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ABSTRACT   

The bridge penalty is widely used as a penalty for selecting and shrinking predictors in regression models. 

Although its effectiveness is sensitive to the parameters you decide to use for shrinking and adjusting. The 

shrinkage and tuning parameters of the bridge penalty are chosen concurrently, and a continuous optimization 

process called particle swarm optimization is proposed as a means to do this. If implemented, the proposed 

method will greatly facilitate regression modeling with superior prediction performance. The results show 

that the proposed method is effective in comparison to other well-known methods, but this varies greatly 

depending on the simulation setup and the real data application.  
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1. Introduction 

Technological progress has generated and amassed a significant number of variables in numerous real-world, 

applied scientific, economic, and technological contexts. Having too many variables can cause linear regression 

to become overfit. Large prediction errors in the calculated parameters also seem to be caused by the 

multicollinearity issue. However, even if a large number of variables are available for regression modeling, 

many of them may not be pertinent to the response variable, where their inclusion would drastically reduce the 

prediction accuracy. 

For accurate regression modeling, variable selection is crucial. Its purpose is to reduce the number of variables 

in a model in order to increase its predictive power and simplify its interpretation. In these situations, the 

computational cost of using conventional subset selection techniques, such as backward elimination, forward 

selection, and stepwise selection, increases. Researchers have found that the penalty approaches provide a 

powerful framework for undertaking variable selection and model estimation in tandem. These strategies 

involve including a penalty term in the regression model's loss function. The purpose of this term is to allow the 

user to fine-tune the balance between the chosen model's bias and variance. 

Bridge penalty [1], LASSO [2], SCAD [3], elastic net [4], and adaptive LASSO are only a few of the penalties 

that have been proposed and developed by academics [5]. Specifically, Frank and Friedman (1993) suggested 

the bridge penalty, which requires including them in the loss function of the regression model. It is shown that 

the L2-norm penalty and the L1-norm penalty are both special examples of the bridge penalty, with and, 

respectively. 

In order to maximize the bridge penalty's effectiveness, it is crucial to pick the right tuning parameter. The 

tuning parameter selection problem in bridge penalty can be effectively dealt with using the data-driven Cross-

validation approach (CV). Unfortunately, CV is notorious for its high computational time and variability [2, 6, 

7]. 

In this paper, a continuous approach that takes inspiration from nature, called particle swarm optimization, is 

proposed as a means of determining the tuning parameter in the bridge penalty. The proposed method will 

https://creativecommons.org/licenses/by/4.0/
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efficiently help to locate the most essential variables in the regression model with a high prediction. It is shown 

that the proposed method is superior by using it on a variety of synthetic data sets and a real-world dataset. 

The following is the outline for this paper. Sections 2 and 3 detail the bridge penalty regression model and its 

features. Section 4 covers the details of our proposed method. The illustration of the proposed method through 

simulated studies and through real data application is presented in Section 5. Section 6 discusses the final 

thoughts. 

2. Regression model with bridge penalty 

Consider that we have a data set.  1{( , )}n

i i iy =x
 where iy 

  stands for a response variable and  

1 2( , ,..., ) p

i i i ipx x x= x
 is a 1p   known predictor vector. Assuming that the response variable is 

centered, and the predictors are standardized does not compromise generalizability. 

For a classical linear regression exemplary, 

 
,T

i i iy = +x β
   

where 1( ,..., )p =β
 is a 1p   vector of unknown regression coefficients, and i  is error variable with mean 

0 and variance 
2 .   

Parameter estimates for Eq. (1) can be brought closer to zero thanks to a concept called the "bridge penalty," 

which was first proposed by Frank and Friedman in 1993 [1]. The bridge penalty regression coefficients can be 

written as: 

 

Bridge 2

1 1

ˆ arg min ( ) | |
pn

T

i i j

i j

y  
= =

 
= − + 

 
 

β

β x β

   

where 0   represents the tuning parameter and 0   is the shrinkage parameter. Equation (2) can select 

relevant predictors when 0 1   and can shrinks the 
Bridge
β̂  when 1   as indicated by Park and Yoon  in  

2011.   

The asymptotic behavior for bridge estimators has been investigated by Fu in 1998 and he proposed a 

general algorithm to solve Eq. (2) for 1  . Meanwhile, Knight and Fu in 2000 looked into the asymptotic 

aspects of bridge estimators with 0   in situations where the number of predictors cannot be changed. In 

addition, Huang et al. investigated the asymptotic properties of bridge estimators in sparse, high-dimensional, 

linear regression models, where the number of predictor variables can grow according to the size of the sample. 

The bridge estimator of Eq. (2) with 0 1   can accurately choose predictors with non-zero regression 

coefficients and that, under suitable situations, the bridge estimator benefits from oracle qualities [8, 9, 10, 11]. 

For 1  , Eq. (2) is a convex function, while Eq. (2) be a non-convex function when 1  . The local 

quadratic approximation (LQA),which was introduced by Fan and Li  in 2001, is usually adopted to solve Eq. 

(2) (Park and Yoon, 2011). The LQA states that the bridge penalty can be approximated locally at some 

beginning vector 
(0) (0) (0)

1( ,..., )p =β
 by a quadratic function as: 
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Then, Eq. (2) can be simply minimized as: 

 

Bridge 2 (0) 2 2

1 1

ˆ arg min ( ) | | .
2

pn
T

i i j j

i j
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 −

= =
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= − + 

 
 

β

β x β

   

It is easy to find the 
Bridge
β̂ of Eq. (4) by the following algorithm of Park and Yoon in 2011: 

(1) Set values for both   and  , respectively. 

(2) Set the initial vector 
(0) (0) (0)

1( ,..., )p =β
as considering the ridge coefficients.  

(3) Update  
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Bridge (t+1) Bridge (t) 1

( , )
ˆ ˆ[ ( )] ,T T

 

−= +β X X Σ β X y
   

where 
Bridge (t) Bridge (t) 2 Bridge (t) 2

1
ˆ ˆ ˆ( ) diag ( | | /2,..., | | /2)p

 

    − −=Σ β
.  

(4) Iterate Eq. (5) until the following condition is satisfied  

 
Bridge (t+1) Bridge (t)ˆ ˆ| | ,− β β    

where   represents a small positive value. It is equal to 
510−

 in our paper.   

 

3. Selection criteria of   and    

Accurate selection of   and   is critical because it has a bigger impact on the bridge's efficiency. The most 

popular methods in the research community are the cross-validation method, the expanded cross-validation 

method, and information criteria like the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC) for estimating   and  . These criteria can be defined as [7]: 
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where ( , )
ˆ

iy    is the fitted values and iis
is the ith diagonal element of the hat matrix, S , of the selected 

predictors, where 
Bridge 1

( , )
ˆ[ ( )]T T

 

−= +S X X X Σ β X
. In addition, the  

bias-corrected AIC (CAIC) is defined as: 

 

2
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S    
Moreover, Kawano in 2014,  proposed generalized Bayesian information criterion (GBIC) for estimating both 

  and . The GBIC defined as: 

 

Bridge

2
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where  
2̂  is the estimated variance, 

 
BridgeˆA ; 0jj = 

, | A |  represents the cardinal of A, and J is a matrix 

of  (| A | 1) (| A | 1)+  +  and it defined as in [7].  

4. The proposed method  

Metaheuristic algorithms, of which evolutionary algorithms are an example, have gained popularity in recent 

years due to their effectiveness in addressing difficult optimization issues [12]. Particle swarm optimization 

(PSO) is one of these algorithms; it's powerful and yet simple to implement [13]. Eberhart and Kennedy 

proposed the PSO algorithm in 1995 [14]. Animal social behaviors, such as schooling fish and flocking birds, 

were a primary source of motivation for PSO. 
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According to PSO, the swarm is made up of many distinct particles, each of which is treated as an independent 

entity. Additionally, each problem's solution space can be written as a search space. Each individual particle 

has a velocity, a position, and a value of fitness that is evaluated by a fitness function while the swarm moves 

through a search space with d dimensions. Particles will proceed in accordance with their individual velocities. 

Particle motion is determined as follows at each iteration of the algorithm: 

 
1 1,t t t

i i iz z v+ + +
   

 
( ) ( )1

1 1 2 2 ,t t t t t t

i i i i i iv w v k r Pbest z k r Gbest z+   +   − +   −
   

where 
t

iz
 and 

t

iv
 , correspondingly, stands for a position and the velocity of particle i  at iteration t , 

t

iPbest
 

stands for the finest position that is found by particle i , and 
t

iGbest
 is the best position that is found by the 

whole swarm. In addition, w is the inertia weight, 1k
 and 2k

 are the acceleration coefficients. While, 1r  and 

2r
 are values chosen at random from a uniform distribution between 0 and 1. When the fitness of particles doing 

a maximization or minimization job is calculated using the objective function,, the best values for each particle 

and the swarm as a whole are updated at each iteration in the following ways: 
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 1 min (max) (h), ( ) ,t tGbest f f Gbest+ =

   

where 
 1 ,..., b

t tPbest Pbesth 
. The pseudo code of the PSO is shown in Figure 1.  

For bridge penalty, we have two parameter,   and  . Each of these parameters is treated as a position in 

PSO. Therefore, we have two positions that each particle in the swarm will search for them. Consequently, our 

proposed algorithm is as: 

Step 1: The  particles number, b , is set to 30 and the extreme number of iterations is  
maxt =500 . The 

acceleration coefficients 1k
 and 2k

 are set within the range [2, 3.5]. The 1k
 and 2k

 are updating 

during the iteration as following:  

 
1 1,min 1,max 1,minmax

( ),
t

k k k k
t

= + −
   

 
2 2,min 2,max 2,minmax

( ).
t

k k k k
t

= + −
   

Moreover, the inertial weight are set with minimum and maximum values as: min 0.1w =
 and 

max 0.95w =
, and it is updating as: 

 
max max minmax

( ).
t

w w w w
t

= − −
   

Step 2: All of the particle locations are chosen at random. Each place in the is produced at random between 0 

and 1000. For, a uniformly distributed random number between 0.1 and 4 is used to determine the 

position. Particle locations are represented graphically in Figure 2. Particles' first and second positions 

stand for the and values, respectively. 

Step 3: The particle's first speed is produced at random from a uniform distribution in the interval [0, 4]. 

Step 4: An explanation of the fitness function is as follows: 

 

2

( , )

1

1
ˆfitness min ( ) .

n

i i

i

y y
n

 
=

 
= − 

 


   
Every particle has its own fitness value, as defined by Eq. (20), from which both individual and aggregate bests 

can be determined. 

Step 5: With the use of Equations (13) and (14), the particle locations and velocities are updated. 
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Step 6: Steps 4 and 5 will be recurrent till a 
maxt  is reached. 

 

 
Figure 1. The pseudo code of the PSO 

 

 
Figure 2.  The representation of position 

 

5. Results and discussion 

Our suggested approach, PSO-bridge, is evaluated here to see how well it performs. Furthermore, we evaluate 

PSO-efficacy bridge's in terms of the CV, GCV, AIC, BIC, CAIC, and GBIC, as specified in Eqs. (7)–(12). 

5.1. Simulation results 

In this section, we follow the same simulation setting of Kawano (2014). Five simulation setting are considered. 

The predictors’ matrix X  is generated from multivariate normal distribution ( ,1)N 0  for setting 1, 2, 3, and 4.  

The response variable was generated from the true regression model in Eq. (1) 

 
2, ~ (0, )T

i i i iy N  = +x β
  

(1) Setting 1 (sparse model): In this setting, the true vector 
(3,15,7.5,5,2,0,0,0,0,0)T

true =
, with nonzero 

predictors 5q = , 
( ,~ 0 9)i N

. The pairwise correlation is set as 
| |corr( , ) 0.5 ( , 1,2,..., )i j

i j i j p−= =x x
 and 

20trainn =
, and 

200testn =
.  
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(2) Setting 2 (dense model): This is the same as Setting 1 except that the true vector is 10

(10,...,10)T

true =

, with 

nonzero predictors 10q = .  

(3) Setting 3 (sparse model): This is the same as Setting 1 except that the true vector is

(5,0,0,0,0,0,0,0)T

true =
, with nonzero predictors 1q =  and 

( ,~ 0 4)i N
. 

(4) Setting 4 (sparse model): Here, the true vector is 10 10 10 10

(0,...,0,5,...,5,0,...,0,3,...,3)T

true =

, with nonzero 

predictors 20q = . The
( ,~ 0 9)i N

, the pairwise correlation is set as 
| |corr( , ) 0.95 i j

i j

−=x x
, and 

100trainn =
, and 

400testn =
.  

(5) Setting 5 (sparse model): In this setting, the true vector is 535

(10,...,10,0,...,0)T

true =

, with nonzero 

predictors 35q = . The
( ,~ 0 9)i N

 and 
100trainn =

, and 
400testn =

. The predictors’ matrix X  is 

generated as: 

 

, ~ (0,1),

5 4,...,5, 1,2,...,7 for all ,

~ (0,1), 36,..., 40 for all ,

ij a j l

ij

x u u N

j a a i

x N j i

= +

= − =

=
  

where 
(0,0.01), 1,...,35~j N j =

.  

For all simulation setting and for CV, GCV, AIC, BIC, CAIC, and GBIC,   values are set within the range 

between 0 and 1000 and   values are set within the range 0.1 and 4. For performance evaluation, the mean 

squared error (MSE) is used as a prediction accuracy criteria for the test data which is defined as 

2

( , )

1

ˆ( ) /
n

i i

i

y y n 

=

−
.  

The sensitivity and specificity of a variable selection method are measures of how well it distinguishes between 

real positives and false negatives, as well as between other false positives and false negatives. As the values of 

SE and SP rise, so does the quality of the variable selection. Evaluation criteria mean values and standard 

deviations (number in parentheses) are presented in Tables 1 through 5, based on 100 iterations of generation. 

A few observations can be concluded from these tables. First, in terms of MSE, PSO-Bridge significantly 

improve the regression model performance. PSO-Bridge yielded the smallest MSE among the CV, GCV, AIC, 

BIC, CAIC, and the GBIC for all simulation setting. For example, in simulation setting 1, the MSE reduction 

by PSO-Bridge was about 8.82%, 16.58%, 11.68%, 9.57%, 12.16%, and 10.80% comparing with GBIC, AIC, 

BIC, CAIC, CV, and GCV, respectively. 

Second, in terms of sensitivity, PSO-Bridge shows comparable results comparing with the other competitor 

methods in all simulation setting, indicating that PSO-Bridge succeeds in selecting the true important predictors. 

On the other hand, PSO-Bridge produced higher specificity in all simulation setting except simulation setting 2 

where the regression model is dense. In simulation setting 5, for instance, PSO-Bridge provides 94.0% of 

specificity comparing with 36.3%, 72.1%, 84.1%, 79.1%, 74.7%, and 75.1% of GBIC, AIC, BIC, CAIC, CV, 

and GCV, respectively.  

Third, regarding the selection of  , PSO-Bridge agreed with CV, GCV, AIC, BIC, CAIC, and GBIC in selecting 

0 1   for simulation setting 1 and 3 where the regression model is assumed sparse. Besides, PSO-Bridge 

determined the value of    to be greater than 1 as same as CV, GCV, AIC, BIC, CAIC, and GBIC for simulation 

setting 2 where the regression model is assumed dense.  
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Fourth, in contrast to CV, GCV, AIC, BIC, CAIC, and GBIC, PSO-Bridge selected 0.987 =  while the others 

considered 1   in the simulation setting 5. This is could be explained as the model in setting 5 is sparse with 

some predictors were grouped. For simulation setting 4 where the multicollinearity problem is existing, PSO-

Bridge selected 0.9021 =  yielding a sparse model as same as GBIC and BIC did.   

Last, the corresponding standard deviation for MSE, SE, and SP of PSO-Bridge is the smallest values in all 

cases indicating more stability performance among the competitor methods. 

Overall, it is clear that the simulation consequences demonstrated the use of PSO-Bridge in estimating   and 
  of bridge penalty. It outperformed the CV, GCV, AIC, BIC, CAIC, and the GBIC in terms of MSE, SE, and 

SP.  

 

Table 1. Evaluation criteria results, on average, for simulation setting 1 

Methods     MSE SE SP 

PSO-

bridge 

0.067 

(0.419) 

0.584 (0.272) 14.384 (4.611) 0.976 (0.383) 0.879 (0.776) 

GBIC 0.074 

(0.495) 

0.602 (0.294) 15.777 (6.143) 0.974 (0.472) 0.826 (0.849) 

AIC 0.158 

(0.419) 

0.950 (0.351) 17.243 (6.863) 0.992 (0.342) 0.484 (2.062) 

BIC 0.287 

(0.301) 

0.809 (0.277) 16.287 (6.173) 0.968 (0.510) 0.728 (1.687) 

CAIC 0.388 

(0.266) 

0.749 (0.204) 15.907 (6.013) 0.956 (0.575) 0.871 (0.878) 

CV 0.253 

(0.468) 

0.836 (0.394) 16.377 (6.103) 0.974 (0.472) 0.618 (1.972) 

GCV 0.256 

(0.323) 

0.845 (0.304) 16.127 (6.023) 0.982 (0.419) 0.664  (1.847) 

 

Table 2. Evaluation criteria results, on average, for simulation setting 2 

Methods       MSE SE SP 

PSO-

bridge 

0.0012 

(0.151) 

2.7580 

(0.027) 

18.321 (7.746) 1 (0) NA 

GBIC 0.0014 

(0.165) 

2.7047 

(0.027) 

20.028 (7.746) 1 (0) NA 

AIC 0.0797 

(1.060) 

1.1447 

(0.666) 

21.343 (8.463) 1 (0) NA 

BIC 0.0998 

(1.053) 

1.1807 

(0.665) 

21.527 (8.693) 1 (0) NA 

CAIC 0.1183 

(0.975) 

1.3767 

(0.679) 

24.127 (11.973) 1 (0) NA 

CV 0.1053 

(1.638) 

1.2937 

(1.040) 

21.927 (10.183) 1 (0) NA 

GCV 0.1102 

(1.023) 

1.2057 

(0.666) 

21.737 (8.923) 1 (0) NA 
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Table 3. Evaluation criteria results, on average, for simulation setting 3 

Methods       MSE SE SP 

PSO-

bridge 

0.173 (0.371) 0.381 

(0.269) 

4.806 (1.151) 1 (0) 0.896 

(0.839) 

GBIC 0.182 (0.471) 0.470 

(0.277) 

5.093 (1.181) 1 (0) 0.878 

(1.065) 

AIC 0.283 (0.452) 0.848 

(0.497) 

5.949 (1.777) 1 (0) 0.461 

(2.680) 

BIC 0.696 (0.512) 0.560 

(0.479) 

5.322 (1.479) 1 (0) 0.711 

(2.245) 

CAIC 0.446 (0.373) 0.569 

(0.371) 

5.175 (1.408) 1 (0) 0.774 

(2.914) 

CV 0.319 (0.841) 0.656 

(0.527) 

5.577 (1.511) 1 (0) 0.591 

(2.962) 

GCV 0.334 (0.352) 0.758 

(0.464) 

5.658 (1.572) 1 (0) 0.566 

(2.709) 

 

                     Table 4. Evaluation criteria results, on average, for simulation setting 4 

Methods       MSE SE SP 

PSO-

bridge 

0.0075 

(0.117) 

0.9021 

(0.049) 

10.092 

(1.013) 

0.997 (0.104) 0.896 (1.055) 

GBIC 0.0094 

(0.2985) 

0.8782 

(0.198) 

11.867 

(1.222) 

0.971 (0.740) 0.849 (1.393) 

AIC 0.1643 

(0.367) 

1.0342 

(0.117) 

12.043 

(1.264) 

0.995 (0.317) 0.637 (4.765) 

BIC 0.2845 

(0.137) 

1.000 (0.027) 12.317 

(1.398) 

0.997 (0.235) 0.697 (2.271) 

CAIC 0.2181 

(0.159) 

1.0075 

(0.057) 

12.027 

(1.277) 

0.996 (0.288) 0.701 (2.632) 

CV 0.1963 

(0.207) 

0.0137 

(0.078) 

11.977 

(1.271) 

0.995 (0.317) 0.691 (3.290) 

GCV 0.2013 

(0.182) 

1.0107 

(0.069) 

11.971 

(1.273) 

0.995 (0.303) 0.696 (2.977) 

 

Table 5. Evaluation criteria results, on average, for simulation setting 5 

Methods       MSE SE SP 

PSO-

bridge 

0.0023 

(0.144) 

0.987 (0.039) 14.384 

(1.078) 

1 (0) 0.940 (0.063) 

GBIC 0.0015 

(1.198) 

1.831 (0.888) 14.497 

(1.589) 

0.997 (0.272) 0.363 (1.881) 

AIC 0.1149 

(0.192) 

1.013 (0.078) 14.733 

(1.894) 

1 (0) 0.721 (1.205) 

BIC 0.1677 

(0.149) 

1 (0) 15.517 

(2.051) 

1 (0) 0.841 (0.871) 

CAIC 0.1401 

(0.147) 

1 (0) 15.017 

(1.913) 

1 (0) 0.791 (0.878) 
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CV 0.1244 

(0.173) 

1.011 (0.069) 4.827 (1.891) 1 (0) 0.747 (1.117) 

GCV 0.1270 

(0.169) 

1.011 (0.069) 14.837 

(1.895) 

1 (0) 0.751 .131) 

 

5.2. Real application results 

We used the pollution data collection found in the R library SMPracticals. Many statisticians that work with 

variables selection in regression modeling rely on this data collection [7, 10, 15, 16]. The response variable in 

this dataset, total age-adjusted mortality rate, is measured across 60 observations for 201 Standard Metropolitan 

Statistical Areas from 1959 to 1961. In addition, there are fifteen quantitative predictors included in this data 

set. 

To estimate   and   for the constructed regression model with bridge penalty, 40 observations (training data 

set) of the data set has been chosen randomly and the rest, 20 observation (testing data set), is used to compute 

the prediction error (PE). This split was repeated 10 times.  

Table 6 lists the results of PE for the PSO-Bridge comparing with other competitor methods. As seen in the 

result, PSO-Bridge can remarkably reduce PE comparing with OLS, Ridge, lasso, elastic, scad, and GBIC. 

Comparing with GBIC as a method of estimating   and  , it can be seen that the PE of the PSO-Bridge was 

about 3.81% lower than that of GBIC. Figure 3 presents the boxplot for the seven methods. From Figure 3, it 

can be observed that the PSO-Bridge is superior to the other sex methods in terms of stability in PE where PSO-

Bridge has the smallest standard deviation.  

In terms of predictor selection, on the other hand, Table 7 reports the index of the selected predictor for all the 

seven methods. It clearly is seen from Table 7 that PSO-Bridge and GBIC only select 4 predictors out of 15 

predictors. PSO-Bridge selected the predictors with index 1, 2, 3, and 8. These selected predictors are also 

selected by the other used methods. Comparing with GBIC, the model from GBIC includes predictors 1 and 8, 

and exclude predictors 2 and 3. 

 

Table 6. Prediction results over 10 partitions for pollution data set 

Methods PSO-bridge OLS Ridge lasso elastic scad GBIC 

PE 1093.26 1764.51 1304.02 1170.783 1342.15 1272.21 1136.61 

 

Table 7. The selected variables for the pollution data set 

Methods Selected variables 

PSO-bridge (1, 2, 3,8) 

McDonald and Schwing (1, 2, 6, 8, 9, 14) 

Luo et al. (1, 2, 6, 9, 14) 

Park and Yoon (LQA) (1, 2, 3, 6, 8, 9, 14) 

Park and Yoon (LLA) (1, 2, 3, 6, 7, 8, 9, 14, 15) 

lasso (1, 2, 6, 7, 8, 9, 14) 

elastic (1, 2, 6, 7, 8, 9, 14) 

scad (1, 2, 3, 5, 6, 8, 9, 14) 

GBIC (1, 8, 9, 14) 
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Figure 3. Boxplots of the PE. The dashed line represents the average PE of the PSO-Bridge 

 

 

6. Conclusion 

This work examines the challenge of choosing bridge penalty parameters for linear regression models. It was 

suggested that the parameters of the bridge penalty be selected using a particle swarm optimization algorithm. 

Tests on synthetic data and real-world examples showed that PSO-Bridge outperformed its rivals in terms of 

mean squared error (MSE), standard deviation (Se), and standard deviation of prediction (SP). 
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