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 We study an exclusive process on a circle. In this paper, we study a discrete 

closed contour, containing N cells and M particles. Each particle occupies a 

cell at every time. There is not more than one particle in each cell at every 

moment. At every time t=0,1, 2, … , each particle tries to move onto a cell 

forward with probability p, this particle tries to move back with probability q, 

and the particle does not try to move with probability s, p+q+s=1. Under 

assumptions that q=0, the system of this type was considered by M. Kanai et. 

al. As it follows from results of these authors, in the case q=0, the process is 

time reversible, i.e., in the stationary state, the behavior of process does not 

change if the direction of time-axis is changed. The ergodic properties of 

some more general exclusive process were studied by M. Blank but, in the 

case 0<p, q<1, values of steady probabilities have not been found. Under the 

assumptions that M=2, N=2, s=0, we have obtained a formula for the average 

velocity of particles and the particle transitions intensity. In this paper, under 

assumptions that M=2, it has been proved the following. The process is time-

reversible if M=2, N is even and s=0. The process is not time-reversible if 

M=2, s>0, or N is odd and s=0. We have proved that the process can be non-

reversible if M ≥ 3, s=0. 
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1. Introduction 

In [1] (Belyaev, 1969) a stochastic dynamical system was introduced. This system is a traffic model 

on an infinite one-dimensional lattice. Any particle in this system can move in two directions. Numbers of 

cells are  0,±1,2±, …  The minimum permissible distance between two neighboring particles equals τ, where τ 

is an odd number. At any time 0,1,2,… with probability r, the particle, located in the cell i, moves to the right, 

i.e. to the cell i+1. With probability l, the particle tries to move to the left, i.e. to the cell i−1, r+l=1 The 

neighboring particle, located on the right, is a priority particle, i.e., if, at time t, the particle, located on the 

right, moves to the left, and the distance between two particles, becomes to equal τ−1, then, at time t+1, the 

particle, located on the left, moves to the left onto a cell, and the distance between the particles is equal to τ. It 

was proved that the stationary distribution of the distance between two particles is geometrical distribution 

with parameter depending on the flow density. It is proved that the distance between neighboring particles is a 

Markov chain. This chain is distributed geometrically. The expectation of this distribution corresponds to the 

flow density.  
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A generalization of system is studied in [2] (Zele, 1972), where it is assumed that probabilities of 

particle transitions to the right or to the left depends on the distance between the given particles. Stationary 

state probabilities of the Markov chain have been found.  

A formula for the average velocity of particles on infinite one-dimensional lattice has been obtained in 

[3] (Schadschneider, Schreckenberg, 1996). In this system particles move in accordance with the following 

rule. At any discrete moment, any particle tries to move onto a particle forward with probability p. The 

attempt of the particle to move is realized if the cell ahead of the particle is vacant.  

In [4] (Gray, Griffeath, 2001), analytical results have been obtained for more general traffic model. In 

this model, a particle moves from the cell i to a vacant cell i+1 behead of particle with probability depending 

on states of cells i-1, i+2 (cells are numbered in the direction of movement). Formulas for average velocities 

of particles have been found for some particular cases. 

 In [5] (Kanai, Nishinari, Tokihiro, 2009), a formula has been obtained for a stochastic version of the 

traffic model. In this system, at every step, each particle moves onto a cell forward if the cell ahead is vacant. 

Another form of this formula has been obtained in [6] (Buslaev, Tatashev, 2011). In [7] (Kozlov, Buslaev, 

Tatashev, 2013), a formula for the average velocity of particles has been obtained for a system some more 

general system such that, in this system, the probability of a particle transition depends on the type of the 

particle.  

A dynamical system has been studied in [8] (Blank, 2010). In general case, the state space of the 

system, studied in [8], is continuous. In a particular cases, the system is equivalent to the discrete systems that 

is considered in [4]. In the system, studied in [8], particles moves on a straight line, which is infinite in two 

directions. Particles are balls of radius r. The minimum distance between centers of two neighboring particles 

is equal to 2r. At every discrete moment each particle tries to move on a random value Vi(t) which is called the 

local velocity of the particle. In general case, the value Vi can be negative, i.e., particles can move in both 

directions. Ergodic properties of stochastic versions of models, considered in [8], and its generalization were 

studied in [9] (Blank, 2012).  

In [10] (Buslaev, Prikhodko, Tatashev, Yashina, 2005), it has been developed the following approach 

to model traffic flow. In accordance with this approach, the velocity of a car is the sum of a deterministic 

component and a stochastic component: v =vdet+vst. A field of cells move with velocity vdet. Cars are modeled 

by particles that occupy cells. Individual maneuvers of cars are modeled by transitions of particles to other 

cells.  

The concept of a contour network (Buslaev contour networks) has been introduced by A.P. Buslaev, 

[11] (Kozlov, Buslaev, Tatashev, 2013), (Buslaev contour networks). In papers A.P. Buslaev, basic 

approaches for the study of complex networks. In accordance with these approaches, models are dynamical 

systems. The supporters of these systems are contours systems with network structures. Particles (clusters) 

move on contours in accordance with some rules. Limitations on a system allow to study the system 

analytically.  

One of contour network called chainmail was studied in [11], [12], (Buslaev, Tatashev, Yashina, 

2013). In this dynamical system, any particles move on a contour. The supporter of the chainmail form a two-

dimensional structure of contours. Any contour has common points with each of four neighboring contours. 

These common points are called nodes. Particles of neighboring contours cannot move through the same node 

simultaneously. Particles move along contours in accordance with deterministic rules. Conflict resolution 

rules in nodes can be stochastic. In general case, the system is not ergodic. The character of system behavior 

in the stationary state depends on the initial state and realization of the process.  

In this paper we study a closed lattice containing N cells and M particles. At any discrete moment, 

each particle tries to move forward, tries to move back or does not try to move with probabilities p, q, s 

respectively. If a particle tries to a cell that is occupied, then the attempt of the particle is not realized. In the 

case of q=0 (particles cannot move back) formulas for the average velocity of particles have been obtained in 

[5], [6]. It follows from results, obtained in [5], [6], that the system is time-reversible in the case of q=0. We 

have proved that, if M=2 and N is even, then a unique communicating class is formed be states such that the 

number of even number of cells between two particles is odd. We have obtained a formula for the average 

velocity of particles under assumptions that M=2, N is even, and s=0. We study time reversibility of the 

system. If we use the deterministic-stochastic approach, [10], then movement of a particle in backward 

direction can be interpreted as the movement of the car, corresponding to this particle, with the velocity which 

is less than the average velocity of the traffic flow. 
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In Section 2, we describe the system. In Section 3, we define concepts of average velocity of particles, 

transitions intensity, and particles flow density. In Section 4, we give formulas for the case q=0 (particles 

cannot move back). In Section 5 formulas for stationary state probabilities, the average velocity, and 

transitions intensity have been obtained under the condition M=2, s=0, and N is even. In Section 6, we study 

time-reversibility of the process. 

2. Description of dynamical system 

Suppose a dynamical system contains N cells and M<N particles, Fig.1. At every moment t=0,1,2,…, 

each particle is located in one of cells. There is no more than one particle in an any cell simultaneously. The 

cell j is located between cells j−1 and j+1 (subtraction and addition by modulo N), j=0,1,…,N−1. The particle 

i is located between particles i−1 and i+1 (subtraction and addition by modulo M), i=0,1,…,M−1. Assume 

that, at time t, a particle i is in the cell j, i=0,1,…,M−1. j=0,1,…,N−1. Then, at time t, with probability p the 

particle i tries to come to the cell j+1 (addition by modulo N). If at time t the cell j+1 is vacant and the particle 

i+1 does not try to move to the cell j+1, then the attempt of the particle i is realized, and this particle will be 

in the cell j+1 at time t+1. If the cell j+1 is occupied, then the particle i does not move at time t, and, at time 

t+1, the particle i will be in the cell j. With probability q the particle i tries to come to the cell j−1. If the cell 

j−1 is vacant at time t and the particle i−1 does not try to move to the cell j−1, then the attempt of the particle 

i is realized, and this particle will be in the cell j−1. If the cell i−1 is occupied, then the particle i does not 

move at time t. With probability s the particle i does not try to move and will be in the cell j at time t+1, Fig. 

2. If, at time t, the particle i is in the cell j−1 and the particle i+1 is in the cell j+1, in the cell j, i=0,1,...,M−1, 

j=0,1,...,N−1, then a conflict occurs. In this case, no particle moves at time t (strong normalization in terms 

[8]). 

 
Fig. 1: A contours system, N=6, M=2 

 

 
Fig. 2: Rules of movement 

 

The state of the system is characterized by the vector (d0, d1,…, dN-1), where di=0 if the cell i is vacant, 

and di=1 if the cell i is occupied, i=0,1,…,N−1. 

 The initial state of the system is given. 
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3. Concepts of velocity, intensity of transitions, and flow density  

Way say that a forward transition of particle i occurs if the particle i moves from the cell j to the cell 

j+1 (addition by modulo N), j=0,1,...,N−1.  

Way say that a back transition of the particle i occurs if a particle moves from the cell j to the cell j−1 

(addition by modulo N), j=0,1,...,N−1. 

Denote by S
+
(T) the expectation of total number of forward transitions in the time segment [0, T − 1]; 

Denote by S
−
(T) the expectation of the total number of the back transitions in the time segment [0, T −1]. 

Assume that 

                   
 

The limit  

     
   

            

  
 

is called the average velocity of particles if this limit exists. 

 

 

The limit  

     
   

    

  
 

is called the transitions intensity if this limit exists. 

The value  

  
 

 
 

is called the particles flow density. 

 

We introduce the stochastic process X = (X1(t) ,…, XM(t)), where Xi(t) is the number of vacant cells 

between particles i−1 and i (subtraction by modulo N) at time t, Xi(t) ≥ 0, i = 1,…, M,  X1(t) +···+ XM(t) = 

N−M, t = 0, 1, 2,…, The stochastic process X is a Markov chain.  

Denote by vi
+
(X0,X1,…,XM−1) the probability that, at time t; a forward transition of the particle i occurs 

provided the system is in the state (X0,X1,…,XM−1) at time t. 

 Denote by vi
−
(X0,X1,…,XM−1) the probability that, at time t, a back transition of the particle i occurs 

provided the system is in the state 

               
at the time t. 

Suppose 

 

vi(X0, X1,...,XM−1) = vi
+
(X0, X1,...,XM−1) − vi

−
(X0, X1,...,XM−1), 

 

Qi(X0, X1,...,XM−1) = vi
+
(X0, X1,...,XM−1) + vi

−
(X0, X1,...,XM−1). 

 

The average velocity of the particle i is equal to 

                                     

The transitions intensity of the particle i is equal to 

                                     

It is evident that 

               

               
Suppose 

v = vi , i = 0,1,...,M 

 

v = vi ,  i = 0,1,...,M − 1, 
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Q = Qi ,  i = 0,1,...,M − 1. 

   

 

4. Case of probability q = 0  

 

In [6], the following formula for the average velocity of particles has been obtained under the 

assumptions that q = 0 

  
 

 
 

  

        
     

         
    

           
      

 

 

where 

                                   
 

 

          
        

         
    

        
 
  

                                        (1)                                                                    

  
  

  

        
                                                             

In [5], a formula for the same the average velocity of particles has been also obtained under the 

assumptions that q = 0. However the form of this formula differs from the form (1). 

 

5. Exact solution for the case of M = 2 and even N  

Assume that M = 2 and N is even, N ≥ 6. 

Denote by Pi the stationary probability of the state (X1 = N − 2 –i, X2 = i) :  

Pi = P(N − 2 − i, i), i = 0,1,...,N – 2. 

Theorem 1. Suppose number of particles M = 2, the number N ≥ 6 is even, s = 0, 0 < p < 1; then the 

following is true. 

 

(1) There exists the stationary distribution of state probabilities/ 

     
              
 

   
             

                                                              (2) 

(2) The average velocity of particles is equal to  

                                                                              v = p − q.                                                               (3) 

(3) The transitions intensity of a particle is equal to 

 

      
   

   
                                                             (4) 

 

Proof. If 0 < p < 1, i = 0, 1,…, M −1, then the stochastic process X is a Markov chain, and the space 

state of this process contains a unique aperiodic communicating class. Therefore the stationary distribution of 

stationary states probabilities. 

The stationary probabilities satisfy equations 

 

P0 = pqP0 + pqP2 ,                                                                                                      (5) 

 

P1 = (p
2 
+ q

2
)P0 + (p

2 
+ pq + q

2
)P1 + pqP3 ,                                                                 (6) 

 

Pi = pqP i−2 +( p
2 
+ q

2
)Pi + pq P i + 2 ,    i = 2,3,...,N – 4                                                   (7)                                                                

 

PN−3 = pqPN-5 +(p
2 
+ pq + q

2
) PN−3 + (p

2 
+  q) PN−2 ,                                                      (8) 
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PN−2 = pqPN−2 + pqPN−4 ,                                                                                                                                       (9) 

 

P0 + P1 +...+PN−2 = 1.                                                                                         (10) 

                                                                                           

The communicating class contains the states P1, P3,…,PN−3. The stationary probabilities of all these 

states are equiprobable. From this, the first statement of Theorem 1 follows. 

The solution of the system (5)–(10) is (2). 

The average velocity of particles is equal to      

                                                                             

v =(P3+P5+...+PN−5)(p−q)+P1PN-3(p
2 
−q

2
)=   

         =(P3+P5+...+PN−5)(p−q)+(P1 + PN-3)(p
 
−q)(p+q)=p−q.                                                                      (11)   

 

The transitions intensity of a particle is equal to 

 

Q = 1 − (P1 + PN − 3)pq.                                                                                                                (12) 

 

From (5)–(11), the formula (3) follows. From (5)–(10), (12), the formulas (4), (5) follows. Theorem 1 

has been proved. 

Remark 1. If p → 1; then, in accordance with (3), v → 1. This consists with results obtained in [2, 4], 

where the system was studied under assumption that p = 1. 

 

6. Reversibility of the system 

6.1. Formulation of problem 

Suppose 

                           

pij is the probability of the transition from the state i to the state j; 

                            

provided the system in the stationary state. 

In accordance with a definition given in [13], a stochastic process is called reversible if and only if for 

any i, j such that pj > 0 the equality 

                                                                                               (13) 

holds. 

The equality (13) holds if and only if the equality 

                                                                                                  (14)  

holds. 

We study reversibility of the process X(t). 

 

6.2. Reversibility of the process X(t) in the case of q = 0 

 

Assume that q = 0, i.e., particles move only in one direction. In this case, in accordance with results 

[6, 7], the process X(t) is reversible.  

6.3. Reversibility of the process X(t) in the case of M = 2, even N, and s = 0 

In Subsection 6.3, we assume that M = 2, N is even, and s = 0. 

Theorem 2. Suppose number of particles M = 2, the number N ≥ 6 is even, s = 0, 0 < p < 1; then the 

process X(t) is reversible. 

Proof. Under conditions of the theorem, we have that pi > 0 only for odd numbers, and 

 

                                                                                      (15) 
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                                                                                                          (16) 
 

                             .                                                                       (17) 

From this and Theorem 1, it follows that (14) holds, and thus Theorem 2 has been proved. 

 

6.4. Non-reversibility of the process X(t) in the case of M = 2, even N and s = 0 

 

In Subsection 6.4, we consider the system under assumptions that M = 2, N is odd, and s = 0. 

Theorem 3. Suppose number of particles M = 2, the number N ≥ 5 is odd, s = 0, 0 < p < 1; then the 

process X(t) is not reversible. 

Proof. Under the conditions of the theorem, we have that all states of the system form a unique 

aperiodic communicating class. If the process X(t) is reversible, then the stationary probabilities satisfy (14) – 

(17). But in the case of odd N, all probabilities are positive and cannot satisfy (14) – (17). This contradiction 

proves Theorem 3. 

 

6.5. Non-reversibility of the process X(t) in the case of M = 2 and s > 0 

In Subsection 6.5, we consider the system under assumptions that M = 2,  s < 1.  

Theorem 4. Suppose number of particles M = 2, 0 < s < 1, then the process X(t) is not reversible. 

Proof. Under the conditions of the theorem, we have that all states of the system form a unique 

aperiodic communicating class. Stationary probabilities of all states are positive. We have. 

                                                             (18) 

                                                            (19) 

            = pq,                                                         (20) 

p12 = ps + qs,                                                                 (21) 

p21 = ps + qs.                                                                (22) 

 

 

Assume that the process X(T) is reversible. Using (13), (18)–(22), we get 

      
   

   
    

           

     
                                   (23) 

      
   

   
    

     

     
                                       (24)  

      
     

     
                                                         (25) 

Using (23)–(25), we get 

(p
2 
+q

2
+ps+qs)/(ps+qs)=1.                                            (26)  

 

But (26) does not hold for 0 < p; q; s < 1: This contradiction proves Theorem 4. 
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6.6. Non-reversibility in the case s = 0 and M =  3  

      The following example  shows that the process can be non-reversible in the case  s =0 and M > 2. 

      Suppose N = 6,  M  = 3, p = q = 1/2, s =0. We shall define the process Y(t)  as follows. There are three 

states of this process. Assume that Y(t) = 1 if all particles form one cluster, i.e., three particles occupy 

neighboring cells; Y(t) = 2 if two particles form a cluster and one particle is not in this cluster; Y(t) = 3 if there 

is a vacant cell between any two particles. Thus Y(t) is the number of clusters at time t. All states of the 

process Y(t) is the number of clusters at time t . All states of the process Y(t) form a unique class of 

communicating states. Denote by Pi the stationary probability of the state Y = i, i =1, 2, 3.   

Stationary probabilities of states satisfy the system of equations 

P1 = 
  

 
 + 

   

  
 + 

    

 
 

P2 = 
  

 
 + 

    

  
+
    

 
, 

P3 = 
   

 
+
   

 
+
   

 
, 

P1 + P2 + P3 = 1. 

The solution of this system of equations  

      P1 = 
 

  
, P2 = 

  

  
, P3 = 

  

  
 

We have 

P1 p12= 
 

  
 
. 

    ≠ 
  

  
 
.  

  
= P2p21  

 

Thus the process is not reversible. 
 
        

 

7. Conclusion 

We have obtained formulas for average velocity of particles and transition intensity under the 

assumptions that the number of particles equals 2, the number of cells is even, and the probability that the 

particle does not try to move equals 0. We study the reversibility of the system processing. It is known that, if 

particles move only in one direction, the process is time-reversible. Under assumptions that the number of 

particles equals 2, 0<p<1, 0<q<1, we have proved the following. The process is time-reversible if the number 

of cells is even, and the probability that the particle does not move is equal to 0. The process is time-reversible 

if only one of these two conditions holds.  
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