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Abstract 

In this study, we present a Lotka-Volterra predator-prey like model for the interaction dynamics of tumor-immune 

system. The model consists of system of differential equations with piecewise constant arguments and based on the 

model of tumor growth constructed by Sarkar and Banerjee. The solutions of differential equations with piecewise 

constant arguments leads to system of difference equations. Sufficient conditions are obtained for the local and global 

asymptotic stability of a positive equilibrium point of the discrete system by using Schur-Cohn criterion and a 

Lyapunov function. In addition, we investigate periodic solutions of discrete system through Neimark-Sacker 

bifurcation and obtain a stable limit cycle which implies that tumor and immune system undergo oscillation. 
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1. Introduction  

Modeling tumor-immune interaction has attracted much 

attention in the last decades. This interaction is very 

complex and mathematical models can help to shape our 

understanding of dynamics this biological phenomenon. 

Most of the models consist of two main populations: 

tumor cells and effector cells such as hunting predator 

cells (Cytotoxic T lymphocytes) and resting predator cells 

(T-Helper cells) which are main struggle of immune 

system. Cytotoxic T lymphocytes (CTLs) responsible to 

kill tumor cells and resting predator cells account for to 

activity the native Cytotoxic T lymphocytes. 

 

In order to describe tumor and effector cells interaction, 

many authors [1-16] have used Lotka-Volterra terms and 

logistic terms. While some of these models [1-9] consist 

of ordinary differential equations, the others [10-16] 

consist of delay differential equations. A familiar model 

included ordinary differential equations is constructed 

Kuznetsov and Taylor [1]. They have studied interaction 

between Cytotoxic T lymphocyte and immunogenic 

tumor and have obtained a threshold for the tumor 

growth. Kirschner and Panetta [2] have generalized this 

model to study the role of IL-2 in tumor dynamics. 

Another familiar tumor growth model has been proposed 

by Sarkar and Banerjee [3]. The model explains 

spontaneous tumor regression and progression under 

immunological activity. 

 

On the other hand, there exists a discrete time delay in the 

mitosis phase (cell division phase) since tumor cells need 

a resting time for a proliferation. This biological 

phenomenon is explained much better by using delay 

differential equations instead of ordinary differential 

equations [10]. Therefore, many authors have considered 

delay differential equation included time delay factor for 

modeling tumor growth [10-16]. Sarkar and Banerjee [11] 

have constructed the model by using the time delay factor 

as follows: 

 

{
  
 

  
 
dM

dt
= r1M(1 −

M

k1
 ) – α1MN,

dN

dt
= βNZ(t − τ ) − d1N− α2MN,

dZ

dt
= r2Z (1 −

Z

k2
 ) − βNZ(t − τ) − d2Z,

                    (1) 

 

where M(t), N(t) and Z(t) are the number of tumor, 

hunting and resting cells respectively. 

 

Since stability and bifurcations analysis of delay 

differential equations is more difficult, numerical analysis 

may be needed for such equations. In study [17], Cooke 

and Györi show that differential equation with piecewise 

constant arguments can be used to obtain good 

approximate solution of delay differential equations on 

the infinite interval [0,∞). Therefore, there has been 

great interest in studying differential equation with 

piecewise constant arguments which combine properties 
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of both differential and difference equations [18-26]. I. 

Ozturk et al. [18] have modeled bacteria population by 

using differential equation 

 
dx(t)

dt
= rx(t){1 − αx(t) − β0x(⟦t⟧)

− β1x(⟦t − 1⟧)}.                                      (2) 

which includes both continuous and discrete time for a 

bacteria population.  

 

These types of models also allow us to describe both 

microscopic and macroscopic level events that occur 

simultaneously. For the tumor-immune system 

interactions, microscopic interaction refers proliferation 

and activation of tumor cells together with their 

competition while macroscopic interaction refers to 

cancer invasion and metastases [27]. When one considers 

the both microscopic level interaction which needs a 

discrete time and macroscopic level interaction which 

needs continuous time simultaneously, there are two 

events in a population: a continuity and discrete time. 

Modeling tumor growth using differential equation with 

piecewise constant arguments, Bozkurt [19] have 

considered a more general case of equation (2) as follows: 

 
dx(t)

dt
= x(t){r(1 − αx(t) − β0x([t]) − β1x([t − 1]))

+ γ1x([t]) + γ2x([t − 1])}.                   (3) 

In the present paper, due to above biological facts, we 

replace the model (1) by adding piecewise constant 

arguments and get a system of differential equations 

 

{
  
 

  
 
dM

dt
= r1M(t)(1 −

M(t)

k1
 ) – α1M(t)N(⟦t⟧),

dN

dt
= βN(t)Z(⟦t − 1⟧) − d1N(t) − α2M(⟦t⟧)N(t)

dZ

dt
= r2Z(t) (1 −

Z(t)

k2
 ) − βN(⟦t⟧)Z(t) − d2Z(t),

, (4) 

 

where ⟦t⟧ denotes the integer part of t ϵ [0,∞), M(t), 
N(t) and Z(t) are the number of tumor, hunting and 

resting cells respectively. The parameter r1 represents the 

growth rate and k1 represents the maximum carrying 

capacity of tumor cells, r2 is the growth rate and k2 is the 

maximum carrying capacity of resting cells. The term 

−d1N(t) is natural death of hunting cell. The competition 

term −α1M(t)N(⟦t⟧) represents the loss of tumor cells 

due to encounter with hunting cells and −α2M(⟦t⟧)N(t) 
represents the loss of hunting cells due to encounter with 

the tumor cells. The conversion rate from resting to 

hunting cells is represented parameter β. There exist a 

discrete delay time in this conversion which is 

represented term Z(⟦t − 1⟧). The term βN(t)Z(⟦t − 1⟧) 

represents growth of hunting T-cells and the term 

−βN(⟦t⟧)Z(t) represents loss of resting cells.  

 

2. Local and global stabilty analysis of the system  
 

An integration of each equation in system (4) on an 

interval t 𝜖 [n, n + 1), n = 0,1,2,… , give us 

 

{
 
 

 
 
dM

dt
− M(t){r1–α1N(n)} = −r1K1(M(t))

2
,

dN

N(t)
= {βZ(n − 1) − d1 − α2M(n)}N(t)dt,

dZ

dt
− Z(t){r2 − βN(n) − d2} = −r2K2(Z(t))

2.

           (5) 

 

where 
1

k1
= K1 ,

1

k2
= K2. If we solve each equations of 

system (5) and letting t → n + 1, we get a system of 

difference equations  

{
 
 

 
 M(n + 1) =

M(n)[r1– α1N(n)]

[r1– α1N(n) − r1K1M(n)]e−
[r1–α1N(n)] + r1K1M(n)

,

N(n + 1) = N(n)eβZ(n)− d1−α2M(n),

Z(n + 1) =
Z(n)[r2 − βN(n) − d2]

[r2 − βN(n)−d2 − r2K2Z(n)]e−
[r2−βN(n)−d2] + r2K2Z(n)

.

(6) 

 

In order to analysis system (6), we need to find positive 

equilibrium point of the system. If  

 

α1 <
4d1K2r1r2

d2
2 − 2d2r2 + r2

2
,   β >

d1K1K2r2 + K2r2α2
K1(r2 − d2)

, (7) 

 

K1 >
α2

d1
  and  r2 > d2                                                         (8) 

 

then, positive equilibrium point of the system is 

determined as E̅ = (M̅, N̅, Z̅) where 

 

M̅ =
β
2r1 + α1(βd2 − βr2 + d1K2r2)

β
2K1r1 − K2r2α1α2

,   

 

N̅ =
r1(−βK1d2 + βK1r2 − d1K1K2r2 − K2r2α2)

β
2K1r1 − K2r2α1α2

, 

 

Z̅ =
β(d1K1r1 + r1α2) − (r2 − d2)α1α2

β
2K1r1 − K2r2α1α2

. 

 

The linearized system of (6) about positive equilibrium 

point E̅ is w(n + 1) = Aw(n), where A is 
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A =

(

 
 
 
e−K1r1M̅ −

(1 − e−K1r1M̅)α1
K1r1

0

−α2N̅ 1 βN̅

0 −
(1 − e−K2r2Z̅)β

K2r2
e−K2r2Z̅

)

 
 
 
.        (9) 

 

The characteristic equation of matrix A is 

 

p(λ) = (a11 − 𝜆)[(1 − 𝜆)(a33 − 𝜆) − a23a32] 

             −a12[a21(a33 − 𝜆)].                                            (10) 
 
 

Under the assumption 

 

a11 = a55,                                                                             (11) 
 

an eigenvalue of (10) are computed as λ1 = e
−K1r1M̅ < 1. 

Solving equation (11) with the fact r1 > r2 and 

considering inequalities (7) and (8) we have  

 

α1 =
βr1(K1(−βr1 + d1K2r2) + K2r2α2)

d2(βK1r1 − K2r2α2) + r2(K1(−β + d1K2)r1 − K2r2α2)
. 

 

Thus, characteristic equation p(λ) can be reduced second 

order equation  

 

p1(λ) = λ
2 + λ(−1 − e−K1r1M̅) + e−K1r1M̅ 

               +
N̅(1 − e−K1r1M̅)(β2K1r1 − K2r2α1α2)

K1r1K2r2
       (12) 

 

Now we can determine stability conditions of discrete 

system (6) through the equation (12). 

 

Theorem 1. Let E̅ the positive equilibrium point of 

system (6). Suppose that 

 

α1 =
βr1(K1(βr1 − d1K2r2) − K2r2α2)

r2(K1(β − d1K2)r1 − K2r2α2)
,  

 

α2

d1
< K1 <

r2d1
r2 + d1

 and r1 > r2 > d2. 

 

 

E̅ is local asymptotic stable if 

 

β >
d1K1K2r2 + K2r2α2

K1(r2 − d2)
  and   α1 <

4d1K2r1r2

d2
2 − 2d2r2 + r2

2
. 

 

Proof. By using Schur-Cohn criterion, we obtain that E̅ is 

locally asymptotically stable if and only if 

 

|−1 − e−K1r1M̅| < 1 + e−K1r1M̅ 

           +
N̅(1 − e−K1r1M̅)(β2K1r1 − K2r2α1α2)

K1r1K2r2
< 2. (13) 

 

The inequality (13) can be written  

 

(a) |−1 − e−K1r1M̅| < 1 + e−K1r1M̅ 

                              +
N̅(1 − e−K1r1M̅)(β2K1r1 − K2r2α1α2)

K1r1K2r2
 

and 

 

(b) 1 + e−K1r1M̅ 

            +
N̅(1 − e−K1r1M̅)(β2K1r1 − K2r2α1α2)

K1r1K2r2
< 2. 

        

If we consider condition (7) and (8), it can be easily seen 

that (a) is always holds. From (b), we hold 

 

N̅(1 − e−K1r1M̅)(β2K1r1 − K2r2α1α2) + K1r1K2r2e
−K1r1M̅

K1r1K2r2
< 1 

 

which reveal  

 

β >
K1K2r2 + d1K1K2 + K2α2

r2 − d2
. 

 

Under the condition 

 

K1 <
r2d1
r2 + d1

 

 

we can write  

 

β >
d1K1K2r2 + K2r2α2

K1(r2 − d2)
>
K1K2r2 + d1K1K2 + K2α2

r2 − d2
 

 

This completes the proof. 

 

Example 1. The parameter values which are taken from 

[11] as r1 = 0.18, r2 = 0.1045, k1 = 5x10
6,  k2 =

3x106, β = 4.32x10−8, α2 = 3.422x10
−9, d1 = d2 =

0.0412 and the determined value α1 = 2.27721x10
−7 

provide the conditions of Theorem 1. It can be seen that 

under the conditions given in Theorem 1, the positive 

equilibrium point E̅ =
(9.99394x105, 6.32449x105, 1.03287x106) of system 

(6) is local asymptotic stable (see Figure 1a), where blue, 

red and black graphs represent M(n), N(n) and 

Z(n) population densities respectively. 

 

Theorem 2. Let the conditions of Theorem 1 hold. 

Moreover, assume that r1– α1N(n) > 0 , 
r2 − βN(n)−d2 > 0 ,      βZ(n − 1) − d1 − α2M(n) < 0. 

 

If 
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r1K1M(n) < r1 − α1N(n) < ln(
2M̅ − M(n)

M(n)
), 

r2K2Z(n) < r2 − βN(n)−d2 < ln (
2Z̅ − Z(n)

Z(n)
),  

 

and M(n) < M̅,  N(n) > 2N̅,  Z(n) < Z̅ then the  positive 

equilibrium point E̅ is globally asymptotically stable. 

 

Proof. Let 

 

V(n) = [E(n) − E̅]2  , n = 0,1,2… 

 

is a Lyapunov function with the positive equilibrium 

point E̅ = (M̅ , N̅ , Z̅). The change along the solutions of 

the system is 

 

∆V(n) = V(n + 1) − V(n) 
             = {E(n + 1) − E(n)}{E(n + 1) + E(n) − 2E̅}. 
 

In addition, the change along the solutions of the first 

equation in system (6) is 

 

∆V1(n) = [M(n + 1) − M(n)][M(n + 1) +M(n) − 2M̅]. 
 

It can be seen that if r1K1M(n) < r1 − α1N(n), 

A1 < ln (
2M̅−M(n)

M(n)
) and M(n) < M̅ then ∆V1(n) < 0. 

Similarly, it can be shown that ∆V2(n) = [N(n + 1) −
N(n)][N(n + 1) + N(n) − 2N̅] < 0 and ∆V3(n) =
[Z(n + 1) − Z(n)][Z(n + 1) + Z(n) − 2Z̅] < 0. As a 

result, we obtain  ∆V(n) = (∆V1(n), ∆V2(n), ∆3V(n)) <
0. 

 

Example 2. In order to try the conditions of Theorem 2, 

initial conditions can be determined as M(1) = 4x105, 

N(1) = 1x105,  Z(1) = 1x105 and parameter values can 

be taken Example 1. Figure 1b shows that under the 

conditions given in Theorem 2 the positive equilibrium 

point is global asymptotic stable, where blue, red and 

black graphs represent M(n), N(n) and Z(n) population 

densities respectively. 

 

 

Figure 1. The iteration solution of 𝑀(𝑛), 𝑁(𝑛) and 𝑍(𝑛) for 

different initial conditions. 

3. Neimark-Sacker bifurcation analysis 

In this section, we try to determine Neimark-Sacker 

bifurcation point of the system by using Schur-Cohn 

criterion that is given as follows. 
  
Theorem A ([28]). A pair of complex conjugate roots of 

 

p(𝜆) = 𝜆3 + p2𝜆
2 + p1𝜆 + p0                                         (14) 

 

lie on the unit circle and the other roots of p(𝜆) all lie 

inside the unit circle if and only if 

 

(a) p(1) = 1 + p2 + p1 + p0 > 0 and  

 

      p(−1) = 1 − p2 + p1 − p0 > 0, 
 

(b)  D2
+ = 1 + p1 − p0

2 − p0p2 > 0, 
 

(c)  D2
− = 1 − p1 − p0

2 + p0p2 = 0. 
 

If we rearranged the equation (10), characteristic equation 

can be obtained as the form (14) where  

 

p2 = −1− e
−K1r1M̅ − e−K2r2Z̅, 

 

p1 = e
−K1r1M̅ + e−K2r2Z̅ + e−K1r1M̅−K2r2Z̅ 

        +
β2

K2r2
N̅(1 − e−K2r2Z̅) −

α1α2
K1r1

N̅(1 − e−K1r1M̅), 

 

p0 = −
β2

K2r2
N̅e−K1r1M̅(1 − e−K2r2Z̅) − e−K1r1M̅−K2r2Z̅ 

          + 
α1α2
K1r1

N̅e−K2r2Z̅(1 − e−K1r1M̅). 

 

By using these results, bifurcation point can be 

determined as the following example. 

 

Example 3. Solving equation c of Theorem A, we get 

β̅ = 2.94043x10−7. Moreover, we have also p(1) =
0.000386701 > 0, p(−1) = 7.47232 > 0 ve  D2

+ =
0.488065 > 0  for this point. Figure 2 shows that β̅ is the 

Neimark-Sacker bifurcation point of the system with the 

eigenvalues λ1 = 0.869464 and |λ2,3| = |0.998519 ±

0.0544078i| = 1 where blue, red and black graphs 

represent M(n), N(n) and Z(n) population densities 

respectively. 
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Figure 2. Neimark-Sacker bifurcation of system (6) for �̅� =
2.94043𝑥10−7, where 𝑀(1) = 1.5𝑥106, 𝑁(1) = 5𝑥105, 

 𝑍(1) = 1𝑥105. The other parameters are taken Example 1. 

 

As seen in Figure 2, a stable limit cycle occurs at the 

bifurcation point β̅ as a result of Neimark-Sacker 

bifurcation. This result leads to stable periodic solutions 

around the positive equilibrium point. Determining 

bifurcation point is very important issue for the control of 

the tumor cell population. After the bifurcation point, 

tumor and immune system will exhibit unstable 

oscillatory behavior, thus resulting uncontrolled tumor 

growth. The solutions of the system at the point β =
1.14043x10−7 < β̅ can be seen in Figure 3, where the 

system has damped oscillation and the positive 

equilibrium point is local asymptotic stable. At the point 

β = 4.34043x10−7 > β̅, system (6) has unstable 

oscillation and the positive equilibrium point is unstable 

(see Figure 4).  

 

Finally, we can compare our theoretical results to the 

system (4) that is given in [11]. In study [11], a hopf 

bifurcation that is continuous case of Neimark-Sacker 

bifurcation is occurred around positive equilibrium point 

through stable limit cycle. Thus, we can say that 

bifurcation results of system (6) and system (4) are 

similar. 

 

 

Figure 3. The iteration solution of the system for 𝛽 =
1.14043𝑥10−7. The other parameters and initial conditions 

are the same as Figure 2. 

 

 
Figure 4. The iteration solution of the system for 

4.34043𝑥10−7. The other parameters and initial conditions 

are the same as Figure 2. 
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