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ABSTRACT   

To ensure that the FC-GDN is properly calibrated for the EEG-ImageNet dataset, we subject it to extensive 

training and gather all of the relevant weights for its parameters. Making use of the FC-GDN pseudo-code. 

The dataset is split into a "train" and "test" section in Kfold cross-validation. Ten-fold recommends using 

ten folds, with one fold being selected as the test split at each iteration. This divides the dataset into 90% 

training data and 10% test data. In order to train all 10 folds without overfitting, it is necessary to apply this 

procedure repeatedly throughout the whole dataset. Each training fold is arrived at after several iterations. 

After training all ten folds, results are analyzed. For each iteration, the FC-GDN weights are optimized by 

the SGD and ADAM optimizers. The ideal network design parameters are based on the convergence of the 

trains and the precision of the tests. This study offers a novel geometric deep learning-based network 

architecture for classifying visual stimulation categories using electroencephalogram (EEG) data from 

human participants while they watched various sorts of images. The primary goals of this study are to (1) 

eliminate feature extraction from GDL-based approaches and (2) extract brain states via functional 

connectivity. Tests with the EEG-ImageNet database validate the suggested method's efficacy. FC-GDN is 

more efficient than other cutting-edge approaches for boosting classification accuracy, requiring fewer 

iterations. In computational neuroscience, neural decoding addresses the problem of mind-reading. Because 

of its simplicity of use and temporal precision, Electroencephalographys (EEG) are commonly employed to 

monitor brain activity. Deep neural networks provide a variety of ways to detecting brain activity. Using a 

Function Connectivity (FC) - Geometric Deep Network (GDN) and EEG channel functional connectivity, 

this work directly recovers hidden states from high-resolution temporal data.  The time samples taken from 

each channel are utilized to represent graph signals on a topological connection network based on EEG 

channel functional connectivity. A novel graph neural network architecture evaluates users' visual perception 

state utilizing extracted EEG patterns associated to various picture categories using graphically rendered 

EEG recordings as training data. The efficient graph representation of EEG signals serves as the foundation 

for this design. Proposal for an FC-GDN EEG-ImageNet test. Each category has a maximum of 50 samples. 

Nine separate EEG recorders were used to obtain these images. The FC-GDN approach yields 99.4% 

accuracy, which is 0.1% higher than the most sophisticated method presently available 

Keywords:  EEG, Visual Stimulus Decoding, Functional Connectivity, Deep Learning, Neural 

Network   

Corresponding Author: 

Haitham S. Hasan 

Business Information Technology Department, Business Informatics College 

University of Information Technology and Communications, Baghdad, Iraq 

E-mail: Haitham@uoitc.edu.iq 

1. Introduction 

Large clusters of neurons may now be recorded [1]. Researchers created noninvasive brain activity 

measurements. Research uses electroencephalograms (EEGs) because of their inexpensive cost and great 

temporal precision. Brain stimulation and impact change fast. Neuroscience research like BCI 

https://creativecommons.org/licenses/by/4.0/
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deciphers EEGs depending on inputs. Since vision is a fundamental part of human experience, many 

neurocognitive research have examined the relationship between visual perception and brain activity. Visual 

stimuli cause different brain activity patterns [2][3][4]. Visual stimuli may be decoded to study human visual 

information processing [5]. Visual-brain decoding has two difficulties. Brain activity classification and 

stimulation are the first two steps. First, steady-state visual evoked potentials (SSVEPs) research, such as the 

BCI spelling system [6] has examined visual information processing by altering stimulus frequency. Results 

Another EEG study utilizing frequency-related visual stimulation found crowded objects [7]. EEG-based deep 

neural networks classified pictures [8]. These studies examined normal vision-related brain activity rather than 

visual input frequency. fMRI data can recreate pictures [9]. In 2018, [10] measured visual saliency using video 

stimulus EEG data. Dan Nemrodov and Adrian Nestor recreated facial emotions using EEG signals from face 

photo stimuli [11], followed by multimodal representation saliency detection [12] and Nicolae Cudlenco's 

[13]. EEG recordings of natural stimulations improve brain system comprehension. This research utilizes 

EEG-ImageNet [8]. For classification, BCI EEG classification algorithms have been studied. Deep learning, 

which combines feature extraction and classification, has garnered interest in recent years [14][15]. Deep 

machine learning is used by BCI in order to classify SCP, SSVEP, emotion detection, MVEP, sleep/weariness 

databases, epileptic EEG, and motor imagery are some of the techniques used. [16-22]. Graph-based 

categorization methods assessed EEG datasets. Geometric deep learning educated several graph neural 

network topologies. Geometric deep learning examines deep learning applications. [22]. M. Gori et al. created 

a graph neural network (GNN) to analyze graph data in 2005 [23]. In 2009, Scarselli et al. developed a 

technique for transforming graphs to Euclidean spaces and presented supervised learning for predicting graph 

neural network model parameters [24]. 2013 Bruna et al. suggested graph-based spectral convolutional neural 

networks [25]. Two years later, Bruna and Hennaf's graph estimation method created a new spectral network 

[26]. M. Defferrard et al. built ChebNet in 2016, whereas Kipf and Welling offered a smaller GCN [27][28]. 

Most geometric deep learning research graphs include EEG signal features. These studies used four course 

sets. [29] EEG-based emotion identification was assessed using DE, PSD, DASM, RASM, and DCAU 

characteristics. [29] classified emotions as pleasant, negative, or neutral. [30] suggested EEG electrode 

frequency-domain GNN and EEG-based video recognition. LSTM and GNN classified four motor imagery 

kinds [31]. Geometric deep learning techniques increase EEG-based item categorization, but they disregard 

dynamic information across linked EEG channels based on brain functional connectivity. They extract time-

frequency information in two steps, which increases computing cost. An efficient EEG graph representation 

may solve the issues mentioned. EEG categorization might employ recordings and a deep network. Functional 

channel connections let this EEG data graph model classify EEG records. The proposed network architecture 

substitutes feature extraction with a geometric network that unifies feature extraction and classification, 

reducing computational complexity and improving classification accuracy with quicker convergence in fewer 

training cycles. This follows. Section 2 discusses graph convolution math. Section 3 discusses EEG-based 

image recognition and classification. Section 4 presents EEG-ImageNet, experimental results, and a 

comparison to current approaches. Fifth segment concludes.  

1.1. Geometric deep network based on function-connectivity  

The FC-GDN automatically identifies visual stimuli. Figure 1 shows a framework.  First, the human subject is 

stimulated visually depending on the picture appearance time and image interval. Second, EEG data isolates 

Beta and Gamma frequency ranges associated with cerebral function. EEG channel functional connectivity is 

sparsely assessed using the spatiotemporal graph model. Network embedding vertices are assumed in EEG 

channel time samples. A functional adjacency matrix is the EEG channel connectivity matrix. Thresholds have 

a weak resemblance to the graph's adjacency matrix. The graph is sent to the FC-GDN. Graph convolution 

layers impose the preceding stage's graph to extract feature vectors in feature encoding. Feature vectors from a 

dropout and fully connected layer are used by log-soft-max classifiers. Labels are determined by the final 

categorization results.   



 PEN Vol. 11, No. 1, February 2023, pp.208-215 

210 

 
Figure 1.  FC-GDN schematics 

GDNs in the FC layer extract input category discrimination. Dynamic information must be provided via EEG 

channels coupled with graph convolutional layers. The initial step in every graph convolutional layer is to 

approximate the input graph convolution utilizing the graph Laplacian' polynomial expansion. Each layer's 

activation function, the rectified linear unit (ReLU), zeroes negative outputs. A batch normalizing filter applies 

each layer's output to the next. Normalization in batches expedites network training. Batch normalization 

outputs to graph convolutional layer, dropout layers prevent overfitting. After flattening the dropout layer 

output, dense fully connected layers get the feature vector. Finally, log soft max classifies output from entirely 

linked layers. Section 4.1 defines these characteristics based on the frequency and duration of EEG-sample 

ImageNet recordings. Because EEG signals comprise 166 channels, the FC-feature GDN encoding network in 

Fig. 1 includes 166 nodes. Since this dataset comprises 560 EEG channels, each network node processes 560 

samples. The graph convolutional layer's input dimension is 560, regardless of network nodes. The first graph 

convolution layer has 560 vertex samples and 166 node samples. The second level constructs a network with 

166 nodes and 220 samples for each vertex, while the construct networks with 160 and 50 samples for each 

node, respectively. The output of the feature encoding is transmitted to a layer that acts as a dropout then, 50 

samples are used to flatten the 166-node network. Vectorization that contains 6400 different things. Due to the 

fact that the flattened vector passes through more than one layer, that is completely linked in order to fit the 60 

Classifying EEG-ImageNet. The dense layer's input and output are 8400 and 60, respectively. The parameters 

for the FC-GDN layer weight tensor. The sequence in which the Chebyshev polynomial expansion is conducted 

on each layer determines the parameters of the graph's convolutional layers. FC-GDN parameter weights match 

EEG-ImageNet after training. FC-GDN code. validation divides train and test datasets. 25-fold divides dataset 

into 75% training set and 25% test set by choosing one fold per iteration as test split. This approach trains all 

25 folds without overfitting. Much iteration converges on each training fold. Training all 25 folds evaluates 

performance. Train convergence and test accuracy are ideal network design criteria. Table 1 shows this. 
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Table 1. Overall accuracy result for various networks 

Visual 

Category 

FC-GDN(F1 = 

1, F2 = 1, 

 

FC-GDN(F1 

= 2, F2 = 2, 

 

  BiLSTMs LSTMs SNN 

’One’ 100% 98%   95% 95.7% 92% 

’two’ 100% 99.7%   100% 98% 88.7% 

’Three’ 93.3% 82.3%   90.7% 94.7% 88.3% 

’Four’ 100% 99.3%   98.3% 93.8% 85.3% 

’Five’ 93.3% 90.7%   95.3% 90.3% 87% 

’Six’, 100% 99.3%   97% 86.3% 86.3% 

’Seven’ 100% 98.7%   99% 87.7% 83% 

’Eight’ 100% 99.7%   98.7% 89.7% 87.3% 

’Nine’ 100% 96.3%   92.3% 89.3% 87% 

’Ten’ 93.3% 83.3%   85.7% 94.3% 83.3% 

’Eleven’ 100% 100%   99% 99% 91.7% 

’Twelve’ 100% 99.7%   96.3% 97.7% 86.3% 

’ Thirteen’ 93.3% 83.3%   100% 100% 98.7% 

’ Fourteen’ 100% 100%   93% 93.7% 89% 

’Fifteen’ 100% 98%   96.7% 85% 89.3% 

’Sixteen’ 100% 99.3%   99.7% 91% 92.7% 

’Seventeen’ 100% 99.7%   99% 87% 95% 

’Eighteen’ 100% 99.3%   99% 87.3% 91.7% 

’Nineteen’ 100% 99.3%   98.6% 93.2% 91.8% 

’Twenty’ 100% 100%   100% 84.7% 89% 

’Twenty one’ 100% 98.7%   99.7% 82.7% 84.7% 

’Twenty two’ 100% 98.3%   96% 86.3% 90.7% 

’Twenty three’ 100% 99.7%   96.3% 87.7% 88% 

’Twenty four’ 100% 98%   99% 88.7% 83% 

’Twenty five’ 100% 99%   99.7% 94.3% 85% 

’Twenty six’ 100% 100%   99.7% 89.8% 75% 

’Twenty seven’ 100% 100%   99.3% 85.3% 88.1% 

’Twenty eight’ 100% 99.3%   97% 88% 83% 

’Twenty nine’ 100% 95%   95.7% 87.7% 90.7% 

’Thirty’ 100% 97.3%   91.7% 82% 79.7% 

’Thirty one’ 100% 98.7%   100% 96% 83% 

’Thirty two’ 99.7% 100%   97.3% 87.3% 86.3% 

’Thirty three’ 100% 99.3%   98.3% 83.7% 85.7% 

’Thirty four’ 100% 98.9%   98.2% 88.4% 94.3% 

’Thirty five’ 100% 98.7%   96.7% 84% 79.3% 

’Thirty six’ 100% 100%   100% 95.7% 92.3% 

’Thirty seven’ 100% 100%   100% 88.3% 95.7% 

’Thirty eight’ 100% 98%   99.3% 85.3% 71.7% 

’Thirty nine’ 100% 100%   99.7% 85% 83.7% 

’Forty’ 100% 99.7%   99.7% 95.7% 92.3% 

'Forty one' 100% 99.3%   81.9% 89.1% 80.1% 

'Forty two' 99.8% 99.9%   93.5% 87.7% 88.4% 

'Forty three' 100% 96.8%   90% 92.3% 90.1% 

'Forty four' 100% 99%   88.1% 95.2% 89.1% 

'Forty five' 100% 93.4%   89.9% 88.7% 87.6% 

'Forty six' 100% 98%   95.6% 85.7% 83.4% 

'Forty seven' 100% 96.3%   98.3% 90.3% 88.1% 

'Forty Eight' 100% 92%   87.9% 87.2% 96.4% 

'Forty nine' 100% 98.9%   88.7% 89.7% 80.8% 

Fifty 100% 99%   90.8% 81.3% 88.9% 

Overall Accuracy 99.4% 98%   91.33% 89.08% 84% 
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2. Methods 

Many experiments will use perceive lab's EEG-ImageNet database [8][12]. After discussing database 

configurations, we discuss FC-outcome GDNs.    

2.1. Database settings 
Here's EEG-ImageNet. The actiCAP 128Ch collected EEG-ImageNet [32]. Depicts conventional helmet EEG 

installation. Table 2 provides color-ordered electrodes. EEG-ImageNet has six visual-stimulated human EEG 

signals. EEG signals were captured from 50 ImageNet pictures per category.In [8], Each photo was flashed on 

the computer screen for 700 milliseconds at 3kHz to record data.  

2.2. Simulation results and discussion 
The FC-GDN should be simulated. The EEG-ImageNet database from Section 4.1 is loaded on a desktop 

computer that has a Core i5 processor running at 4 GHz, 32 GB of RAM, and an NVIDIA GTX 1070 graphics 

processing unit (GPU). We average all EEG channel time-domain data to derive the topological map for each 

visual stimulus category. Electrode activation reveals mental activity during picture processing. EEG waves let 

individuals see their environment. The GDN matrix assesses EEG channel functional connectivity. We 

empirically balance sparsity/computational complexity with classification accuracy. channel sparsification. The 

graph's threshold was 0.5. To categorize the performance of the FC-Chebyshev GDN's polynomial expansion, 

a graph convolutional function based on Welling's [28] GCN with the same architecture is employed. Figure 2, 

3 shows a side-by-side comparison of the FC-GDN and GCN with comparable dimensions. According to the 

results of our research example, FC-GDN converges faster than GCN and improved precision for training and 

testing phases. 

 

Figure  2. FC-GDN/GCN classification accuracy. 

 

Figure 3. Accuracy for training and test phases 
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3. Result and discussion 

Each training and testing iteration results in a smaller loss of cross-entropy, and by the tenth round, the two sets 

of results have converged. The FC-GDN achieves 99.4% accuracy after 12 iterations when classifying 50 

distinct classes. The accuracy only marginally improves after 50 sessions. The confusion matrix helps the FC's 

performance. GDN's Network performance on test splits is reflected in the confusion matrix for multi-class 

classification. The proposed method's confusion matrix demonstrates the FC-high GDN's performance. 

4. Conclusion 

The loss of cross-entropy reduces with each iteration during training and testing and converges around the tenth 

iteration in both cases. After 12 iterations, the FC-GDN is able to classify a total of 50 categories with an 

accuracy of 99%. Even after 50 repetitions, there is still a tiny improvement in accuracy. This research 

introduces a novel geometric deep learning-based network architecture for classifying visual stimulation kinds 

using EEG data from human volunteers seeing photographs from each group. The major challenges addressed 

in this study are GDL-based feature extraction and functional connectivity brain state extraction. The strategy 

has been validated using EEG-ImageNet experiments. FC-GDN performs better with fewer iterations. 
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