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ABSTRACT   

In this paper a proposed approach to solve the DEs utilizing the TM with quantum Genetic algorithms. The 

aim of the proposed approach is to use the series functions of form quantum genetic to solve the DEs by 

decreasing the number of iterations and more increase by utilizing automata more with enhancement of TM.     

Keywords:  Quantum Genetic Algorithm, TM, DEs. 

Corresponding Author: 

Ahmed Hamid Elias  

Computer Science  

South Ural State University  

Chelyabinsk, Russia 

E-mail: ahmediteco@gmail.com 

1. Introduction  

A differential formula (DE) is an involving formula in the functions and their derivatives. DEs are named 

fractional DEs (pde) or DEs (ode) as ordinary based on if or not they comprise fractional derivatives. The DE 

order is the uppermost order derivative happening. A DE particular solution or solution of order n contains of a 

function well-defined and n times differentiable on a domain D possessing the character which is “the functional 

formula gotten through functions substituting along their n derivatives into the DE holds for each point in D. A 

classic DEs implementation continues along the following lines [1].   

 
Figure 1. Lines of DEs implementation 

A Turing Machine (TM) is a model as mathematical that contains an unlimited length tape splitted into cells 

where input is offers. It contains a head that reads the tape as input. A state register stores the TM state. 

Following input symbol reading, it is replaced with another symbol, its state as internal is altered, and it transfers 

from one cell to the left or right. When the TM touches the last state, the string as input is recognized, or else 

excluded. A TM able to be described formally as a 7-tuple (Q, X, Σ, δ, q0, B, F) in which [2]: 
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• Q is a finite state set • X is the alphabet tape  

• Σ is the alphabet input  

• δ is a function of transition; δ : Q × X → Q × X × { Right _shift, Left _shift}. 

• q0 is the preliminary state • B is the symbol as blank  

• F is the final states set  

Quantum information processing (QIP) is a field which has observed wonderful growth over the several years 

since Richard Feynman’s seminal mention the quantum computers (QC) utilize for simulating systems as 

physical [3]. When data bits are encoded on entangled or individual quantum states, a gain over outmoded 

systems able to be observed for few data processing functions. A well-known example is the familiar algorithm 

of Shor for factorization of prime number runned on a QC,in which a remarkable decline in resources is gained 

if compared to algorithms as classical [4]. Another chief QIP implementation is in security of communication, 

in which the fact that unidentified states of quantum cannot be cloned faithfully [5] is achieved for detecting an 

eavesdropper presence. Such conception was utilized as a central foundation after quantum key distribution 

(QKD), a protocol of communication intended for distributing random secretive means among remote 

parties4,5. As the 1st implementation to showcase in exercise the QIP benefits, QKD has experienced massive 

progresses ever since [6–9]. QKD is part of a further general protocol family named communications of 

quantum, that including other schemes i.e., entanglement swapping and teleportation of quantum [10][11], take 

aim to be the backbone of communication supporting QCs of future networks [12][13]. 

The algorithm genetic is a technique to solve both unconstrained and constrained optimization difficulties which 

is according to the selection as natural, the procedure which drives evolution biologically. The algorithm genetic 

modifies repeatedly an individual solutions population. At every step, the algorithm genetic picks individuals 

from the existing population as parents and utilizes them for producing the children for the subsequent 

generation. Over consecutive generations, the population evolves in the direction of an optimum solution. You 

are able to apply the algorithm genetic for solving a diversity of optimization difficulties which are not well 

suitable for optimization standard algorithms, include difficulties where the objective role is discontinuous, non-

differentiable, extremely non-linear or stochastic. The algorithm genetic is able to address mixed integer 

programming difficulties in which few components are constrained as integer valued. 

The flow chart summarizes the chief algorithmic steps [14] [15].  

 

 
Figure 2. Genetic algorithmic steps 

2. Related works  

In [16] they display a quantum algorithm (QL) for systems of (probably inhomogeneous) linear DEs as ordinary 

with coefficients being constant. The algorithm yields a state as quantum which is comparative to the solution 

at a final desired time. The algorithm complexity is poly-nominal in the inverse error logarithm, an exponential 

enhancement over preceding QLs for such difficulty.  

 

In [17] they describe QLs for simulation of Hamiltonian, DEs as ordinary (ODEs), and DEs as partial (PDEs). 

Formulas that are produced are utilized for simulating Hamiltonians that able to be expressed as terms sum that 
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can ever be individually simulated. Through simulating every such term in sequence, the gross influence 

simulates almost the entire Hamiltonian. They catch that the product formulas error able to be enhanced through 

randomizing over the order where the simulation to Hamiltonian terms occur. They verify that such method is 

asymptotically better than formulas as ordinary product and show comparisons as numerical for small qubits 

numbers. 

 

In [18] they display and through experimentation comprehend an implementable gate-based QL for powerfully 

solving the LDE difficulty: assumed an N × N matrix M, a vector as N-dimensional b, and a primary vector x 

(0), we attain a target vector x(t) as a time function t bases on the constraint dx(t)/dt = M x(t) + b. They display 

that the algorithm displays speedup as exponential over its traditional counterpart in definite circumstances, and 

a quantum gate-based circuit is formed that is friendly to the experimentalists and implementable in existing 

quantum methods. Furthermore, they experimentally solve a 4 × 4 linear DE utilizing their QL in a 4-qubit 

nuclear magnetic resonance quantum information processor.  

 

In [19] they put into consideration 3 methods: (i) basis encoding and fixed-point arithmetic on a digital QC, and 

(ii) rep- re-sending and solving high-order Runge-Kutta approaches as optimization difficulties on quantum 

annealers. As realizations smeared to 2-dimensional linear ordinary differential formulas” they simulate and 

devise equivalent digital quantum circuits.  

3. Proposed Approach 

The solution of DEs in the interval [0, 1], by applied the suitable series by replace the truncated y(x) series into 

the linear or non-linear DEs as ordinary  

Let 𝑔(𝑦(𝑛), 𝑦(𝑛−1), 𝑦(𝑛−2), .  .  . , 𝑦, 𝑥) = 𝑓(𝑥)         𝑥 ∈ [0,1] 

Ordinary DE (ODE) with 𝑦(𝑘)(𝑥0) = 𝑦𝑘 , k=0 ,1 ,2 , . . .,n-1  

Suppose the linear DEs as ordinary 

|𝑔⟩ = |𝑓⟩ + ∑ 𝑎𝑘
𝑛
𝑘=0 |𝑦(𝑘)⟩                 …(1) 

| 𝑔 (∑ 𝐵(𝑥)(𝑖)|𝑣𝑖 >

𝑛

𝑘=0

, 𝑥)⟩ = |𝑓⟩ + ∑ 𝛽𝑘

𝑛

𝑘=0

|𝐵(𝑥)(𝑘)⟩                  

with 𝑦(𝑘)(0) = 𝑦𝑘 , k=0 ,1 ,2 , . . ., n-1, and A set of vectors |v1⟩, ..., |vn⟩ is said to be linearly dependent if 

there exist corresponding coefficients for each vector  ai∈ F, such that: 

 B(x) is a solution of (1) where |𝐵(𝑥)⟩ = ∑ 𝑎𝑘
𝐿
𝑘=0 |𝜓(𝑘)⟩  and ℒ is the length of chromosome then B(x) satisfy 

of  (1) with boundary condition 

1|𝑦(𝑘)(𝑥0) >= 𝑦𝑘  , 𝑎𝑛𝑑  

|𝑔(𝐵(𝑥)(𝑛), 𝐵(𝑥)(𝑛−1), 𝐵(𝑥)(𝑛−2), .  .  . , 𝐵(𝑥), 𝑥)⟩ = |𝑓⟩ + ∑ 𝛽𝑘
𝑛
𝑘=0 |𝐵(𝑥)(𝑘)⟩.                   

Let xi∈ [𝑎, 𝑏] i=0,1 ,2 ,… ,m-1 choose (m) equidistant point (x0 ,x1 , …, xm-1) in the relative range  

N size the population  1|𝑔(𝑥i) >= 0 , i=0 ,1 ,2 , …,m-1, and |x𝑖⟩ = 𝑖|h + a⟩ 

where, 

|ℎ⟩ = (𝑏 − 𝑎)|/m⟩ 

3.1. Fitness Function  

the fitness function min f(x) where |𝒇 >= ∑ |𝒈(xi)| >= 0 𝒎−𝟏
𝒊=𝟎  or  
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|𝒇(𝒙) >= ∑ (𝒈(𝒙𝒊))2 >= 0 

𝒎−𝟏

𝒊=𝟎

 

3.2. Length of chromosome  

Since x ∈ [0 ,1]  if the length of decimal is (d) and the number of (ℒ) then the length of chromosome is ℒ ×ℜ 

where ℜ =upper(log2 10𝑑) 

 

Definition (3.1) 

The transformation map TQ from a set of sequence of production rules R= {r1, r2…} with applied TM TM set 

as an one tape of 7 tuple, and into a set of quantum functions QF = {qf1, qf2 …} which is define by utilzing 

TQ: R TM → QF. 

 

 If  f is a function in ℝ2, then denoted for the number of terms in f  by Tn, it’s calculated by the number of plus 

operations, and minus operations in the function f , which denoted by NPM , and the number of operations in f   

denoted by Nop in general  , with denoted the number of pluses, minus, multiplication, division, power and 

reminder operations in f  by N0, N1, N2, N3, N4 and N5 with respectively, such that  

 

NPM=<V|W1,2> 

Nop=<V|W>,  

={0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F} 

The base tensor vector of dimension n is  𝑒𝑖 = [𝑒𝑖
𝑗
] = (0 0  ⋯ 1 ⋯ 0 0),  

where, 

𝑒𝑖
𝑗

= {
1 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑊𝑡 = ∑ 𝑒𝑖

5

𝑖=1

 

and 

𝑊1,2
𝑡 = ∑ 𝑒𝑖

𝑖=1,2

 

< V| = (N0 N1 N2  N3 N4 N5 ) by bra notation  
 

then with design TM of grammatical evolution, and TM of digital number with production rules and symbols 

corresponding expression of v variables see Appendix Figure (1), Figure (2), and Table (1), for example the 

sequence of production rules and symbols corresponding data in tape (for example 002502002500030115  

corresponding of expressing  x2+1) .  

From the sequence of production rules corresponding to function of one or more variables, then can be 

calculated independent terms of expression. In mathematics algebra the term is either a one of variables, single 

number, or numbers and variables multiplied together (6x, 1.5y, 0.83 xy, …). The terms are separated by plus, 

or minus operation (+ sign, or − sign), then the number of terms Tn in expression calculated   by summation the 

number plus and minus out of brackets. 
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 In Genetic Algorithm each expression or production rules of t-terms correspond the chromosome of Tn terms. 

Crossover is a genetic operator that processes further than 1 parent solutions and yields a child solution from 

them. Following the process of reproduction (selection), supplementation for the population is with better 

individuals. Through re-combining operator that continues in 3 steps. 

 

Definition (3.2): The two the sequences corresponding to two expressing functions are congruent if and only 

if the functions corresponding to the sequences first sequence and second sequence are equal, denoted by  . 

 

Definition (3.3): If there are two sequences of production rules, then the definition of blade function  is a 

sequence of production rules such that 

 

 (first production rules) ≡ second production rules. 

 

The blade function  removed identity element from sequence of production rules for each operations: identity 

of addition and subtraction element: x = x ± 0 = 0 ± x, identity of multiplication and division element: x = 1*x 

= x*1, x = x/1, identity of power operation element: a = a^1, and equivalent expressions for example a + a = 2a, 

sin(+) = -sin(),… 

 

The number of terms in function by utilizing production rules corresponding to specific function, the terms are 

separated by plus operation or minus operation to calculate the number of terms by summation the number 

pluses and minuses out of brackets. 

 

Definition (3.4):  The pure sequence of production rules Tp define by  

 

 (Tp) ≡ Tp. 

 

Since each term have combination of basic function, where basic function divided into four types: 

1- Standard Function (SF): g(x) =  f(x), where f(x){sin(x), cos(x), tan(x), …, ex, log(x), ln(x), √𝑥, ….}, 

and , ℝ, I.e., g(x) = 2.1 sin(4x), or g(x) = -4.1 e(5x),…  

2- Constant Function (CF): c, where c is a constant c ℝ, I.e., 45.67676, or -4532.87, ….  

3- Power Function (PF): 𝛼𝑥𝑛, where a ℝ, and n  N, I.e., 6.27 x4, 3.958 x7, …  

4- Line Function (LF): x, where a ℝ, I.e., 9.23x, -4x, 5x,… 

3.3. Random selection basic functions 

The generation of the Random selection basic functions 𝐵𝑖(𝑥) ∈ {𝑆𝐹, 𝐶𝐹, 𝑃𝐹, 𝐿𝐹} is in order to build the new 

production rule corresponding function f(x), where: 

 

𝜓(𝑥) = ⟨𝛼|𝐵(⟨𝛽|𝑥⟩)⟩ 
  

Suppose the DE below it is Nth order then  

 

∑ 𝑎𝑖

𝑑𝑖

𝑑𝑥𝑖
𝑖

|𝜓(𝑥)⟩ = 𝐺(𝑥)|𝜓(𝑥)⟩ 

 

Where the vector solution  |𝜓(𝑥)⟩ written in a somewhat special notation, and by apply GA in TM design, by 

continue selection, mutation, and crossover with find the suitable coefficients of 𝜓(𝑥). 

4. Analysis and evaluation of the proposed approach 

4.1 ODE Example 

By utilizing the above, where n=25 number of terms, and DE is  
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∑ 𝑎𝑖

𝑑𝑖

𝑑𝑥𝑖

2

𝑖=0

|𝜓(𝑥)⟩ = 𝐺(𝑥)|𝜓(𝑥)⟩ 

 

𝑎0 = −100, 𝑎1 = 0, 𝑎2 = 1, and 𝐺(𝑥) = 0 
𝑑

𝑑𝑥
|𝜓(0) >= 10, 𝑎𝑛𝑑   1|𝜓(0) >= 0, 

Suppose the solution of above DEs is linear of two coefficients a, and b, with type functions. The comparing of 

the absolute Error by Quantum TM and GA with the absolute Error by pure GA, see Table (1), and Figure (3) 

of above. 

 

Table 1. Absolute error comparing by quantum TM and GA with the absolute Error by pure GA 

 

xi The Absolute Error by Quantum TM with GA The Absolute Error by GA 

0 0 0 

0.1 3.26e-13 4.43e-08 

0.2 4.12e-13 3.86e-09 

0.3 2.09e-12 4.99e-08 

0.4 3.13e-12 5.17e-08 

0.5 4.71e-12 5.81e-08 

0.6 5.45e-12 5.26e-08 

0.7 5.05e-11 5.81e-08 

0.8 5.56e-11 5.17e-08 

0.9 4.68e-11 5.29e-08 

1 4.91e-11 5.62e-08 

 

 
Figure 3. Error comparing between pure GA, with QTM_GA 

 

 

4.2 PDE Example 

To solve the following PDE 

∑ 𝑎𝑖

𝜕2

𝜕𝑥𝑖
2

 2

𝑖=0

|𝑢(𝑥, 𝑦)⟩ = 𝐺(𝑥, 𝑦)⟩ 

𝑅 = {(𝑥, 𝑦)| 𝑎 < 𝑥 < 𝑏, 𝑎𝑛𝑑 𝑐 < 𝑦 < 𝑑} 

With the boundary condition of PDE 

|𝑢(𝑎, 𝑦) >= 𝑓1(𝑦) > , 𝑎𝑛𝑑   𝑢(𝑏, 𝑦) >= 𝑓2(𝑦) > 
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|𝑢(𝑥, 𝑐) >= 𝑔1(𝑥) > , 𝑎𝑛𝑑   |𝑢(𝑥, 𝑑) >= 𝑔2(𝑥) > 

For example, a=c=0, b=2, d=1, f1(y)=0, f2(y)=2ey, g1(x)=x, and g2(x)=ex, with h=6, and k=5. 

 
Figure 4. Error comparing between pure GA, with QTM_GA 

 

5. Conclusions  

In the proposed work the genetic algorithm with the TM is utilized I order to solve the DE. The proposed 

Quantum-Genetic-Turning Machine algorithm increased the speed of solving the DEs and the accuracy.  In the 

proposed work the difficulty of the genetic algorithm processing time is processed by utilizing both quantum 

and turning machine. 
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