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ABSTRACT   

Within this research, The problem of scheduling jobs on a single machine is the subject of study to 

minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-

criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time 

(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +

𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address 

the research problems, and some rules provide efficient (optimal) solutions to these problems. It has 

also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an efficient solution to the 

problem (∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥). Because these problems are NP-hard problems so it is difficult to 

determine the efficient (optimal) solution set for these problems so some special cases are shown 

and proven which find some efficient (optimal) solutions suitable for the discussed problem, and 

highlight the significance of the Dominance Rule (DR), which can be applied to this problem to 

enhance efficient solutions. 
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1. Introduction 

The scheduling problem, an important subject (topic) for operations research (OR), is the focus of this paper. It 

has the following definition: there are a specified number of jobs, n, each involving one or more processes, and 

must be scheduled on one or more machines during a predetermined period to minimize the specified objective 

function [1]. It has also been defined as, it is putting things (lectures, vehicles, people, tasks, jobs, etc.) into a 

pattern in time and space so that conditions are met and specific goals are achieved [2]. It also represents the 

problem of allocating specific functions to a group of machines at the right time under certain constraints [3]. 

Up until the late 1980s, mainstream research concentrated on a certain single objective problem. When more 

than one objective (criteria) is needed, scheduling difficulties become more and more complicated in model and 

solving. It is frequently implausible that different objectives will be best served by the same set of decision 

variables [4]. As a result, a trade-off exists between the multi-objectives. Multi-objective scheduling problems 

are the term used to describe this type of problem (referred to as multi-objective scheduling problems) [3]. A 

set of Pareto optimal solutions (Efficient solutions), rather than a single optimal solution, are established using 

https://creativecommons.org/licenses/by/4.0/
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multi-criteria optimization based on competing objective functions. This collection includes one (or more) 

solutions that no other better solution (another solution is preferable) with respect to objective functions.  

The most important literature survey for the last ten years is that of Doha in 2012[5], which discussed the multi-

criteria scheduling problems which are studied on a single machine to come up with a set of efficient solutions 

to the general problems 1// 𝐹(∑𝐶𝑗, ∑𝑉𝑗), 1// 𝐹(∑𝐶𝑗, ∑𝑈𝑗) and others. Ibrahim in (2022) [6]studied the multi-

objective problem, which is the, 1// ∑ (𝐸𝑗 + 𝑇𝑗 + 𝐶𝑗 + 𝑈𝑗 + 𝑉𝑗)
𝑛
=1 , 1// ∑ (𝛼𝐽𝐸𝑗 + 𝛽𝑗𝑇𝑗 + 𝜃𝑗𝐶𝑗 + 𝛾𝑗𝑈𝑗 +𝜔𝑗𝑉𝑗)

𝑛
=1 , 

1/ 𝑆𝑓/ ∑ (𝛼𝑗𝑓𝐸𝑗𝑓 + 𝛽𝑗𝑓𝑇𝑗𝑓 + 𝜃𝑗𝑓𝐶𝑗𝑓 + 𝛾𝑗𝑓𝑈𝑗𝑓 +𝜔𝑗𝑓𝑉𝑗𝑓)
𝑛
=1 , also they suggested an Upper Bound (UB) and a 

Lower Boundary (LB) to be used in Branch And Bound (BAB) method. Ahmed in 2022 [7] studied the multi-

criteria(∑𝑪𝒋 , 𝑻𝒎𝒂𝒙, 𝑹𝑳)and multi-objective function (∑𝑪𝒋 + 𝑻𝒎𝒂𝒙 + 𝑹𝑳)and found the optimal solution by 

using BAB method with and without DR then use some heuristic methods. Hassan et al in 2022 [8] introduced 

a heuristic algorithm to reduce the (∑𝑪𝒋 + 𝑬𝒎𝒂𝒙 + 𝑻𝒎𝒂𝒙) in just one machine scheduling.  

 This paper displays the tri-criteria scheduling problems and begins with some basic scheduling concepts of 

multi-criteria problems, and basic rules are given in section (1). Section (2), establishes a mathematical model 

for problem 1//𝐹(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) and sub-problem 1/ /∑𝐶𝑗 +∑𝑉𝑗 + 𝐸𝑚𝑎𝑥, explains the relationship between 

them, the Dominance Rule is described and proves several rules, and proves special cases for the problems that 

lead to the efficient and optimal solution to these problems in this section. In section (3) the significant results 

obtained in the previous section are presented and discussed. The conclusions and lists of future works are given 

in section (4). 

1.1. Some important notations  

In this paper, the following notations are used: 

N : The jobs set s. t. 𝑁 = {1,2, … , 𝑛}. 

n: Number of available jobs.  

𝒑𝒋 : The time of the job 𝑗′𝑠 processing.      

𝒅𝒋 : The Job's due date for 𝑗 (or the job’s due date), the date for finishing the jobs; job termination after 

the deadline is allowed but will result in a penalty. 

 𝒔𝒋 : The Job's slack time for 𝑗 s. t. 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗. 

𝑪𝒋 : The job's completion time for 𝑗, where 𝐶𝑗 = ∑ 𝑝𝑘
𝑗
𝑘=1 .  

𝑳𝒋 : The lateness time of jobs, s. t. 𝐿𝑗 = −(𝑑𝑗 − 𝐶𝑗) = 𝐶𝑗 − 𝑑𝑗 . 

𝑬𝒋 : The job's earliness time for 𝑗 , s. t. 𝐸𝑗 = 𝑚𝑎𝑥 {0,−𝐿𝑗} . 

𝑻𝒋 : The job 𝑗′s tardiness, s. t. 𝑇𝑗 = 𝑚𝑎𝑥 {0, 𝐿𝑗} . 

𝑽𝒋 ∶  A late work of a job 𝑗, s. t. 𝑉𝑗 = 𝑚𝑖𝑛 {𝑇𝑗, 𝑝𝑗} =  𝑚𝑖𝑛{𝐶𝑗 − 𝑑𝑗 , 𝑝𝑗}. 

∑𝑪𝒋 ∶ Total completion time. 

∑𝑽𝒋 : Total Late work. 

𝑬𝒎𝒂𝒙   : Maximum earliness where 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝑁{𝐸𝑗}. 

Shortest processing time (SPT): Jobs are Sequencing in non-decreasing order of the processing times pj 

(i. e. p1 ≤ p2 ≤ ⋯ ≤ pn), this rule is well known to solve ∑Cj for problem 1// ∑Cj (Smith 1956)[9] . 

Earliest due date (EDD): Jobs are sequenced in non-decreasing order of their due dates dj(i. e. d1 ≤ d2 ≤ ⋯ ≤

dn), this rule is used to solve the problem 1// Tmax [10]. 

Minimum Slack Time (MST): Jobs are sequenced in non-decreasing order of their slack time sj = dj − pj 

(i. e. s1 ≤ s2 ≤ ⋯ ≤ sn). To minimize Emax  using this rule  (Hoogeveen 1990) [11] . 
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EFSO: Efficient solution. EFSQ: Efficient sequence. 

OPSO: Optimal solution.  OPSE: Optimal sequence.    

1.2. Machine Scheduling Problem (MSP) 

This paper needs some basic definitions and theories:  [12],[13],[14] 

Definition (1.2.1) Objective Function[12]: The objective function of an MSP is one that may be either 

minimized or maximized under all possible constraints. 

Definition (1.2.2) Feasible Schedule (FS)[13]: A schedule is considered feasible if it satisfies several 

conditions associated with a particular type of problem and two general constraints. 

Definition (1.2.3) Efficient Solution(EFSO)[8]: A schedule 𝛼∗ is a feasible schedule (FS) known as “Pareto 

optimal” or “non-dominated” If there is absolutely no a feasible schedule (FS) 𝛼, then the list of schedules that 

are feasible with relation to the criteria  𝑓, 𝑔, and ℎ such that 𝑓(𝛼) ≤ 𝑓(𝛼∗) , 𝑔(𝛼) ≤ 𝑔(𝛼∗) and ℎ(𝛼) ≤ ℎ(𝛼∗), 
are satisfied for at least one of the inequalities. 

Definition (1.2.4)[14][15]: The solution, which is impossible (that cannot be) to create and improve without 

worsening the other objectives is referred to as an " optimize" in a multi-criteria decision–making problem. 

Definition (1.2.5)[14]: The 𝛔∗ the schedule is  considered to be optimal if there is no other schedule σ satisfying 

𝑓𝑗(𝜎) ≤ 𝑓𝑗(𝜎
∗), 𝑗 = 1,… , 𝑘 ( 𝑘: number of criteria), assuming strict inequality for at least one of the 

aforementioned conditions. If not, then 𝜎 is considered to be dominant over 𝜎∗.  

Definition(1.2.6) [16]: The graph 𝐺 represents a finite number of nodes or vertices 𝑉 and a finite number of 

edge, connecting two vertices, and the edge connecting the vertex to itself is called the loop . 

Definition(1.2.7)  [16]: If 𝑛 vertices make up a graph called 𝐺, then 𝐴(𝐺) = [𝑎𝑖𝑗] be the matrix (which is called 

adjacency matrix), whose 𝑖𝑡ℎand 𝑗𝑡ℎ element is 1 if there is at least one edge between two vertices 𝑣1 and 𝑣2 

and zero otherwise , 𝑎𝑖𝑗 = {

0, if 𝑖 = 𝑗 or 𝑖 ↛ 𝑗    
1, if 𝑖 → 𝑗                  
𝑎𝑖𝑗 , otherowise     

 . 

2. Method 

This section is dedicated to studying the mathematical model proposed to address the research problem 

1//𝐹(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥)  and sub-problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥  . In addition, determine the relationship 

between the problem 1//𝐹(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥) and the sub-problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥  . Dominance Rules 

have been used to indicate whether a specific node can be neglected to determine an efficient solution to the 

proposed  problem. Also in this part, some special cases of problems 1// ∑𝐶𝑗 +∑𝑉𝑗 + 𝐸𝑚𝑎𝑥  and 1// ∑𝐶𝑗 +

∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 are proved, leading to efficient and optimal solutions to these problems, respectively. 

2.1. Mathematical formulation of the suggested problem 

In this section, the three-criteria scheduling problem to be studied will be described. Let the number of jobs 

available at time 0 be represented by 𝑁 = {1,2,… , 𝑛}, (i. e, 𝑟𝑗 = 0 ∀𝑗 ∈ 𝑁) and need processing on just one 

machine. There is a due date 𝑑𝑗 and a processing time 𝑝𝑗 for every job 𝑗, given a sequence of jobs 𝜎 =

(𝜎1, 𝜎2, … , 𝜎𝑛), generate the earliest completion time 𝐶𝑗 = ∑ 𝑝𝜎𝑘
𝑗
𝑘=1 , the 𝑇𝑗 = 𝑚𝑎𝑥 {𝐶𝑗 −

𝑑𝜎𝑗 , 0}  job 𝑗
′s tardiness, the earliness of job 𝑗, 𝐸𝑗 = 𝑚𝑎𝑥 {𝑑𝜎𝑗 − 𝐶𝑗, 0}, and 𝑉𝑗 =

𝑚𝑖𝑛 {𝑇𝑗, 𝑝𝜎𝑗} the job 𝑗
′s late work.  

The aim of this problem is finding a schedule σ ∈ 𝒮 (where 𝒮 is the set of all possible feasible schedules) that 

minimizes the tri-criteria (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), which is denoted by (𝑇𝐶𝑇𝑉𝐸), can be mathematically formulated 

as shown below: 
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𝐹𝐶𝑉𝐸 = 𝑀𝑖𝑛(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥). 

Subject to 

𝐶𝑗 ≥ 𝑝𝜎𝑗 ,                                               𝑗 = 1,… , 𝑛    

𝐶𝑗 = ∑ 𝑝𝜎𝑘
𝑗−1
𝑘=1 + 𝑝𝜎𝑗,                       𝑗 = 1,2, … , 𝑛     

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎𝑗 ,                                    𝑗 = 1,… , 𝑛       

𝐸𝑗 ≥ 𝑑𝜎𝑗 − 𝐶𝑗,                                    𝑗 = 1,… , 𝑛      

𝑉𝑗 = 𝑚𝑖𝑛 {𝑇𝑗, 𝑝𝜎𝑗} ,                          𝑗 = 1,2, . . , 𝑛     

𝑉𝑗 ≥ 0, 𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,           𝑗 = 1,… , 𝑛        }
 
 
 

 
 
 

                                                                                      (𝑇𝐶𝑇𝑉𝐸).  

The 𝜎𝑗  indicates where job 𝑗 falls in the ordering σ and 𝒮 represents the collection of all schedules. Finding all 

efficient solutions to solve the problem (𝑇𝐶𝑇𝑉𝐸) is challenging, since it’s an NP-hard problem (because the 

problem 1// ∑ 𝑉𝑗
𝑛
𝑗=1  is NP-hard [1]). 

Proposition (1): There is an efficient sequence for the problem 1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), which satisfies the SPT 

rule. 

Proof: (a) first, assume that  𝑝𝑖 ≠ 𝑝𝑗 for all 𝑖, 𝑗. The unique sequence SPT,  (𝑆𝑃𝑇∗) provides the bare minimum 

of  ∑𝐶𝑗. As a result, no sequence exists 𝛿 ≠ 𝑆𝑃𝑇∗ s.t. 

 ∑𝐶𝑗(𝛿) ≤ ∑𝐶𝑗 (𝑆𝑃𝑇
∗), ∑𝑉𝑗 (𝛿) ≤ ∑𝑉𝑗 (𝑆𝑃𝑇

∗), and 𝐸𝑚𝑎𝑥(𝛿) ≤

𝐸𝑚𝑎𝑥(𝑆𝑃𝑇
∗)                                                 (1)                                                                                     

The presence of at least one of the strict inequalities. 

 (b) If more than one SPT sequence exists in some (jobs with equal processing times), let 𝑆𝑃𝑇∗ be a sequence 

satisfying the SPT rule and such that jobs with equal processing times are in EDD (where EDD and MST 

sequences are identical). If a set of jobs that are to be early or partially early is specified, then this EDD order 

minimized ∑𝑉𝑗. 

Note that if the event is several jobs at the same processing times, the due date is considered identical, or slack 

times, then 𝑆𝑃𝑇∗ is not unique. Show that each 𝑆𝑃𝑇∗ sequencing is an efficient, sequencing that does not satisfy 

the SPT rule which cannot dominate an 𝑆𝑃𝑇∗ sequencing by (1). If δ is an SPT sequence, it is not SPT* 

sequencing, because it cannot dominate 𝑆𝑃𝑇∗ because 

∑𝐶𝑗(𝛿) = ∑𝐶𝑗(𝑆𝑃𝑇
∗), ∑ 𝑉𝑗 (𝑆𝑃𝑇

∗) ≤ ∑𝑉𝑗 (𝛿) and 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇
∗) ≤ 𝐸𝑚𝑎𝑥(𝛿)                                              (2)   

 as a result of the EDD rule. Hence each one of the 𝑆𝑃𝑇∗ sequences are efficient. 

The preceding proposition (1) shows that the SPT rule is efficient for problem 1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) while the 

EDD rule does not give an efficient solution for the problem 1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) as demonstrated in the 

following example: 

Example (1): Let’s have the following MSP data with 𝑛 = 5: 

 Job1 Job2 Job3 Job4 Job5 

𝒑𝒋 2 5 7 5 8 

𝒅𝒋 6 9 8 11 14 

𝒔𝒋 4 4 1 6 6 
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A feasible schedule is provided by the SPT rule(1,2,4,3,5) and (1,4,2,3,5), hence (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) =

(67,16,4) from 𝑆𝑃𝑇∗ order (1,2,4,3,5) and (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) = (67,18,4)from SPT order (1,4,2,3,5), it is 

evident that in (it is obvious that in) 𝑆𝑃𝑇∗ order the jobs (2,4)with equal processing time are ordered in MST 

or EDD rule. But EDD rule (1,3,2,4,5) with (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) = (71,19,4) and MST rule (3,1,2,4,5) with 

(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) = (76,20,1) hence 𝑆𝑃𝑇∗  the order provides an efficient solution to the problem (𝑇𝐶𝑇𝑉𝐸). 

2.1.1. Sub-problem of (𝑻𝑪𝑻𝑽𝑬)   

The problem 1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) can deduce a sub-problem (𝑆𝑃),  that it minimizes 1// (∑𝑪𝒋 + ∑𝑽𝒋 +

𝑬𝒎𝒂𝒙).This problem is described as follows: 

Assume that σ is any schedule that can be expressed as follows for a certain schedule 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛): 

𝐹𝑆𝑃 = 𝑀𝑖𝑛(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥)               

subject to                                                     

𝐶𝑗 = ∑ 𝑝𝜎𝑘
𝑗
𝑘=1                                                𝑗 = 1,2,… , 𝑛

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜎𝑗                                           𝑗 = 2,3, … , 𝑛

𝐸𝑗 ≥ 𝑑𝜎𝑗 − 𝐶𝑗                                              𝑗 = 1,2, … , 𝑛 

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎𝑗                                              𝑗 = 1,2, … , 𝑛  

𝑉𝑗 = 𝑚𝑖𝑛 {𝑇𝑗, 𝑝𝜎𝑗}                                     𝑗 = 1,2, . . , 𝑛    

𝑉𝑗 ≥ 0,  𝐸𝑗 ≥ 0,  𝑇𝑗 ≥ 0                             𝑗 = 1,2,… , 𝑛   
                     }

 
 
 
 
 

 
 
 
 
 

                                                                                                 (𝑆𝑃)  

The objective of the NP-hard problem (𝑆𝑃) is to determine the order of jobs that need to be processed on a 

single machine in order to minimize the sum of total completion time, total late work, and the maximum 

earliness jobs.  

2.2. Dominance rules (DRs) for MSP 

Dominance Rules (DRs) are used efficiently in reducing the current sequences. DRs are used usually to indicate 

whether a certain node in a BAB method can be eliminated before calculating its (LB). These rules are been 

useful when a node has an (LB) less than the optimum solution and can be eliminated. When the nodes are 

dominated by others in the BAB procedure, DRs can be used also to cut these nodes. Such developments may 

heavily reduce the number of nodes in searching for an efficient solution. Where the DRs are also applicable to 

such problems [1]. 

Theorem (1): If 𝑝𝑖 ≤ 𝑝𝑘 and 𝑑𝑖 ≤ 𝑑𝑘 then there is an optimal schedule for the problem (𝑆𝑃) in which  the job 

𝑖 processing before job 𝑘 . 

Proof: Suppose there is a sequence 𝜗 =  𝜗1𝑖 𝑘 𝜗2 and let �́� =  𝜗1 𝑘𝑖 𝜗2 be a sequence obtained by 

interchanging the position of jobs 𝑖 and 𝑘. There are two cases for the sequence 𝜗 and �́� : 

First case: If 𝑝𝑖 ≤ 𝑝𝑘  and 𝑑𝑖 ≤ 𝑑𝑘 implies 𝑠𝑖 ≤ 𝑠𝑘 for every 𝑖 , 𝑘 = 1,2,… , 𝑛, from 𝑝𝑖 ≤ 𝑝𝑘 there are 

: ∑ 𝐶𝑘(𝜗)𝑘 ≤ ∑ 𝐶𝑘(�́�)𝑘  

From the condition of slack time 𝑠𝑖 ≤ 𝑠𝑘 , there are  𝐸𝑚𝑎𝑥 (𝜗) ≤ 𝐸𝑚𝑎𝑥 (�́�). From 𝑝𝑖 ≤ 𝑝𝑘 and 𝑑𝑖 ≤ 𝑑𝑘 , this 

means  ∑ 𝑉𝑘 𝑘 (𝜗) ≤  ∑ 𝑉𝑘𝑘 (�́� ). Hence, we have: 

(∑ 𝐶𝑘(𝜗)𝑘 + ∑ 𝑉𝑘 𝑘
(𝜗) +  𝐸𝑚𝑎𝑥  (𝜗)) ≤ (∑ 𝐶𝑘(�́�)𝑘 +∑ 𝑉𝑘𝑘 (�́� ) + 𝐸𝑚𝑎𝑥 (�́�)). 

Second case: If 𝑝𝑖 ≤ 𝑝𝑘 and 𝑑𝑖 ≤ 𝑑𝑘 implies 𝑠𝑖 > 𝑠𝑘  for every 𝑖 , 𝑘 =  1,2,… , 𝑛. From 𝑝𝑖 ≤ 𝑝𝑘 we have: 

∑ 𝐶𝑘(𝜗)𝑘 ≤ ∑ 𝐶𝑘(�́�)                                                                                                                                               (3)  𝑘   

Equation (3) is satisfied by the condition on processing times, and the addition in cost which is obtained from 

(3) is equal to 𝑝𝑘 − 𝑝𝑖  , this gives:  

∑ 𝐶𝑘(𝜗)𝑘 + 𝑃𝑘 − 𝑃𝑖 = ∑ 𝐶𝑘(�́�)                                                                                                                            (4) 𝑘                                                                                                           

The slack time's condition 𝑠𝑖 > 𝑠𝑘 implies  𝐸𝑚𝑎𝑥 (𝜗) > 𝐸𝑚𝑎𝑥 (�́�). Also, the additional cost 𝑠𝑖 − 𝑠𝑘 gives: 
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 𝐸𝑚𝑎𝑥 (�́�) + 𝑠𝑖 − 𝑠𝑘 = 𝐸𝑚𝑎𝑥  (𝜗)                                                                                                                           (5)  

 𝑠𝑖 − 𝑠𝑘 = (𝑑𝑖 − 𝑝𝑖) − (𝑑𝑘 − 𝑝𝑘) = (𝑑𝑖 − 𝑑𝑘) + (𝑝𝑘 − 𝑝𝑖) ≤ 𝑝𝑘 − 𝑝𝑖                                                       (6)  

Adding 𝐸𝑚𝑎𝑥 (�́�) to both sides of (6) we have: 

 𝐸𝑚𝑎𝑥 (�́�) + 𝑠𝑖 − 𝑠𝑘 ≤ 𝐸𝑚𝑎𝑥  (�́�) + 𝑝𝑘 − 𝑝𝑖,  and from (5) we have  

 𝐸𝑚𝑎𝑥 (𝜗) ≤ 𝐸𝑚𝑎𝑥 (�́�) + 𝑝𝑘 − 𝑝𝑖                                                                                                                          (7)        

Adding ∑ 𝐶𝑘(𝜗)𝑘 to both sides of (7) and by (4) we have 

 ∑ 𝐶𝑘𝑘 (𝜗) + 𝐸𝑘(𝜗) ≤ ∑ 𝐶𝑘𝑘 (�́�) + 𝐸𝑚𝑎𝑥(�́�)                                                                                                    (8)                                                                                    

From the conditions 𝑝𝑖 ≤ 𝑝𝑘 and 𝑑𝑖 ≤ 𝑑𝑘 we have ∑ 𝑉𝑘𝑘 (𝜗) ≤ ∑ 𝑉𝑘𝑘 (�́�). By adding this result to relation (8): 

 (∑ 𝐶𝑘(𝜗)𝑘 + ∑ 𝑉𝑘 𝑘
(𝜗) + 𝐸𝑚𝑎𝑥 (𝜗)) ≤ (∑ 𝐶𝑘(�́�)𝑘 + ∑ 𝑉𝑘𝑘 (�́� ) + 𝐸𝑚𝑎𝑥 (�́�)). Hence 𝜗 is better than the 

sequence �́� in the two cases and a job 𝑖 proceed job 𝑘 in the optimal solution. 

Example (2): Let's use MSP with 6 jobs and the following processing time and due date: 

 

 𝒋𝒐𝒃𝟏 𝒋𝒐𝒃𝟐 𝒋𝒐𝒃𝟑 𝒋𝒐𝒃𝟒 𝒋𝒐𝒃𝟓 𝒋𝒐𝒃𝟔 

𝒑𝒋 1 8 10 4 10 9 

𝒅𝒋 14 28 27 23 12 28 

𝒔𝒋 13 20 17 19 3 19 

 

The DRs by using theorem (1) is illustrated in Figure 1. 

 

 
 

Figure 1. DR is shown in example (2). 

Notice that there are (9) DRs: 1→2, 1→ 3 ,1→4, 1→6, 2→ 6, 4→2, 4→ 3, 4→ 6,5→3. with (6) potential 

sequences some (or all ) are governed by the aforementioned DRs listed in Table 1. The adjacency matrix 𝐴 is 

as followings: 

𝐴(𝐺) =

[
 
 
 
 
 
0 1 1
0 0 𝑎23
0 𝑎32 0

1 𝑎15 1
0 𝑎25 1
0 0 𝑎36

0 1 1
𝑎51 𝑎52 1
0 0 𝑎63

0 𝑎45 1
𝑎54 0 𝑎56
0 𝑎65 0 ]

 
 
 
 
 

 , where 𝑎𝑗𝑖 = {
1, if 𝑎𝑖𝑗 = 0    

0, if 𝑎𝑖𝑗 = 1     
. 

Table I. The potential efficient sequences are subject to DR in example (2). 

 EF.SE. W. DR (𝑇𝐶𝑇𝑉𝐸) (𝑆𝑃) 

Seq 1 2 3 4 5 6 (∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) ∑𝐶𝑗 +∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 

1 5 1 4 3 2 6 (136,14,8) 158 

2 5 1 4 2 3 6 (134,15,8) 157 

3 1 5 4 3 2 6 (127,14,13) 154 

4 1 5 4 2 3 6 (125,15,13) 153 
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5 1 4 5 3 2 6 (121,17,18) 156 

6 1 4 5 2 3 6 (119,18,18) 155 

Where EF.SE. W. DR: Efficient Sequences with DR. 

The sequences (1- 6) provide the problem (𝑇𝐶𝑇𝑉𝐸) an efficient value, as can be shown in table (I), observe 

that sequence number (4) in table (I) provides an optimal value for the problem (SP).  

Proposition (2): Each optimal solution for (SP) is an efficient solution to the problem (𝑇𝐶𝑇𝑉𝐸). 

Proof: let 𝛽 be an optimal schedule for (SP). Suppose that 𝛽 gives no efficient solution for the problem 
(𝑇𝐶𝑇𝑉𝐸), then there is an efficient schedule say 𝜋 for (𝑇𝐶𝑇𝑉𝐸)-problem such that:  

∑𝐶𝑗(𝜋) ≤ ∑𝐶𝑗(𝛽) and ∑𝑉𝑗(𝜋) ≤ ∑𝑉𝑗(𝛽) and 𝐸𝑚𝑎𝑥(𝜋) ≤ 𝐸𝑚𝑎𝑥(𝛽). 

At least one in which the inequality is strict. This means that: 

∑𝐶𝑗(𝜋) + ∑𝑉𝑗(𝜋) + 𝐸𝑚𝑎𝑥(𝜋) ≤  ∑𝐶𝑗(𝛽) + ∑𝑉𝑗(𝛽) + 𝐸𝑚𝑎𝑥(𝛽), then 𝜋 is a schedule that gives the best 

solution than 𝛽 for (𝑆𝑃), but 𝛽 is an efficient schedule, and that is a contradiction with our assumption, then 𝛽 

must give an efficient solution for (𝑇𝐶𝑇𝑉𝐸)-problem . 

2.5.  Special cases for problems (𝑻𝑪𝑻𝑽𝑬) and (𝑺𝑷) 

Some special cases of problems (𝑇𝐶𝑇𝑉𝐸) and (𝑆𝑃) in this section results in efficient and optimal solutions 

respectively are introduced. 

2.5.1. Special cases for (𝑻𝑪𝑻𝑽𝑬)  

This part studies various special cases of the (𝑇𝐶𝑇𝑉𝐸) the problem that must have an efficient solution: 

Case (2.5.1.1): If 𝑝1 = 𝑑1 and 𝑝𝑗 = 𝑑𝑗 − 𝑑𝑗−1 , ∀𝑗, ( 𝑗 = 2,3, … , 𝑛), then SPT schedule 𝜎 gives an efficient 

solution for the problem (𝑇𝐶𝑇𝑉𝐸). 

Proof: Since 𝑝𝜎1 = 𝑑𝜎1  this mean 𝐶1 = 𝑝𝜎1 = 𝑑𝜎1 but  𝑝𝜎2 = 𝑑𝜎2 − 𝑑𝜎1 = 𝑑𝜎2 − 𝑝𝜎1 and 𝐶2 = 𝑝𝜎1 + 𝑝𝜎2 =

𝑝𝜎1 + 𝑑𝜎2 − 𝑝𝜎1 = 𝑑2 then 𝐶2 = 𝑑𝜎2 and so on  𝐶𝑗 = 𝑑𝜎𝑗  for 𝑗 = 1,2, . . , 𝑛. Since 𝐶𝑗 = 𝑑𝜎𝑗  ∀ 𝑗 ∈ 𝜎, this means 

there are no late and early jobs s. t. 𝐸𝑗 = 𝑇𝑗 = 0 then  𝐸𝑚𝑎𝑥 = 𝑉𝑗 = ∑𝑗=1
𝑛  𝑉𝑗 = 0 in 𝜎, thus the problem 1 // 

𝐹(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) lowered to 1 // ∑𝐶𝑗. 

However, the SPT rule solves this problem, Hence 𝜎  gives an efficient solution for the problem (𝑇𝐶𝑇𝑉𝐸) 
provided that  𝑝1 = 𝑑1and 𝑝𝑗 = 𝑑𝑗 − 𝑑𝑗−1 , ∀𝑗, ( 𝑗 = 2,3, … , 𝑛) .  

Case (2.5.1.2): Any schedule 𝛼 gives EFSO for (𝑇𝐶𝑇𝑉𝐸), if 𝐶𝑗 = 𝑑𝑗 and 𝑝𝑗 = 𝑝 ∀ 𝑗 in 𝛼 . 

Proof: Since 𝑑𝑗 = 𝑗𝑝 = 𝐶𝑗 , for all 𝑗 in 𝛼 this means there are no tardiness and earliness jobs s. t. 𝐸𝑗 = 𝑇𝑗 =

0, ∀𝑗 ∈ 𝜎 then 𝐸𝑚𝑎𝑥 = ∑𝑉𝑗 = 0. Then the problem 1// 𝐹(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// ∑𝐶𝑗. But ∑ 𝐶𝑗
𝑛
𝑗=1 =

∑ 𝑗𝑝 = 𝑝 (
𝑛2+𝑛

2
)𝑛

𝑗=1  which is constant, hence any schedule gives an efficient solution for (𝑇𝐶𝑇𝑉𝐸).  

Case (2.5.1.3): If 𝑘𝑝𝑗 = 𝑑𝑗  for all 2 ≤ 𝑘 then the SPT schedule is an EFSO for (𝑇𝐶𝑇𝑉𝐸). 

Proof:  Since 𝑑𝑗 = 𝑘𝑝𝑗  then 𝑠𝑗 = 𝑘𝑝𝑗 − 𝑝𝑗 = (𝑘 − 1)𝑝𝑗, it will be the slack time for the job 𝑗, (𝑗 = 1,… , 𝑛). 

Since the SPT schedule gives the jobs are processed in non-decreasing order.  

i. e. 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛. Since (1 − 𝑘) is a positive constant, then (1 − 𝑘)𝑝1 ≥ (1 − 𝑘)𝑝2 ≥ ⋯ ≥ (1 − 𝑘)𝑝𝑛, 

then 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛. which is MST order, since MST order gives efficient value for the maximum earliness. 

Hence SPT is efficient for (𝑇𝐶𝑇𝑉𝐸) . 

Case (2.5.1.4): If  𝐶𝑗 ≤ 𝑑𝜎𝑗  ∀𝑗, then sequence 𝜎 = 𝑆𝑃𝑇 = 𝑀𝑆𝑇 gives an efficient solution for (𝑇𝐶𝑇𝑉𝐸). 
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Proof: Since 𝐶𝑗 ≤ 𝑑𝜎𝑗   for all 𝑗, this means all jobs are early s. t. 𝑇𝑗 = 𝑉𝑗 = ∑𝑉𝑗 = 0  for all 𝑗, hence problem 

1 ∕∕ (∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// (∑𝐶𝑗 , 𝐸𝑚𝑎𝑥), then σ gives an efficient solution for (𝑇𝐶𝑇𝑉𝐸) since the 

SPT rule minimum ∑𝐶𝑗 and MST rule minimum 𝐸𝑚𝑎𝑥 . 

Case (2.5.1.5): If 𝑝1 ≤. . . ≤ 𝑝𝑛 and 𝑠1 ≤. . . ≤ 𝑠𝑛 then EDD schedule 𝛼 gives an efficient solution for (𝑇𝐶𝑇𝑉𝐸) 
. 

Proof: Since 𝑝1 ≤ ⋯ ≤ 𝑝𝑛(which is SPT order) then ∑ 𝐶𝑗
𝑛
𝑗=1  is the minimum value, and at the same time 𝑠1 ≤

⋯ ≤ 𝑠𝑛  (which is MST order) hence 𝐸𝑚𝑎𝑥  is minimum. But 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 and 𝑑1 − 𝑝1 ≤. . . ≤ 𝑑𝑛 − 𝑝𝑛 then 

 𝑑1 − 𝑝1 + 𝑝1 ≤. . . ≤ 𝑑𝑛 − 𝑝𝑛 + 𝑝𝑛 (since 𝑝1 ≤ ⋯ ≤ 𝑝𝑛), hence 𝑑1 ≤. . . ≤ 𝑑𝑛 (which is EDD order), since 

EDD order gives efficient value for the ∑ 𝑇𝑗
𝑛
𝑗=1  then ∑ 𝑉𝑗

𝑛
𝑗=1  are minimum. Hence 𝛼 an efficient solution for the 

third criterion ∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥 . 

Case (2.5.1.6): If 𝑝𝑗 = 𝑝 for all 𝑗 then the sequence obtained by MST rule gives an EFSO for (𝑇𝐶𝑇𝑉𝐸) . 

Proof: Since  𝑝 = 𝑝𝑗  and 𝐶𝑗 = 𝑗𝑝  ∀𝑗, hence ∑ 𝐶𝑗 = 𝑝(
𝑛2+𝑛

2
), 𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗, 𝑝𝑗} = 

𝑚𝑖𝑛{𝑚𝑎𝑥{𝐿𝑗, 0}, 𝑝} = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑗𝑝 − 𝑑𝑗, 0}, 𝑝} and 𝐸𝑗 = 𝑚𝑎𝑥{−𝐿𝑗, 0} = 𝑚𝑎𝑥{𝑑𝑗 − 𝑗𝑝, 0}. 

So, there are two cases: 

a) If 𝑑𝑗 = 𝑗𝑝 = 𝐶𝑗, ∀𝑗 (this means there are no tardy jobs and early jobs 𝑠. 𝑡. 𝑇𝑗  =  𝐸𝑗 = 0, ∀𝑗 ∈

𝜎 ) then 𝑉𝑗 = 0 since 𝑇𝑗 = 0. This problem 1 ∕/(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// ∑ 𝐶𝑗 but ∑𝐶𝑗 =

𝑝 (
𝑛(𝑛+1)

2
), which is constant this means all schedules give a uniquely efficient solution for any 

schedule 𝜎. 

b) If 𝑑𝑗 > 𝑗𝑝 = 𝐶𝑗 (this means all jobs are early s. t.  T𝑗 = 0 for all 𝑗 , then 𝑉𝑗 = 0 and 𝐸𝑗 =

𝑚𝑎𝑥{−𝐿𝑗, 0} where −𝐿𝑗 = 𝑑𝑗 − 𝑗𝑝, 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑑𝑗 − 𝑗𝑝}. Hence problem 

1//(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// (∑Cj , 𝐸𝑚𝑎𝑥) =1// (𝑝 (
𝑛2+𝑛

2
) ,𝑚𝑎𝑥{𝑑𝑗 − 𝑗𝑝}). Then there is an 

EFSQ in the bi-criteria which fulfills MST rule.  

Case (2.5.1.7): If 𝑑𝑗 = 𝑑 ∀ 𝑗 then the sequence obtained by the SPT rule gives an EFSO for the problem 

(𝑇𝐶𝑇𝑉𝐸). 

Proof: For all 𝑗, 𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗, 𝑃𝑗} = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝐿𝑗, 0}, 𝑝𝑗} = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝐶𝑗 − 𝑑, 0}, 𝑝𝑗} 

and 𝐸𝑗 = 𝑚𝑎𝑥{𝑑 − 𝐶𝑗, 0}, since 𝑑𝑗 = 𝑑. So, there are two cases: 

a) If 𝑑𝑗 = 𝑑 = 𝑝𝑗  then 𝐶𝑗 = 𝑑 (
𝑛(𝑛+1)

2
) and 𝑑 ≤ 𝐶𝑗, ∀ 𝑗 (this means all jobs are late s. t. 𝐸𝑗 = 0 ∀𝑗) and 

𝑉𝑗 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑗𝑑 − 𝑑, 0}, 𝑑}, hence ∑ 𝑉𝑗 = ∑ 𝑝𝑗 − 𝑑 = 𝑑(𝑛 − 1)
𝑛
𝑗=1

𝑛
𝑗=1 . The problem 1 ∕∕

(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// (∑𝐶𝑗 , ∑𝑉𝑗) = (𝑑 (
𝑛2+𝑛

2
) , 𝑛𝑑 − 𝑑), which is constant this means all 

solutions an efficient solutions for any schedule 𝜎. 

b) If 𝑑𝑗 = 𝑑 > 𝑝𝑗 for all 𝑗 then (1) If 𝑑 > 𝐶𝑗 (i.e., all jobs are early s. t. 𝑇𝑗 = 𝑉𝑗 = ∑𝑉𝑗 = 0 ), 

𝐸𝑗 = 𝑚𝑎𝑥{0,−𝐶𝑗 + 𝑑}, 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥{−𝐶𝑗 + 𝑑} = 𝑑 − 𝑝1, then the problem 1// (∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) 

 reduced to 1// (∑ 𝐶𝑗 , 𝐸𝑚𝑎𝑥), then there is an EFSQ in bi-criteria that fulfills the SPT rule.  (2) If 𝑑 < 𝐶𝑗 

(this means all jobs are late s. t. 𝐸𝑗 = 0 for all 𝑗) and 𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗, 𝑝𝑗} = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝐶𝑗 − 𝑑, 0}, 𝑝𝑗},  then 

problem 1 ∕∕ (∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥) reduced to 1// (∑𝐶𝑗 , ∑ 𝑉𝑗) = (∑𝐶𝑗 , ∑ 𝑝𝑗 − 𝑑), then there is an EFSQ in 

bi-criteria this complies with the SPT rule. 
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Case (2.5.1.8): If 𝑝𝑗 = 𝑝 and 𝑑𝑗 = 𝑑 where 𝑑 ≥ 𝑝 , ∀ 𝑗 in the schedule 𝛼, then any schedule 𝛼 gives an 

EFSQ for (𝑇𝐶𝑇𝑉𝐸).  

Proof: Since all processing times are identical for all 𝑗 in 𝛼, and the due date  for all jobs is also identical (i.e.,  

𝑝𝑗 = 𝑝 and 𝑑𝑗 = 𝑑 ∀ 𝑗 ) then  ∑𝑗=1
𝑛 𝐶𝑗 = 𝑝 (

𝑛2+𝑛

2
), 𝐸𝑗 = 𝑚𝑎𝑥{−𝐿𝑗, 0} = 𝑚𝑎𝑥{𝑑 − 𝑗𝑝, 0} , hence  𝐸𝑚𝑎𝑥 =

𝑚𝑎𝑥{𝑑 − 𝑗𝑝, 0} = 𝑑 − 𝑝 and 𝑉𝑗 = 𝑚𝑎𝑥{𝐿𝑗, 𝑝} = 𝑚𝑎𝑥{𝑚𝑎𝑥{𝑗𝑝 − 𝑑, 0}, 𝑝} , thus ∑ 𝑉𝑗 = ∑𝑝 − 𝑑 = 𝑛𝑝 − 𝑑. 

The problem 1 ∕∕ (∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) = 1// (𝑝 (
𝑛2+𝑛

2
) , 𝑛𝑝 − 𝑑, 𝑑 − 𝑝). Then any schedule is an efficient 

solution for the problem 1 // 𝐹(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) because the three quantities are constant. 

Case (2.5.1.9): If the three schedules 𝜎 = 𝑆𝑃𝑇 = 𝐸𝐷𝐷 = 𝑀𝑆𝑇, then this schedule gives a unique efficient 

solution for (𝑇𝐶𝑇𝑉𝐸). 

Proof: Since 𝐸𝑚𝑎𝑥 minimized by MST rule and since SPT gives 𝐸𝑚𝑎𝑥  (𝜎) = 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇), 𝑇𝑚𝑎𝑥  minimized by 

the EDD rule (well-known that 𝑇𝑚𝑎𝑥 is a lower bound for ∑ 𝑉𝜎𝑗  
𝑛
𝑗=1 , i. e. , 𝑇𝑚𝑎𝑥(𝐸𝐷𝐷) ≤ ∑ 𝑉𝜎𝑗  

𝑛
𝑗=1 ), hence if 

∑ 𝑇𝑗
𝑛
𝑗=1  is minimum, thus minimum ∑ 𝑉𝜎𝑗

𝑛
𝑗=1 . Then SPT schedule is efficient for the third criterion and hence 

SPT is efficient for the problem. To prove the uniqueness of  . Let 𝜋 be any schedule, then ∑𝐶𝑗 (𝜎 = 𝑆𝑃𝑇) ≤
∑𝐶𝑗 (𝜋) and 𝐸𝑚𝑎𝑥(𝜎 = 𝑀𝑆𝑇) ≤ 𝐸𝑚𝑎𝑥(𝜋) and since 𝑇𝑚𝑎𝑥 is lower bound for ∑𝑉𝑗, then 𝑇𝑚𝑎𝑥(𝜎 = 𝐸𝐷𝐷) ≤
∑𝑉𝑗 (𝜎) ≤ ∑𝑉𝑗 (𝜋), thus the solution  

(∑𝐶𝑗 (𝜎), ∑𝑉𝑗 (𝜎), 𝐸𝑚𝑎𝑥(𝜎)) dominates the solution (∑𝐶𝑗 (𝜋),∑𝑉𝑗 (𝜋), 𝐸𝑚𝑎𝑥(𝜋)) .  

2.5.2. Special cases for sub-problem (𝑺𝑷)  

This part studies various special cases of the (𝑆𝑃) the problem that must has an optimal solutions: 

Case (2.5.2.1): If 𝑝1 = 𝑑1𝑎𝑛𝑑 𝑝𝑗 = 𝑑𝑗 − 𝑑𝑗−1 , ∀𝑗, (𝑗 = 2,3,… , 𝑛), then SPT schedule 𝜎 gives an optimal 

solution to the 1 //  ∑ 𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 problem. 

Proof: The proof as in case (2.5.1.1) and the problem 1 // ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 = ∑𝐶𝑗.Hence 𝜎 = SPT schedule 

is an optimal efficient for 1 //  ∑ 𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 . 

Case (2.5.2.2): If 𝑝𝑗 = 𝑝 𝑎𝑛𝑑 𝑑𝑗 = 𝐶𝑗 for all 𝑗 in schedule 𝛼 then any schedule 𝛼 gives an OPSO for (𝑆𝑃). 

Proof: The proof as in case (2.5.1.2) and the problem 1 // ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 = ∑𝐶𝑗, ∑ 𝐶𝑗
𝑛
𝑗=1 = 𝑝 + 2𝑝 +

3𝑝+. . +𝑛𝑝 = 𝑝 (
𝑛2+𝑛

2
). But 𝑝 (

𝑛2+𝑛

2
) is constant, Hence SRT gives an OPSO for (𝑆𝑃) . 

Case (2.5.2.3): If 𝑘𝑝𝑗 = 𝑑𝑗  for all 𝑘 ≥ 2 then SPT schedule is an optimal solution for (𝑆𝑃). 

Proof: The proof as in case (2.5.1.3) . 

Case (2.5.2.4): If  𝐶𝑗 ≤ 𝑑𝜎𝑗  ∀𝑗, then 𝜎 with SPT and MST are (identical sequences) which gives an OPSO for 

(𝑆𝑃). 

Proof: The proof as in case (2.5.1.4) and the problem 1 // ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 reduced to 1// (∑𝐶𝑗 + 𝐸𝑚𝑎𝑥). 

Then σ gives an OPSO for (𝑆𝑃) . 

Case  (2.5.2.5): If 𝑝1 ≤. . . ≤ 𝑝𝑛 and 𝑠1 ≤. . . ≤ 𝑠𝑛  then EDD schedule 𝛼 gives an OPSO for (𝑆𝑃). 

Proof: The proof as in case (2.5.1.5) . 

Case (2.5.2.6): If 𝑝𝑗 = 𝑝 for all 𝑗 then the sequence obtained by MST rule gives an OPSO for (𝑆𝑃). 

Proof: The proof as in case (2.5.1.6) and  



 PEN Vol. 11, No. 3, May 2023, pp.46-57 

55 

∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 = {
𝑝 (

𝑛2+𝑛

2
) , if 𝑑𝑗 = 𝑗𝑝 = 𝐶𝑗 then 𝑉𝑗 = 𝐸𝑗 = 0                                                               

𝑝 (
𝑛2+𝑛

2
) + 𝑚𝑎𝑥{𝑑𝑗 − 𝑗𝑝}, if 𝑑𝑗 > 𝑗𝑝 = 𝐶𝑗 then 𝑇𝑗 = 0 = 𝑉𝑗                                

 . 

Case (2.5.2.7): If  𝑑𝑗 = 𝑑 for all 𝑗 then the sequence obtained by SPT rule gives an OPSO for (𝑆𝑃). 

Proof: The proof as in case (5.1.7) and  

∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 =

{
𝑑 (

𝑛2+𝑛

2
) + 𝑛𝑑 − 𝑑 = 𝑑 (

𝑛2+3𝑛−2

2
) , if 𝑑 = 𝑝𝑗  then 𝑑 ≤ 𝐶𝑗 , ∑𝑉𝑗 = ∑𝑝𝑗 − 𝑑 , 𝐸𝑗 = 0                       

∑ 𝐶𝑗 + ∑𝑝𝑗 − 𝑑 + 𝑑 − 𝑝1 = ∑𝐶𝑗 + ∑𝑝𝑗 − 𝑝1 , if 𝑑 > 𝑝𝑗  then ∑𝑉𝑗 = ∑𝑝𝑗 − 𝑑 , 𝐸𝑚𝑎𝑥 = 𝑑 − 𝑝1 
 .   

Case (2.5.2.8): If 𝑝𝑗 = 𝑝 , 𝑑𝑗 = 𝑑  for all 𝑗 in the schedule 𝛼, then any schedule 𝛼 given an OPSO for (𝑆𝑃) ( 

where 𝛼 is any schedule).   

Proof: The proof as in case (2.5.1.8) and ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 = 𝑝 (
𝑛2+𝑛

2
) + 𝑛𝑝 − 𝑑 − 𝑝 + 𝑑 = 𝑝 (

𝑛2+3𝑛−2

2
) . 

Case (2.5.2.9): If there are three schedules (SPT, EDD, and MST are identical), then this schedule gives an 

OPSO for (𝑆𝑃). 

Proof: The proof as in case (2.5.1.9) . 

By computing, the objective functions (𝐹𝐶𝑉𝐸) and (𝐹𝑆𝑃), respectively, Table 2 gives examples illustrating the 

special cases (2.5.1) and (2.5.2) of the (𝑇𝐶𝑇𝑉𝐸) and (𝑆𝑃) problems respectively, using 𝑛 = 6. 

Table 2. Example of  (𝑇𝐶𝑇𝑉𝐸)′𝑠  and (𝑆𝑃)′𝑠  special cases. 

𝑭𝑺𝑷 𝑭𝑪𝑽𝑬 Stipulations 

(Conditions) 

𝒑𝒋 & 𝒅𝒋 Case 

121 (121,0,0) 𝑝1 = 𝑑1and 𝑝𝑗 =

𝑑𝑗 − 𝑑𝑗−1 ,  

for  𝑗 = 2, . . , 𝑛  

𝑝𝑗 = 3,6,7,7,8,8 and 𝑑𝑗 = 3,9,16,23,31,39 .  (2.5.1.1) 

49 (49,0,0) 𝑝𝑗 = 1,2,2,4,4,5 and  𝑑𝑗 = 1,3,5,9,13,18  . (2.5.2.1) 

69 (69,0,0) 𝑝𝑗 = 𝑝 and 𝑑𝑗 =

𝑗𝑝 , ∀𝑗  

𝑝𝑗 = 3 and 𝑑𝑗 = 3,6,9,12,18,21.  (2.5.1.2) 

(2.5.2.2) 

43 (34,8,1) 𝑑𝑗 = 𝑘𝑝𝑗  , ∀𝑗  𝑝𝑗 = 2,1,3,2,1,3 and 𝑑𝑗 = 4,2,6,4,2,6  (2.5.1.3) 

(2.5.2.3) 

39 (35,0,4) 𝐶𝑗 ≤ 𝑑𝑗 , ∀𝑗  𝑝𝑗 = 4,3,2,2,1,1 and 𝑑𝑗 = 14,9,5,6,2,3   (2.5.1.4) 

(2.5.2.4) 

280 (222,56,2) 𝑝𝑖 ≤ 𝑝𝑗  and 𝑠𝑖 ≤ 𝑠𝑗 

for all  𝑗 . 

𝑝𝑗 = 6,10,12,14,14,18 and 𝑠𝑗 =

2,4,8,10,12,13.hence 𝑑𝑗 = 8,14,20,24,26,31. 

(2.5.1.5) 

(2.5.2.5) 

77 (63,14,0)  

𝑝𝑗 = 𝑝, ∀𝑗  

𝑝𝑗 = 3  and 𝑑𝑗 = 3,4,6,7,8,9 and 𝐶𝑗 ≥ 𝑑𝑗 (2.5.1.6) 

54 (42,0,12) 𝑝𝑗 = 2 and  𝑑𝑗 = 4,6,8,10,12,14 and 𝑑𝑗 ≥ 𝐶𝑗. (2.5.2.6) 

57 (45,12,0)  𝑝𝑗 = 3 and 𝑑𝑗 = 3 and  𝑑 ≤ 𝐶𝑗 for all j. (2.5.1.7) 
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86 (57,0,29) 𝑑𝑗 = 𝑑, ∀𝑗  𝑝𝑗 = 5,4,3,2,1,7 and 𝑑𝑗 = 30 and  𝑑 > 𝐶𝑗 .  (2.5.2.7) 

125 (105,18,2) 𝑝𝑗 = 𝑝 , 𝑑𝑗 =

𝑑 for all 𝑗  

 

𝑝 = 5 and  7 = 𝑑 and 𝑑 > 𝑝 .  (2.5.1.8) 

130 (105,25,0) 𝑝 = 5 = 𝑑 .  (2.5.2.8) 

98 (98,0,0) 𝑆𝑃𝑇 = 𝐸𝐷𝐷 =

𝑀𝑆𝑇  for all 𝑗  

𝑝𝑗 = 2,3,5,8,9,9 and   

 𝑑𝑗 = 2,5,10,18,27,36 .  

(2.5.1.9) 

(2.5.2.9) 

 

Where 𝐹𝐶𝑉𝐸 : is the multi-criteria of problem (𝑇𝐶𝑇𝑉𝐸), 𝐹𝑆𝑃 : is the multi-objective function of problem (𝑆𝑃). 

3.  Results and discussion 

In this section, the following results are formed in the light of the previous theories, propositions, and some 

cases based on them:  

• The SPT rule given an efficient solution for the problem 1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) and optimal solution 

for the problem //∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 ,this proved in proposition (1). 

• Every optimal solution for the problem 1//∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an efficient solution to the problem 

1//𝐹(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), this proved in proposition (2). 

• The SPT schedule 𝜎 gives an efficient solution for problem (𝑇𝐶𝑇𝑉𝐸) and optimal solution for 

problem 1//∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 , when one of the following conditions is fulfilled:   1)  𝑝1 =

𝑑1 and 𝑝𝑗 = 𝑑𝑗 − 𝑑𝑗−1 , ∀𝑗, ( 𝑗 = 2,3, … , 𝑛)         2) 𝑘𝑝𝑗 = 𝑑𝑗 for all 𝑘 ≥ 2         3) 𝑑𝑗 = 𝑑 ∀ 𝑗     . 

• Any schedule 𝛼 given an efficient solution for problem (𝑇𝐶𝑇𝑉𝐸) and optimal solution for problem 

1//∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 when 𝑝𝑗 = 𝑝 , 𝑑𝑗 = 𝑑  for all 𝑗 in the schedule 𝛼. 

4.  Conclusions and future works 

In this study, a mathematical model was created to address the research problems 1//𝐹(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥), 1// 

∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 and it has been proven that certain rules provide efficient (optimal ) solutions to the  

(𝑇𝐶𝑇𝑉𝐸) and (𝑆𝑃) problems, finding and proving some certain cases that discover some efficient (optimal) 

solutions for (𝑇𝐶𝑇𝑉𝐸) and (𝑆𝑃)problem under consideration and demonstrating that SPT and EDD give 

efficient (optimal) solutions to these problems, demonstrated the significance of the Dominance Rule (DR) that 

can be used in this problem to improve efficient solutions. 

 In the future, interesting would be to conduct research on the following MSPs. 

1) 1/𝑟𝑗/𝐹(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥). 

2) 1/𝑟𝑗/ ∑ 𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 . 

3) 1/𝑆𝑓/ 𝐹(∑𝐶𝑗 , ∑ 𝑉𝑗 , 𝐸𝑚𝑎𝑥). 
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