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The goal of this article is trajectory generation for biped robots based on 

Model Predictive Control (MPC) and the receding-horizon principle. 

Specifically, we want to minimize the error between the desired CoM and 

ZMP trajectory and the actual one and the cancellation of the shock gradient 

of the CoM and ZMP movements. Model predictive control (MPC) consist in 

a finite horizon optimal control scheme which uses a prediction model to 

predict vehicle response and future states, thus minimizing the current error 

and optimizing the future trajectory within the prediction horizon. The 

proposed algorithm will provide a trajectory of control inputs which will 

optimize the system states utilizing a quadratic form cost function similar to 

standard linear quadratic tracking. Specific to finite horizon control, the cost is 

summed over the finite prediction horizon of time length, rather than over an 

infinite time horizon. Many techniques have been proposed, developed, and 

applied to solve this constrained optimization problem for the mobile robots. 

With our aproach we try to investigate how is the MPC framework is 

applicable to trajectory generation for point-to-point problems with a fixed 

final time and to find a set of assumptions and methods that allow for real-

time solutions. 
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1. Introduction 

Mobile robots, unlike other types of robots such as those with wheels or tracks, use similar devices for moving 

on the field like human or animal feet. Several researchers used switching techniques between the control laws 

needed at certain times in motion of the robot. An adaptive method to switch between different gain values 

used in tracking control on a motion trajectory for serial manipulators (Ouyang, et al., 2006).  

Compliant movement control which is essentially the default force control based on position was suggested by 

Lawrence, Stoughton (1987) and Kazerooni, Waibel, Kim (1990). Salisbury (1980) presented a method for 

active control of the end-effector apparent stiffness of the robot in Cartesian space. In this method the 

reference position is used to control the contact force and no force reference points are used.  Khalil’s method 

(Khalil et al., 1983) method stands out among them, for the advantages they offer.   
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The first one allows inverse kinematics problems to be solved regardless of the values of robot geometric 

characteristics, for robots with six degrees of mobility which have three rotational kinematic couplings on 

concurrent axis or three translation kinematic couplings.  

Because of the flexibility and that it has a solution for the inverse kinematics problem, this "decoupled" 

structure with three rotation couplings and concurrent axis is found in most robot models on the market. The 

position of the three axes intersection point is uniquely determined only by the q1, q2, q3 variables. Another 

advantage of the decoupled structure is allowing splitting and separate negotiating of the positioning and 

orientation. Paul's method as well as Lee and Elgazaar’s treat each case separately without generalizations. 

Moustris and Tzafestas (Moustris &Tzafestas, 2010) used a fuzzy switch, outside the control loop, for 

switching from a reference trajectory to another for the motion control of a mobile robot. Nicolás and Sagüés 

(Nicolás &Sagüés et. al., 2008) a switching control based on the epipolar geometry presented, which has the 

purpose to switch between different captured images by a mobile robot for to compute its trajectory up to 

target.  

These switching techniques and many others were used mainly to control between reference values 

(Vladareanu V. et al., 2013, 2014) or between constant values for a certain control law (Wang H.B. et al., 

2015, Sandru O.I. et al., 2013). 

In many robotic problems, it is desired to achieve a certain state of the robot at a given time. This will lead to 

a problem of tracking the reference signal when the desired state is specified as a function of time during the 

entire course (Pop &Vladareanu et al., 2018). If the desired state is discontinuous in time, we need to make a 

prediction between points, that is, a continuous transfer of the robot, from an initial state to the next state, and 

the robot movement must meet certain imposed restrictions. This behavior will be specified by an objective 

function. 

Model predictive control is proposed to address this problem, a model designed to predict the behavior of the 

system by minimizing predicted tracking errors and control effort used to achieve restrictions on control 

inputs and state variables in a finite time horizon.  

At each time sample, an optimal control input sequence is generated after solving the minimization problem. 

The first element of this control input sequence is applied to the system. Then the problem is resolved again at 

the next sampling time with the updated measurements and a shifted horizon. 

In this MPC formulation, the following cost is minimized to determine the optimal sequence of commands uk 

in the prediction horizon length. A trajectory generator must be able to determine the action ((u(x,t)), that 

satisfies a set of state constraints ((xC(t)) or minimize a cost function ((F(x)), or both subject to initial state 

constraints ((x(t0)) and the predictive motion model    x,u,t). 

For this, an objective function, a system model (differential equation of the motion), state restrictions, and a 

time horizon are required. Our goal is to use MPC as a point-to-point trajectory generation problem and to 

track the reference signal (desired trajectory). Figures 1.1 and 1.2 depicts the basic principle of MPC. 

 

 
 

Figure 1.1. Principle of the Model predictive control (MPC) - block diagram 
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Figure 1.2. Principle of the model predictive control 

 

2. Mathematical Formulation of the MPC 

 

Starting from information (measurements) at time t, the controller predicts the dynamic behavior of the system 

on a predictive horizon Tp=Np xTc, where Np is number of the pre-calculated optimal inputs U={u1, …, uNp} 

and Tc is the control sampling time. We enter only the first input u1 in the system, and at the next sampling 

period, the measurements are repeated. If there are disturbances than the whole process is repeated (this case 

is often encountered). 

Let the following system of non-linear differential equations describing the dynamic system: 

 0( ) ( ( ), ( )), (0)x t f x t u t x x    (2.1) 

Subject to the next constraints:  

 
( ) , 0

( ) , 0

x t X t

u t U t

  

  
  (2.2) 

Where ( ) nx t R  and ( ) mu t R denote the vector of state and inputs, respectively, and 

min max{ | }mU u R u u u    is the set of input constraints and min max{ | }nX x R x x x     the set of 

state vector restrictions, with constant vectors min max,u u and min max,x x . 

The optimal control problem with the control input applied to the system is achieved by solving the optimal 

control problem over a finite time horizon at each time sample: 

Find 
(.)

ˆ(.) min ( ( ), (.))
u

u J x t u   (2.3) 
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subject to: 

 
ˆ( ) , [ , ],

( ) , [ , ].

p

p

u U t t T

x X t t T

 

 

   

   
  (2.4) 

With an additive constraint, due to the sampling control 

Where 

ˆ ˆ( ) ( ( 1) ), [ , ( 1) ],

{0, , 1}.

k c c c

p

u u t k T t kT t k T

k N

        

     (2.5) 

For the sequential case, let 0
ˆ :[ , ]k pu t t T U   be the control sequences from the current time 0 pt to t T . 

The MPC is then defined as a minimization of the objective function J to find the optimal control sequence  

 
*ˆ ˆ ˆmin ( ( ), (.)) ( ( ), ( ))

pt T

k k k k k

t

u J x t u F x u d g  



     (2.6) 

Subject to (2.1), (2.4) and (2.5). 

  

3. Problem Formulation 

3.1. Dynamic model of walking robot approximated by 3D LIPM  

The complete dynamic model of a human robot is non-linear and complex. In order to generate the movement 

of the biped robot, it was considered that the approximation of the non-linear dynamic model with the linear 

pendulum 3D model (3D-LIPM) is good enough and additionally, the cost of calculation is low and 

convenient for tracking the online trajectory. Assuming that the robot's CoM (center of mass) is restricted to 

move on a horizontal plane with a altitude h constant, a set of decoupled equations that governs the CoM and 

ZMP (zero moment point) will result. 

. 

 
 

Figure 3.1. Biped legged system 
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Equations describing the trajectory of CoM(x, y, h), in the case of the 3D linear pendulum model, are given in 

(3.1): 

 

1
;

1

y

x

g
x x

h mh

g
y y

h mh





 

 

  (3.1) 

where g is acceleration due to gravity, m is the mass of the pendulum,    and    are the moments around the x 

and y axes respectively. Considering 3D-LIPM with altitude h constant, the ZMP equations become (3.2): 

 

;
y

x

x
y

z
mg

z
mg





 

 

  (3.2) 

where (zx, zy) are the coordinates of the ZMP on the flat floor. Substituting equations (3.2) in (3.1) we get the 

decoupled movement equations of ZMP: 

 

x

y

h
z x x

g

h
z y y

g

 

 

  (3.3) 

 

3.2. The dynamic system with discrete time of walking robot representing the movement in the x 

direction of CoM and ZMP (similar for the y direction) for 3D-LIPM  

We will consider the shock in the direction x and y respectively as the input controller.  The two trajectories of 

the CoM and the ZMP are discretized with cubic polynomials on portions, depending on the shocks x and y , 

assumed constant on the samples of length T: 

   (3.4) 

   (3.5) 

where: 

 

2

1
2

0 1

0 0 1

TT

A T

 
 
 
 
 
              1k k kU x x   

   

1 0
h

C
g

 
  
      0,1, , 1k N 

 

  

and T is the length of the time sample. Similarly, in the y direction.  

1k k kX AX B U   

k kZ CX

3

2

6

2

T

TB

T

 
 
 

  
 
 
 

 

 

( ) ( ) ( ) , ( ), ( )

( ) ( ) ( )

T

k k k x

T

k
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3.3. Linear Quadratic optimal control for Model Predictive Control 

We will define a square cost function on a finite N-step horizon: 

 
1

0 0 0( , ) ( ) ( )
N

T d T d T

N N k k k k k k

k j

J X U X PX X X Q X X U R U




         (3.6) 

where Xk is the state vector at the time k, obtained from the state variable X0=X(0) and from (3.4) we will 

consider the matrix system: 

   (3.7) 

where  U0=[U0, ...,UN-1]
T
 is the input sequence. We consider the problem of optimal control 

   (3.8) 

Here we assume that the weighting penalizing matrices of the state variables are positively defined, Q = Q
T
 ≥ 

0, P = P
T
 ≥ 0 and also the weight matrix of penalizing the inputs is positively defined R = R

T
. By solving the 

optimal control problem (3.8), it means that we can minimize the error between the desired trajectory of the 

CoM and the ZMP and the real one. Through the penalty matrix Q we minimize the errors between the real 

and desired trajectory{ }d

kX . By means of the penalty matrix P, the robot is rebalanced in the final step N, and 

with the penalty matrix R it is desired cancellation the gradient of the shock in the direction x,  

     1 .k kx x const 
 

We mention that the problem (3.8) can be solved globally or recursively using dynamic programming. 

Although our problem is linear, there are two reasons for addressing the second option. The first reason is that 

in the first version, the work arrays are of large size and the computational effort is larger and the second 

reason is that in the trajectory tracking problem, the system may be subject to unpredictable perturbations in 

the model so that the feedback law would be more accurately calculated because at each step of the time the 

observed state variable X(k) is used to determine the control action before the predicted variable Xk at time 

t=0. 

4. The difference between MPC and LQR 

The problem of predictive control formulated as a problem of modeling the future trajectory for dynamic 

systems with continuous or discrete time is similarly solved. Both types of problems are related to the classic 

linear quadratic regulator (LQR) when using a sufficiently long prediction horizon. The basic difference 

between predictive control and LQR is that in the case of predictive control the optimization problem is solved 

using a moving time horizon window, while in the case of LQR the same problem is solved in a fixed time 

window. The advantage of using a moving time window is the ability to perform real-time optimization with 

constraints on certain system variables. 

One of the well-known issues in classic predictive control is a numerical instability problem when the 

prediction horizon is big because the model used contains an integration process. To overcome this 

shortcoming, the design pattern must be asymptotically stable. 

5. Conclusions 

The development of control technology and software offers great possibilities for implementing advanced 

control algorithms. MPC is one of the most popular advanced techniques for industrial process applications, 

being able to handle a wide variety of control constraints and can be used at different levels of the process 

1k k kX AX B U   

0

1

0

*

0 0 0

, 0,1, , 1
(0)

( (0)) min ( (0), )

k k k

U

X AX B U k N
X X

J X J X U
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

 

0kU 
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control structure. In this article we used MPC for to minimize the error between the desired CoM and ZMP 

trajectory and the actual one and the cancellation of the shock of the CoM and ZMP movements. 
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