on numerous participants individually [41]. Participants train their models separately

and communicate weight changes to the central server during the training stage of a distributed

algorithm. At the same time, the central server gets updates from participants and averages output.

Following certain communication cycles, the central cloud server does convergence testing.

• Federated learning (FL): is essentially an ML method for training algorithms via decentralized edge

devices while retaining data samples locally. It applies model training to data spread over millions of

devices. Simultaneously, it allows you to enhance outcomes achieved at the periphery and in the

center—a step-by-step federated machine learning process. Selecting a model that has already been

trained on the central server or has not been trained at all, the initial model would then be distributed

to customers as the next phase (devices or local servers). Each customer continues to train it on-site

with its local data. The crucial thing to remember is that this training data can be kept private. When

locally trained models are relayed to the central server over secured communication channels, the

server receives no real data but trained model parameters. All client updates are averaged and pooled

into a common model, boosting accuracy. This model is then returned to all devices and servers

[22,42].

Figure 11. The centralized, distributed, and federated learning model classifier [43]

4.3 Types of federated learning

FL has taken on different shapes and forms over time in the computing realm. The variations depend on

Schemes and Data Partitions.

Centralized Learning Distributed Learning Federated learning

 PEN Vol. 12, No. 1, February 2024, pp.75-100

90

4.3.1. Types based on the schemes

Cross-Silo Federated Learning Model: The cross-silo FL architecture is made up of numerous silos connected

to a central server. Many businesses, for example, can interact through a single network while keeping their

raw data separate in silos. It allows organizations to process massive amounts of data while protecting privacy

[42]. The architecture consists of end users from several enterprises, a silo from each enterprise, and a central

server. As seen in Figure 12.

Figure 12. Cross-Silo FL model

Cross-Device Federated Learning Model: This federated learning approach uses data from individual

network-connected devices. Several end-user devices, including laptops and smartphones, serve as data

sources for locally training the model. The central server then brings these together to construct a global

model. Based on their data, each user device builds a locally trained model. Because there are so many end-

user devices, training the model with many data points increases its forecast accuracy using one or more steps.

Each device then computes a stochastic gradient of the sequential model. Finally, a global model aggregates

each device's determined gradients (parameters) with the central server [42].

4.3.2 Types based on the data partitions

 Based on these two architectural standards, data is designed into three structural shapes (Horizontal,

Federated Transfer, and Vertical) Learning models.

Horizontal Federated Learning Model: This structural type makes advantage of a shared feature space shared

by numerous network clients, yet each sample stays unique, as illustrated in Fig 13(a). It is called sample-

based FL; it typically works with clients with comparable datasets. The horizontal federated learning

technique permits the development of a multi-task federated learning system [43].

Vertical Federated Learning Model: As shown in Fig 13(b), a vertical network deals with many features using

the same sample area. Another name for it is feature-based FL; this concept is most typically used in business-

to-business contact and data sharing when many organizations working with the same clients shares a

common network—the popular vertical federated learning system PyVertical [44].

Federated Transfer Learning Model: This federated learning paradigm includes horizontal and vertical

federated learning systems. It can work with datasets with diverse feature spaces and sample spaces, as seen in

Fig 13(c). In addition, it enables several entities to use a global model without sharing a common feature

space, ensuring the privacy of their data. The idea is to train a model for a specific problem on a large dataset

and then apply it to another problem in a related area [45].

 PEN Vol. 12, No. 1, February 2024, pp.75-100

91

Figure 13. The FL classifications. (a) A database that shares the same feature space but has various sample

spaces. (b) A database with the same sample space but the various feature spaces. (c) Database with various

feature spaces and sample spaces.

4.4. Federated learning applications

Federated Learning has enabled numerous significant applications. We will go through some of the more

important ones in this section. Statistical models are used in smartphones to power apps like face recognition,

voice recognition, and next-word prediction by learning user behavior over a vast pool of phones. To preserve

their privacy, users can choose not to disclose their data. FL can produce precise smartphone forecasts without

disclosing private information or affecting the user interface. Entire institutions or organizations may be called

"devices" in federated learning. For example, hospitals retain massive volumes of patient data that predictive

healthcare programs may access. Hospitals, however, follow rigorous privacy standards that require data to be

kept locally. FL is a fantastic alternative for these applications since it reduces network overhead and

facilitates private learning across numerous devices/organizations [4].

Sensors are used in modern IoT networks, such as wearable technology and smart homes, to gather and

interpret data in real-time. An autonomous vehicle fleet, for example, may require a simulation of pedestrian,

construction, or traffic behavior to work successfully. However, constructing aggregate models in this case

behavior may be difficult because of privacy concerns and each device's limited connection. Federated

learning approaches enable the development of models that swiftly respond to alters in these systems while

safeguarding user privacy. Integrating financial, medical, and other data from many sources is necessary when

creating a data service platform for the insurance sector. An insurance company must consider multi-party

data to improve its risk management capabilities and commercial expansion. In the insurance industry,

effective data utilization without violating individual privacy is a major challenge [46,47].

4.5. FL implementations

This section provides a brief overview of popular FL implementations, which are mentioned in Table 2

according to their focus and supporting software. The interested reader could also refer to more extensive

explanations and comparisons of the various implementations found in [48,49]. Regarding framework

selection, it gives a uniform criterion for assessing the most popular FL frameworks regarding capability,

usability, and performance.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

92

Table 2. Summarises FL platforms and the software that supports them.

platform focus Supporting software

PySyft secure and private Python

TFF Training decentralized data Python, Tensor Flow

FATE security and privacy all FATE projects

Open FL sensitive information Haxe,JavaScript, TypeScript

IBM learning topologies, security Python

Tensor/IO Mobile device Tensor Flow

FFL-ERL A real-time system, Parallel computing Erlan

CrypTen privacy-preserving PyTorch

PySyft is an open-source Python library for confidentiality and security. PySyft separates private data from

model training using FL, SMPC, and DP. The Open Mined community designed it, and it mostly works with

deep learning technologies such as TensorFlow and PyTorch. Both dynamic computations over hidden data

and static computations—graphs of computations that may be carried out later in a different setting—are

supported by PySyft. It largely functions with PyTorch and TensorFlow, two deep learning frameworks.

PyGrid2 facilitates FL on the web, mobile, and other devices because PySyft does not support network

communication. PySyft is not yet ready for production since it is still in beta release [50].

Tensor Flow Federated (TFF) is a Python-based, open-source framework created by Google for training

machine learning models using decentralized data. TFF operates at two key application programming

interface (API) layers: The FL application programming interfaces provide high-level APIs that allow

developers to import existing machine learning models into TFF without fully grasping how federated

learning works. Federated Core API (FC) provides low-level APIs for creating unique federated algorithms

[51].

Federated AI Technology Enabler (FATE) is an open-source platform built on HE and SMPC. It includes ML

methods such as tree-based algorithms, logistic regression, and other DL and TL approaches. FATE supports

standalone and cluster installations and may be deployed on Linux or Mac systems. It creates safe

computation protocols by combining multi-party computing and homomorphic encrypting [52].

Open Federated Learning (Open FL) is a Python 3 library for FL framework that enables organizations to train

a model cooperatively without disclosing sensitive information. Statistical models can be trained using any

deep learning framework, such as Tensor Flow or PyTorch, via a plugin method [53].

IBM Federated learning (FL) is an open-source Python library designed to facilitate the easy implementation

of FL in productive environments. IBMFL is an enterprise-level solution that provides a basic FL layer over

which more advanced features can be added. It incorporates both unsupervised and supervised learning

methods and reinforcement learning, as well as DNNs, while facilitating the easy implementation of new FL

algorithms [54].

Tensor/IO is a cross-platform lightweight on-device ML toolkit that adds Tensor Flow and Tensor Flow Lite

support to iOS, React Native, and Android apps. Tensor/IO does not execute ML directly but collaborates

with an underlying library, such as Tensor Flow, to facilitate the installation and use of smartphone models

[50].

Functional Federated Learning in Erlang (FFL-ERL) is a framework for FL written in Erlang, a dynamically

typed, structured programming language with parallel processing capabilities that may be used to develop

real-time systems [55].

CrypTen is a framework based on PyTorch that makes it simple to research safe and privacy-preserving ML.

CrypTen allows machine learning researchers, not cryptography specialists, to experiment with ML models

using safe computing approaches by integrating with the widely used PyTorch API [50].

 PEN Vol. 12, No. 1, February 2024, pp.75-100

93

4.6. Aggregation algorithm

The aggregation algorithm is critical in any federated learning and topology style setting. The logic aggregates

the local model updates from all customers who participated in the training cycle. Many suggested techniques

aim to improve the privacy of local model changes, which can be turned into a global model that the entire

system may utilize, conserve communication bandwidth, or permit concurrent client updates. Federated

averaging differs depending on the pre-configuration settings of each FL implementation. The current

algorithms are discussed below:

• SGD - Stochastic Gradient Descent: This algorithm iteratively goes down a function's gradient. The

basic goal is to reduce the gradient to the smallest value. When executing SGD, the client's database is

used to construct a single stochastic gradient for the particular loss function. The central server

receives all of these gradients from numerous clients and averages them. It generates a synchronous

model by bringing all data to a single gradient point for each client before averaging it. One downside

of SGD is the sluggish processing of data [56].

• Federated Averaging (FedAvg) is a common algorithm used in FL to aggregate model updates from

several devices or clients. Google researchers introduced it in their paper [39]. The goal of FedAvg is

to leverage the local model updates from associated devices to create a global model that represents

the knowledge learned from the distributed data without directly accessing the raw data. FedAvg

achieves this by averaging the model updates received from each device, thereby effectively

aggregating the knowledge from multiple devices [57].

• Stochastic Controlled Averaging for Federated Learning (SCAFFOLD): This method's calculations

are more controlled, as the name implies. It addresses the FedAvg convergence problem for

heterogeneous data by introducing a correction value at each gradient calculation in the iterations

performed locally. Similar to the previous approaches, the outcomes of these local iterations are

subsequently relayed to the centralized server for averaging. While the process is sped up due to local

efficiencies in gradient calculations, the correction term ensures that the data is centralized and easily

converges [57].

• FSVRG: The algorithm aims to perform a complete computational operation on each client, followed

by multiple updates. Iterating over random data permutations and performing a single update are used

to perform the changes. The FSVRG method is primarily concerned with sparse data. Some traits

appear only occasionally in the data set [57].

• FedProx: FedAvg and FedProx are comparable in that each iteration necessitates the selection of

device groups. Local updates are performed and then aggregated to provide a global update. FedProx

is intended to be an improvement on the FedAvg algorithm. Where small changes are made to boost

performance and diversity, because various FL devices have different restrictions, it would be

unrealistic to expect them to do the same amount of work. The algorithm, in particular, accepts partial

work rather than uniform labor. Tolerating partial work allows system heterogeneity and improves

stability over the FedAvg technique by default [58].

• Federated Matched Averaging (FedMA): FedMA was created to aid in the federated learning of

modern neural network designs. To begin, the data center collects the first layer weights from clients

and utilizes one-layer matching to generate the federated model's first layer weights. These weights

are then sent to clients, who use them to train every one of the layers on their datasets. This process is

continued until the last layer is reached; at this point, a weighted average is computed based on the

fraction of data points per client. In FedMA, communication is also included. In order to make their

local models the same size as the original models, clients first obtain the global model at the

beginning of a new cycle. Sizes might be decreased, making them simpler to manage [59].

• Brain Torrent: In a medical environment, the algorithm was used. Brain Torrent runs in a peer-to-peer

environment; the purpose of Brain Torrent is for all centers to communicate with one another rather

than rely on the primary server as in standard FL. Brain Torrent was created to assist mobile device

users [60].

 PEN Vol. 12, No. 1, February 2024, pp.75-100

94

4.7. Challenges in federated learning

FL is a new sort of AI that is developed for model training in a distributed and heterogeneous. Various

challenges act as fundamental hurdles to enabling FL on the possibility of millions of devices achieving the

full potential of FL in applications.

Figure 14. FL challenges

4.7.1. Expensive communication

Federated learning is creating a one-of-a-kind, worldwide statistical model using data saved on possibly

millions of remote devices linked to the network via wireless and wired connections. The communication

network will be worse than local computing because of restricted resources and the rising number of user

devices and equipment. Communication in such networks may be far more costly than in standard data center

configurations. Implementing federated training methodologies on standard mobile networks results in costly

communication. An intelligent communication protocol that can efficiently send short training messages

rather than the complete dataset via the network is required to deal with expensive communication. Edge

computing allows the FL to overcome communication issues [60,61].

4.7.2. Number of clients

In federated, the number of participants (clients) is essential for storing and analysing collaborative learning

models. These clients typically refuse to participate in the training intentionally or accidentally. Intentionally

signals that the client is not passionate about federated learning: Methods, Future Directions training, and

Challenges, but mistakenly is due to a terrible network problem, a lack of resources, a low battery backup, and

so on. Managing such many clients is tough and a substantial barrier [62].

4.7.3. Systems heterogeneity

A current network is considered to have various heterogeneous levels regarding network, hardware,

application, data storage, devices, and battery levels. The existence of many types of networks, such as LAN,

WAN, MAN, and PAN, is referred to as network heterogeneity. Mobile phones, tablets, laptops, smartphones,

and other portable devices that link with other devices are examples of device heterogeneity [63]. This wide

range of options is a challenge in federated. Furthermore, any system may have a unique data storage

structure, and the independently and symmetrically distributed criteria may be violated, complicating model

analysis. Furthermore, since each participant device gathers data based on its unique usage pattern and local

environment, which may differ from other participants, different data distributions among all participants are

possible because data on contributor devices is collected by the devices themselves [64].

4.7.4. Scalability

Scalability is another prevalent problem in federated since many customers might approach a specified limit.

In contrast, communication via the parameter server can be simplified to just one round for both players and

the server [65]. It additionally reduces communication costs for each client. On the other hand,

communication via parameter server continues to be a challenge for connection-efficient distributed training

since download and upload to/from the server requires effective compression to lower transmission costs,

time, and energy [66].

4.7.5. Security

Another major concern in federated is security. Federated learning protection is tied to the participant (client)

and communication network, which may violate FL key security standards such as authentication,

confidentiality, and integrity. Cyberattacks, for example, pose significant network security risks to FL. Clients

 PEN Vol. 12, No. 1, February 2024, pp.75-100

95

can provide sensitive information to an invader, a third party, or a fictional central server. FL should take the

lead in data preservation by releasing model updates rather than raw data [67,68].

5. Commonly used evaluation criteria

Various indicators and measurements for each mission can be used to evaluate any learning model. A

confusion matrix is a formal method for outlining the specifics of the learning model. A confusion matrix is a

table that sums up a prediction's classification model or performance. A confusion matrix divides the

outcomes of binary or multiple categorizations into four groups. It returns the classification outcomes in the

form of True Negative (𝑇𝑁), False Negative (𝐹𝑁), True Positive (𝑇𝑃), and False Positive (𝐹𝑃) values,

which are then used to construct additional measures. In addition to the mistake rate, other criteria should be

prioritised, such as space difficulty, time difficulty, and the flexibility of learning algorithms. Moreover, the

significance of the metric varies depending on the application. Assume that it is necessary to consider 𝐹𝑁

when determining whether a financial transaction is legitimate or fraudulent. A financial transaction with a

single value of 𝐹𝑁 could result in a massive financial loss. The above terms also calculate the confusion

matrix's metrics [69,70,71].

• Accuracy: the percentage of samples and applications correctly classified in a dataset. The higher accuracy
value indicates that the classifier is accurate.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) (15)

• Precision: measures how many benign, positive samples and applications were correctly identified in the
dataset. When the precision value of a classifier is higher, it performs better and is more desirable.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝐹𝑃 + 𝑇𝑃) (16)

• F1-Score: the F1 score represents the balance of a classifier's precision and recall in a single metric by
taking the harmonic mean of these two values.

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2. (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (17)

• True Negative Rate (TNR): the percentage of accurately categorized attacks, malicious, negative samples,
and applications in the collection.

 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁) (18)

• Recall: This measure computes the fraction of true positive predictions among all potential positive
predictions.

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 (19)

• False Negative Rate (FNR) calculates the fraction of benign, positive samples and applications wrongly
categorized with the total number of applications in the dataset.

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑁/ (𝐹𝑁 + 𝑇𝑃) (20)

• Error Rate: This metric calculates the proportion of samples and applications in the dataset that were
incorrectly classified.

 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = (𝐹𝑁 + 𝐹𝑃)/(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃) (21)

• False Discovery Rate (FDR): It quantifies the proportion of apps comprised of dangerous, harmful samples
incorrectly classified as all attacks—and malicious, negative models and applications correctly classified in
the dataset.

 𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑃) (22)

 PEN Vol. 12, No. 1, February 2024, pp.75-100

96

6. Conclusion

As technology advances, the quantity and sophistication of cyberattacks increase. Traditional cybersecurity

solutions struggle with many challenges and security issues to identify unknown threats like new malware

variants and zero-day attacks in such a complex technical environment. Cybersecurity systems have used ML

approaches to solve these difficulties, albeit with little effectiveness against unplanned or unpredictable

threats. Meanwhile, deep learning approaches improve learning procedures and yield promising outcomes in

various applications, including cybersecurity. To a large extent, the success of DL is dependent on new

advances in software engineering and the vast supply of training data. This overview study examines deep

learning algorithms for detecting and classifying all sorts of cyberattacks. To that aim, the notion of

cybersecurity is explained, and a thorough investigation of DL techniques is performed, encompassing all

elements of cybersecurity, intrusion detection, privacy protection, numerous security concerns, and software

attack detection. We analyze the architecture of all the works examined, emphasizing the DL approach based

on FL employed, its implementation, and the data sets utilized for testing. We compared the performance of

the various surveys wherever feasible. This research is anticipated to assist academics in the field of

cybersecurity based on FL in understanding the development and present research status of FL, as well as give

strong support for FL's future growth. Future FL research will continue to concentrate on privacy and security

protection mechanisms, client cooperative training mode and fairness, robustness, personalized federated

learning mechanism, and so on, to simplify the deployment and implementation of FL technology for in-depth

investigation.

Conflict of Interest

The authors declare that they have no conflict of interest, and all of the authors agree to publish this paper

under academic ethics.

Author Contributions

All the authors contributed equally to the manuscript.

Funding

The work was not supported by any official Institute or company, it was completed by depended only on our

efforts.

References

[1] S. A. Jebur, K. A. Hussein, H. K. Hoomod, and L. Alzubaidi, “Novel deep feature fusion framework for

multi-scenario violence detection,” Computers, vol. 12, no. 9, 2023.

[2] V. Rey, P. M. Sánchez, A. H. Celdrán, and G. Bovet, “Federated learning for malware detec-tion in iot

devices,” Computer Networks, vol. 204, 2022.

[3] L. Lavaur, M.-O. Pahl, Y. Busnel, and F. Autrel, “The evolution of federated learning-based intrusion

detection and mitigation: A survey,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 2309–2332,

2022.

[4] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S. Avestimehr, “Federated learning for

the internet of things: Applications, challenges, and opportunities,” IEEE Internet Things M., vol. 5, no.

1, pp. 24–29, 2022.

[5] R. Shao, H. He, H. Liu, and D. Liu, Stochastic channel-based federated learning for medi-cal data

privacy preserving. Arxiv, 2019.

[6] R. Kozik, M. Choraś, M. Ficco, and F. Palmieri, “A scalable distributed machine learning approach for

attack detection in edge computing environments,” J. Parallel Distrib. Comput., vol. 119, pp. 18–26,

2018.

[7] P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in Fog computing: A survey,” Future

Gener. Comput. Syst., vol. 88, pp. 16–27, 2018.

 PEN Vol. 12, No. 1, February 2024, pp.75-100

97

[8] L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD dataset for intrusion detection system

based on classification algorithms,” International journal of advanced research in computer and

communication engineering, vol. 4, pp. 446–452, 2015.

[9] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, Towards effective feature selec-tion in

machine learning-based botnet detection approaches. IEEE, 2014.

[10] N. Moustafa, J. Slay, and G. Creech, “Novel geometric area analysis technique for anomaly detection

using trapezoidal area estimation on large-scale networks,” IEEE Trans. Big Data, vol. 5, no. 4, pp.

481–494, 2019.

[11] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing Intrusion

Detection Systems,” International Journal of Engineering & Technology, vol. 7, pp. 479–482, 2018.

[12] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic

botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset,” Future Gener.

Comput. Syst., vol. 100, pp. 779–796, 2019.

[13] Y. Meidan et al., “N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep

Autoencoders,” IEEE Pervasive Comput., vol. 17, no. 3, pp. 12–22, 2018.

[14] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection

dataset and intrusion traffic characterization,” in Proceedings of the 4th International Conference on

Information Systems Security and Privacy, 2018.

[15] I. Ullah and Q. H. Mahmoud, “A scheme for generating a dataset for anomalous ac-tivity detection in

iot networks,” in Canadian Conference on Artificial Intelligence, Cham: Springer, 2020, pp. 508–520.

[16] V. Dutta, M. Choraś, M. Pawlicki, and R. Kozik, “A deep learning ensemble for network anomaly and

cyber-attack detection,” Sensors (Basel), vol. 20, no. 16, p. 4583, 2020.

[17] A. Guerra Manzanares, J. Medina-Galindo, H. Bahsi, and N. S. Medbiot, “Generation of an IoT botnet

dataset in a medium-sized IoT network,” InICISSP, pp. 207–218, 2020.

[18] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine Learning Based

IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020 Dataset),” in Selected

Papers from the 12th International Networking Conference, Cham: Springer International Publishing,

2021, pp. 73–84.

[19] L. Chen, Y. Li, X. Deng, Z. Liu, M. Lv, and H. Zhang, “Dual auto-encoder GAN-based anomaly

detection for industrial control system,” Appl. Sci. (Basel), vol. 12, no. 10, p. 4986, 2022.

[20] N. Moustafa, “A new distributed architecture for evaluating AI-based security sys-tems at the edge:

Network TON_IoT datasets,” Sustainable Cities and Society, vol. 72, 2021.

[21] I. Tareq, B. M. Elbagoury, S. El-Regaily, and E.-S. M. El-Horbaty, “Analysis of ToN-IoT, UNW-

NB15, and Edge-IIoT datasets using DL in cybersecurity for IoT,” Appl. Sci. (Basel), vol. 12, no. 19, p.

9572, 2022.

[22] “WUSTL-IIOT-2021 Dataset for IIoT Cybersecurity Research,” Wustl.edu. [Online]. Available:

http://www.cse.wustl.edu/~jain/iiot2/index.html. [Accessed: 20-Mar-2024].

[23] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated deep learning for cyber security

in the internet of things: Concepts, applications, and experimental analysis,” IEEE Access, vol. 9, pp.

138509–138542, 2021.

[24] S. M. Hassan and J. Wasim, “Study Of Artificial Intelligence In Cyber Security And The Emerging

Threat Of Ai-Driven Cyber Attacks And Challenges,” Journal of Aeronau-tical Materials, vol. 43, pp.

1557–1570, 2023.

[25] M. Taddeo, T. McCutcheon, and L. Floridi, “Trusting artificial intelligence in cybersecurity is a double-

edged sword,” in Philosophical Studies Series, Cham: Springer International Publishing, 2021, pp. 289–

 PEN Vol. 12, No. 1, February 2024, pp.75-100

98

297.

[26] R. Prasad and V. Rohokale, Cyber security: the lifeline of information and communica-tion technology.

Cham, Switzerland: Springer International Publishing, 2020.

[27] T. R. Reshmi, “Information security breaches due to ransomware attacks-a systematic literature

review,” International Journal of Information Management Data Insights, vol. 1, no. 2, 2021.

[28] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications,

future directions,” J. Big Data, vol. 8, no. 1, p. 53, 2021.

[29] Z. Diame, M. ElBery, M. Salem, and M. Roushdy, “Experimental comparative study on autoencoder

performance for aided melanoma skin disease recognition,” Int. J. Intell. Comput. Inf. Sci., vol. 22, no.

1, pp. 88–97, 2022.

[30] S. M. Elgayar, S. Hamad, and E. S. El-Horbaty, “Revolutionizing Medical Imaging through Deep

Learning Techniques: An Overview,” International Journal of Intelligent Com-puting and Information

Sciences, vol. 23, no. 3, pp. 59–72, 2023.

[31] M. Abdelazim, W. Hussein, and N. Badr, “Automatic Dialect identification of Spoken Ara-bic Speech

using Deep Neural Networks,” International Journal of Intelligent Compu-ting and Information

Sciences, vol. 22, no. 4, pp. 25–34, 2009.

[32] M. A. Mead, “HCLM) for Short-Term Traffic Volume Prediction,” International Journal of Intelligent

Computing and Information Sciences, vol. 22, no. 4, pp. 51–61, 2022.

[33] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Restricted Boltzmann Machine and Deep Belief

Network: Tutorial and survey,” arXiv [cs.LG], 2021.

[34] S. Cheon, J. Kim, and J. Lim, “The use of deep learning to predict stroke patient mortality,” Int. J.

Environ. Res. Public Health, vol. 16, no. 11, p. 1876, 2019.

[35] S. Dupond, “A thorough review on the current advance of neural network structures,” Annual Reviews

in Control, vol. 14, no. 14, pp. 200–230, 2019.

[36] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” arXiv [cs.LG], 2016.

[37] S. A. Jebur, K. A. Hussein, H. K. Hoomod, L. Alzubaidi, and J. Santamaría, “Review on deep learning

approaches for anomaly event detection in video surveillance,” Electronics, vol. 12, 2022.

[38] D. Pratella, S. Ait-El-Mkadem Saadi, S. Bannwarth, V. Paquis-Fluckinger, and S. Bottini, “A survey of

autoencoder algorithms to pave the diagnosis of rare diseases,” Int. J. Mol. Sci., vol. 22, no. 19, p.

10891, 2021.

[39] B. Mcmahan, M. E. Ramage, D. Hampson, and S. Arcas, Communication-efficient learning of deep

networks from decentralized data. InArtificial intelligence and statistics. PMLR, 2017.

[40] M. Ammad-Ud-Din et al., Federated collaborative filtering for privacy-preserving personalized

recommen-dation system. 2019.

[41] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan, “MLbase: A

Distributed Machine-learning System,” InCidr, vol. 1, pp. 2–3, 2013.

[42] C. Huang, J. Huang, and X. Liu, “Cross-silo federated learning: Challenges and opportunities,” arXiv

[cs.LG], 2022.

[43] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning: Concept and

Applications,” arXiv [cs.AI], 2019.

[44] S. Hardy et al., “Private federated learning on vertically partitioned data via entity resolution and

additively homomorphic encryption,” arXiv [cs.LG], 2017.

[45] S. Saha and T. Ahmad, “Federated transfer learning: Concept and applications,” Intell. Artif., vol. 15,

 PEN Vol. 12, No. 1, February 2024, pp.75-100

99

no. 1, pp. 35–44, 2021.

[46] P. Singh, M. K. Singh, R. Singh, and N. Singh, “Federated learning: Challenges, methods, and future

directions,” in Federated Learning for IoT Applications, Cham: Springer International Publishing, 2022,

pp. 199–214.

[47] I. A. Aljazaery, S. Alrikabi, and H. T. Alaidi, “Encryption of Color Image Based on DNA Strand and

Exponential Factor,” International Journal of Online & Biomedical Engineering, vol. 18, no. 3, 2022.

[48] I. Kholod et al., “Open-source federated learning frameworks for IoT: A comparative review and

analysis,” Sensors (Basel), vol. 21, no. 1, p. 167, 2020.

[49] S. A. Jebur, A. K. Nawar, L. E. Kadhim, and M. M. Jahefer, “Hiding Information in Digital Im-ages

Using LSB Steganography Technique,” International Journal of Interactive Mo-bile Technologies, vol.

17, 2023.

[50] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning: A survey on ena-bling

technologies, protocols, and applications,” IEEE Access, vol. 2020, pp. 140699–140725.

[51] “TensorFlow federated,” TensorFlow. [Online]. Available: https://www.tensorflow.org/federated.

[Accessed: 20-Mar-2024].

[52] FATE: An Industrial Grade Federated Learning Framework. .

[53] “Welcome to the open federated learning (OpenFL) documentation! — OpenFL 2024.2

documentation,” Readthedocs.io. [Online]. Available: https://openfl.readthedocs.io/en/latest/index.html.

[Accessed: 20-Mar-2024].

[54] Mybluemix.net. [Online]. Available: https://ibmfl.mybluemix.net. [Accessed: 20-Mar-2024].

[55] G. Ulm, E. Gustavsson, and M. Jirstrand, Functional federated learning in erlang (ffl-erl). InFunctional

and Constraint Logic Programming: 26th International Workshop. Frankfurt/Main, Germany: Springer

International Publishing, 2018.

[56] Nimbleedge.ai. [Online]. Available: https://blog.nimbleedge.ai/types-of-federated-learning/. [Accessed:

20-Mar-2024].

[57] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance evaluation of federated

learning algorithms. InProceedings of the second workshop on distribut-ed infrastructures for deep

learning,” pp. 1–8, 2018.

[58] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimiza-tion in

heterogeneous networks. Proceedings of Machine learning and systems,” vol. 2, pp. 429–450, 2020.

[59] Z. Wang, W. Zhang, X. Wu, and X. Wang, “Matched averaging federated learning gesture recognition

with WiFi signals,” in 2021 7th International Conference on Big Data Computing and Communications

(BigCom), 2021.

[60] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “BrainTorrent: A peer-to-peer

environment for decentralized federated learning,” arXiv [cs.LG], 2019.

[61] L. R. Ali, S. A. Jebur, M. M. Jahefer, and B. N. Shaker, “Employing Transfer Learning for Diag-nosing

COVID-19 Disease,” International Journal of Online & Biomedical Engineer-ing, vol. 18, no. 15, 2022.

[62] R. Singh, N. Singh, and A. G. Dinker, “Performance analysis of TCP variants using AODV and DSDV

routing protocols in MANETs,” Recent Advances in Computer Science and Communications, vol. 14,

no. 2, pp. 448–455, 2021.

[63] T. Nishio and R. Yonetani, “Client selection for federated learning with heterogeneous resources in

mobile edge,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019.

[64] P. Singh and R. Agrawal, “A game-theoretic approach to maximise payoff and customer retention for

differentiated services in a heterogeneous network environment,” Int. J. Wirel. Mob. Comput., vol. 16,

 PEN Vol. 12, No. 1, February 2024, pp.75-100

100

no. 2, p. 146, 2019.

[65] S. Liu, G. Yu, X. Chen, and M. Bennis, “Joint user association and resource allocation for wireless

hierarchical federated learning with IID and non-IID data,” IEEE Trans. Wirel. Commun., vol. 21, no.

10, pp. 7852–7866, 2022.

[66] A. Aly, M. Fayez, M. M. Al-Qutt, and A. Hamad, “Navigating the Deception Stack: In-Depth Analysis

and Application of Comprehensive Cyber Defense Solutions,” International Journal of Intelligent

Computing and Information Sciences, vol. 23, no. 4, pp. 50–65, 2023.

[67] A. M. Asad, T. Moustafa, and M. Ito, Evaluating the communication effciency in federated learning

algorithms. 2020.

[68] M. K. Abdul-Hussein and H. T. Alrikabi, “Secured Transfer and Storage Image Data for Cloud

Communications,” International Journal of Online & Biomedical Engineering, vol. 19, no. 6, 2023.

[69] S. A. Jebur, K. A. Hussein, and H. K. Hoomod, “Abnormal Behavior Detection in Video Sur-veillance

Using Inception-v3 Transfer Learning Approaches,” COMMUNICATIONS, CONTROL AND SYSTEMS

ENGINEER-ING, vol. 23, no. 2, pp. 210–221, 2023.

[70] H. Al-Ani, “Artificial neural network in the prediction of surface roughness: A comparative study”,

Sustainable Engineering and Innovation, vol. 5, no. 2, pp. 141-150, Dec. 2023.

[71] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A survey on machine learning

techniques for cyber security in the last decade,” IEEE Access, vol. 8, pp. 222310–222354, 2020.

