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ABSTRACT   

The rapid enhancement in the fields of the computers that leads to rapid breaking for ciphering algorithms 

and for these reasons most of ciphering algorithm tried to used multidigit for ciphering texts or images. Using 

multidigit will increase the safety of information and protected it from supercomputer from breaking the 

ciphering algorithms. The current information systems employ operations on finite fields of various 

structures (for example, cryptographic systems). In this instance, it's common to have to deal with enormous 

numbers (128 bits or more). The proposed operation of discovering the remainder of the division of multidigit 

numbers will considerably improve the speed of such systems if implemented. 
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1. Introduction  

The type of sets of remnants from division by pre-chosen bases (coprime common numbers). The assignment 

of computing the rest of a division turns out to be more muddled when numbers are taken as a positional number 

huge digit limit, introduced in the alleged "long" math. This type of composing a number it is utilized when the 

piece lattice of the hardware utilized for calculations is restricted. On the off chance that the digit the matrix is 

restricted to, say, k pieces, the long number is addressed in the base 2k number framework and is composed 

successively into memory (for instance, as a cluster). For this situation, the issue of getting the rest of the division 

becomes nontrivial. Strategies for its answer can be found in [1-3]. In [4], a viable technique is proposed for 

changing over a double number into a RNS dependent on isolating the first multi-bit parallel number into 

independent parts, for which a foreordained number of paired digits B are designated. At that point a n-cycle 

twofold number can be communicated as a mix of weighted (positional) numbers with the measurement B 

(bits)[5-7]. For this situation, the places of every  such part are allocated a specific weight 2j, where j = 0, B, 

2B, ..., MB. Direct change of a double number to a secluded number is done utilizing a particular summation 

modulo residuals pi (I = 1, 2, ... n) - B pieces of n/B parts of a multideity number, considering their loads. In 

light of the abovementioned, any parallel number can be composed as: 

                                                                 𝑋 = ∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵

𝑀

𝑗=0

                                                                          (1) 

where B is the number of discharges of one part; M is the number of parts; 

 x_(jB+i)- - coefficient 0 or 1; j = 0, B, 2B, ..., 
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MB is the position of the part; i is the position of the bit in the part. Using expression (1), we can write the 

formula for computing a remainder mod p: 

                              |𝑋|𝑝 = |∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵

𝑀

𝑗=0

|

𝑝

= |∑ (∑ 𝑥𝑗𝐵+𝑖

𝐵−1

𝑖=0

2𝑖) 2𝑗𝐵. |2𝑗𝐵|
𝑝

𝑀

𝑗=0

|

𝑝

                                 (2)    

When performing operations, it should be borne in mind that 〖ω_i=|2^jB |〗_p are pre-considered constants. 

By freely comparing the remaining pieces, the remaining divisions for each can be found. The next step is to 

sum modulo p the calculated residuals for each component. This method of calculating residuals allows for the 

completion of jobs on much smaller piece depths, on the order of the piece width of a single section. Example. 

Let X = 589249631 and p = 13 be two arbitrary numbers you're working with. To solve, we represent X in 

binary: 

X = 100011 00011111 00111100 01011111. Divide the binary form of X into 4 groups of B = 8 bits, each. 

Determine the constants ω for use in your computations: 

𝜔0 = |20|13 = 1; 𝜔1 = |28|13 = 9; 𝜔2 = |216|13 = 3; 𝜔3 = |224|13 = 1                                                  

Further calculations are presented in the following diagram: 

 

According to these calculations, |X|_13=9, which is true. We will implement this approach for computing the 

remainder of the division using the HDL synthesis and analysis software Xilinx ISE (Integrated Synthesis 

Environment), and then we will verify its efficiency with a precise [8-10]. Hardware and development time for 

Xilinx Virtex 6 FPGAs using the XC6VLX75T core are estimated at [12]. 

2. Productive execution of the activity for figuring the rest of a division 

Compelling execution of the activity for ascertaining the rest of the division. Advancement of gadgets that carry 

out present day cryptographic calculations suggests the utilization of superior equipment[13-16]. Programmable 

Logic Integrated Circuits, specifically FPGAs from Xilinx, are the standard equipment for creating present day 

elite registering gadgets. FPGA Virtex 6, center Xilinx XC6VLX75T, which has an adequate region, was chosen 

as a means for the hardware implementation of the algorithm under consideration. To increase the performance, 

we adapt the considered algorithm to the FPGA architecture[17]. To avoid performing the costly operation of 

multideity numbers modulo multiplication from the point of view of time and used hardware resources, we store 

in memory all possible B-bit values previously multiplied by the constants ωi modulo the chosen modulus, and 

the number of these magnitudes will rely on the choice of parameter B and equal to 2B ... Thus, using this 

approach allows you to implement modular multiplication tabular. Modulo addition is implemented using a 

modular adder. Let us apply this method of calculating the modulus for numbers of different widths (32 bits, 64 

bits, 128 bits, 256 bits, 512 bits, 1024 bits, 2048 bits) in 32-bit (p = 4294967291), 16-bit (p = 65521 ) and 8-bit 

(p = 251) modules, while varying the parameter B. Data on the hardware and time spent on computing the 

remainder of the division of 32-bit numbers will be written in Table. 1-7 [18-19].                                                                            

 

Table 1. Equipment and spent time on executing the X mod p activity for 32-cycle numbers on FPGA Virtex 

6, center Xilinx XC6VLX75T 

      Split 

     Mod 
1 bit 2 bit 4 bit 8 bit IEEE 

Numeric_std 

32 bit 
Slices 42 34 30 43 22 

Delay, ns 11,7 10,6 10 11 8,7 
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      Split 

     Mod 
1 bit 2 bit 4 bit 8 bit IEEE 

Numeric_std 

16 bit 
Slices 105 71 36 54 265 

Delay, ns 16.3 14,7 12 13 58,6 

8 bit 
Slices 87 46 47 63 287 

Delay, ns 16,8 13,4 14,4 12,2 68.ju4 
 

Table 2. Equipment and spent time on carrying out the X mod p activity for 64-cycle numbers on FPGA 

Virtex 6, center Xilinx XC6VLX75T 

       Split 

      Mod 1 bit 2 bit 4 bit 8 bit 
IEEE 

Numeric_std 

32 bit 
Slices 42 34 30 43 22 

Delay, ns 11,7 10,6 10 11 8,7 

16 bit 
Slices 105 71 36 54 265 

Delay, ns 16.3 14,7 12 13 58,6 

8 bit 
Slices 87 46 47 63 287 

Delay, ns 16,8 13,4 14,4 12,2 68.ю4 
 

While figuring the rest of isolating 32-digit numbers by a 32-bit module, we got the upside of the standard IEEE 

Numeric_std library calculation both as far as equipment and time costs. When calculating the remainder after 

dividing 32-bit numbers into 16 and 8-bit modules, the optimal hardware and time costs are to use the parameters 

B = 4 and 2 bits, respectively. When calculating the remainder of dividing 64-bit numbers into 32, 16 and 8-bit 

modules, the optimal hardware and time costs are the use of the parameters B = 4, 8 and 8 bits, respectively. 

 

Table 3. Hardware and spent time on X mod p operation for 128-bit numbers on FPGA Virtex 6, core Xilinx 

XC6VLX75T 

       Split 

       Mod 1 bit 2 bit 4 bit 8 bit 
IEEE 

Numeric_std 

32 bit 
Slices 190 147 112 145 4216 

Delay, ns 24 23,5 20,9 20,2 453,9 

16 bit 
Slices 380 341 265 186 4172 

Delay, ns 18,6 20,4 17,5 14,7 490,6 

8 bit 
Slices 222 133 99 124 4399 

Delay, ns 19 15,2 14,8 15, 3 509,6 
 

While ascertaining the rest of isolating 128-bit numbers by a 32-digit module, the ideal equipment and time cost 

is to utilize the boundary B = 4 pieces, which has a 37-overlay region advantage and a 21-overlap time advantage 

over the standard calculation. IEEE Numeric_std libraries. While figuring the rest of isolating 128-bit numbers 

by a 16-digit modulus, the ideal equipment and time cost is to utilize the boundary B = 8 pieces, which has a 

22-overlap region advantage and a 32-crease time advantage contrasted with standard calculation of the IEEE 

Numeric_std library. While computing the rest of partitioning 128-digit numbers by a 8-cycle modulus, the 

ideal equipment and time cost is to utilize the boundary B = 8 pieces, which has a 35-overlay region advantage 

and a 34-overlap time advantage over the standard calculation. IEEE Numeric_std libraries .Using the inherent 

calculation of the IEEE Numeric_std library for ascertaining the rest of the division of 256-bit numbers is 

incomprehensible because of the restricted assets of the FPGA, while the proposed calculation permits you to 

figure the rest of the division of numbers whose measurement surpasses 256 bits .As a consequence of looking 

at the considered strategy for computing the rest of division with the standard calculation of the IEEE 

Numeric_std library, we can reason that it is prudent to utilize the implicit technique just while figuring the rest 

of division of a 32-cycle number into a 32-bit module. In any case, it ought to be noticed that when working 
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with numbers with a width of in excess of 128 pieces, the standard elements of the IEEE Numeric_std library 

are adequately not, while the technique viable permits you to handle quantities of any width, restricted simply 

by the equipment capacities of the programmable rationale coordinated circuit utilized. 

Table 4. Equipment and spent time on carrying out the X mod p activity for 256-cycle numbers on FPGA 

Virtex 6, center Xilinx XC6VLX75T 

       Split 

      Mod 1 bit 2 bit 4 bit 8 bit 
IEEE 

Numeric_std 

32 bit 
Slices 225 183 152 221 – 

Delay, ns 23,5 26,9 24, 0 23,6 – 

16 bit 
Slices 493 512 342 244 – 

Delay, ns 22,7 25,0 23,7 21,2 – 

8 bit 
Slices 288 140 109 133 – 

Delay, ns 21,3 18,0 18,8 16,9 – 
 

While figuring the rest of separating 256-bit numbers by 32, 16, and 8-bit modules, the ideal equipment and 

time costs are to utilize the boundaries B = 4, 8, and 8 pieces, individually. When calculating the remainder of 

dividing 512-bit numbers by 32, 16 and 8-bit modules, the optimal hardware and time costs are the use of the 

parameters B = 8, 8, and 4 bits, respectively. When calculating the remainder after dividing 2048-bit numbers 

by 32, 16 and 8-bit modules, the optimal hardware and time costs are to use the parameters B = 8, 8, and 4 bits, 

respectively. Based on the data obtained, we will construct graphs of the dependence of the number of Slices 

used and the maximum time delays on the partition parameter B when calculating the remainder of dividing 

multi-bit numbers of various lengths into 32-bit, 16-bit and 8-bit modules. 

 

Table 5. Equipment and spent time on carrying out the X mod p activity for 512-cycle numbers on FPGA 

Virtex 6, center Xilinx XC6VLX75T 

       Split 

      Mod 
 

1 bit 2 bit 4 bit 8 bit 
IEEE 

Numeric_std 

32 bit 
Slices  225 183 152 221 – 

Delay, ns  23,5 26,9 24, 0 23,6 – 

16 bit 
Slices  493 512 342 244 – 

Delay, ns  22,7 25,0 23,7 21,2 – 

8 bit 
Slices  288 140 109 133 – 

Delay, ns  21,3 18,0 18,8 16,9 – 

 

 

Table 6. Equipment and spent time on carrying out the X mod p activity for 1024-cycle numbers on FPGA 

Virtex 6, center Xilinx XC6VLX75T 

     Split 

    Mod 
1 bit 2 bit 4 bit 8 bit IEEE 

Numeric_std 

32 bit 
Slices 1419 796 224 364 – 

Delay, ns 43,0 42,5 29,6 29,7 – 

16 bit 
Slices 2173 832 535 367 – 

Delay, ns 29,0 31,8 29,8 26,1 – 

8 bit 
Slices 589 367 198 188 – 

Delay, ns 25,5 23,2 20,5 22,1 – 

 

When calculating the remainder of dividing 1024-bit numbers by 32, 16 and 8-bit modules, the optimal hardware 

and time costs are to use the parameters B = 4, 8, and 4 bits, respectively. 
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Table 7. Equipment and spent time on executing the X mod p activity for 2048-piece numbers on FPGA 

Virtex 6, center Xilinx XC6VLX75T 

     Split 

    Mod 
1 bit 2 bit 4 bit 8 bit IEEE 

Numeric_std 

32 bit 
Slices 1705 952 623 424 – 

Delay, ns 46,5 46,8 41,8 32,5 – 

16 bit 
Slices 2621 1469 626 426 – 

Delay, ns 41,4 40,1 31,8 28,3 – 

8 bit 
Slices 1345 454 259 216 – 

Delay, ns 32,3 25,3 23,5 24,7 – 

 

 
 

Figure 1. Hardware and time costs for implementing the X mod p operation on a 32-bit FPGA Virtex 6 

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns 

 

 

 
Figure 2. Hardware and time costs for implementing the X mod p operation on a 16-bit FPGA Virtex 6 

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns 
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Figure 3. Hardware and time costs for implementing the X mod p operation on an 8-bit FPGA Virtex 6 

module, core Xilinx XC6VLX75T a) the number of Slices; b) maximum time delays, ns 

From the diagrams acquired (Figures 1-3), we can presume that with an expansion in the digit limit of the 

prepared numbers, the quantity of Slices and the most extreme time delays in the execution of the activity of 

ascertaining the rest of the division increment. The quantity of Slices and the most extreme time delays in the 

execution of the activity for ascertaining the rest of a division arrive at their littlest qualities when the boundary 

B = 4, 8 pieces, contingent upon the piece width of the number and the modulus. 

3. Conclusions  

The outcomes got over the span of the examination showed that the utilization of the IEEE Numeric_std library 

calculation for figuring the rest of division is prudent just on account of computing the rest of isolating a 32-bit 

number by a 32-bit module, and for preparing numbers with a width of in excess of 128 pieces of standard 

library capacities IEEE Numeric_std isn't sufficient. 

The utilization of conveyed math related to plain particular increase and measured snake permits not exclusively 

to fundamentally diminish the time spent on the execution of the activity of figuring the rest of division by 

putting away all conceivable B-cycle esteems to begin with duplicated by the loads for the chose module, yet 

in addition makes it conceivable to measure multi-digit numbers (in excess of 128 pieces) of any length, 

restricted simply by the equipment abilities of the programmable rationale incorporated circuit utilized. 

Examination of different approaches to carry out the activity of computing the rest of separating multi-digit 

numbers showed that the ideal according to the perspective of the pre-owned equipment assets and the time 

spent on the activity of figuring the rest of the division, is to part the enormous piece number into 4-bit or 8-bit 

parts, contingent upon the piece width numbers and modulus. 
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