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 Client-centric consistency models define the view of the data storage expected 

by a client in relation to the operations done by a client within a session. 

Monotonic reads is a client-centric consistency model which ensures that if a 

process has seen a particular value for the object, any subsequent accesses will 

never return any previous values. Monotonic reads are used in several 

applications like news feeds and social networks to ensure that the user 

always has a forward moving view of the data. 

The idea of Monotonic reads over multiple copies of the data and for lightly 

loaded systems is intuitive and easy to implement. For example, ensuring that 

a client session always fetches data from the same server automatically 

ensures that the user will never view old data. 

However, such a simplistic setup will not work for large deployments on the 

cloud, where the data is sharded across multiple high availability setups and 

there are several million clients accessing data at the same time. In such a 

setup it becomes necessary to ensure that the data fetched from multiple 

shards are logically consistent with each other. The use of trivial 

implementations, like sticky sessions, causes severe performance degradation 

during peak loads. 

This paper explores the challenges surrounding consistent monotonic reads 

over a sharded setup on the cloud and proposes an efficient architecture for 

the same. Performance of the proposed architecture is measured by 

implementing it on a cloud setup and measuring the response times for 

different shard counts. We show that the proposed solution scales with almost 

no change in performance as the number of shards increases. 
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1.Introduction 

 

In a replicated setup, accessing data items from different replica servers can result in different results for the 

same application operation. 
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Figure 1: Reading from replicas 

 

In Figure 1 the client C1 performs a write of data item X on server S1 that is replicated to servers S2 and S3. 

Now client C2 performs a read of data item X, which results in two cases: 

 

 Read reaches server S2. Server S2 has already seen the write from server S1. C2 also has the write 

changes. 

 Read reaches server S3. Server S3 has not seen the write from server S1. C2 does not have the write 

changes. 

Thus, in the same session, client C2’s read operation can have different results based on the replica server 

from which the read is performed [22] [23] [2]. This causes inconsistency in the client view within the same 

session. 

 

Client-centric views define the view of the data storage expected by a client in relation to the operations done 

by a client within a session (over a single replica set). This helps describe the application consistency and 

requirement in read and write operations performed on the servers of that replica set. [6] [24]. 

 

Client-centric consistency is defined keeping a replicated dataset in mind [9] [19]. That is, clarity can be 

obtained about which server within a replica needs to be accessed to perform a client operation within a 

session. However, when the dataset is sharded across multiple replica sets [20] [18], the client-centric views 

do not clearly define the behaviour of queries accessing multiple shards (replica sets) within the same session. 

 

This paper focuses on monotonic reads, one type of client-centric consistency, and shows that the existing 

definition of monotonic reads has shortcomings when extended to the sharding use case. The focus, 

specifically, is on maintaining consistency between data fetched from multiple shards (or replica sets), and an 

efficient architecture for achieving the same is proposed. 

Section 2 explores the formal definitions and representations for monotonic reads and shows the use cases in 

which they falter. Section 3 proposes extensions to the existing theory on monotonic reads and describes an 

efficient architecture for implementing the same. Section 4 evaluates the performance of the proposed 

architecture on a cloud deployment and measures its performance for various shard configurations and update 

rates. 

 

2. Background and Related Work 

 

This section explores the existing theory around client-centric consistency and monotonic reads. The 

shortcomings of applying the existing theory on a sharding topology are also explained here. 

 

2.1. Background 

 

Client-centric consistency and the theory surrounding it are built around the existence of multiple copies of 

the same data item in one replica of a database. The theory and formal representations surrounding client-
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centric consistencies [24] help predict what the clients see within a given session. The client session is often 

assumed to deal with multiple servers of the same replica set. Databases that popularized the notion of relaxed 

consistency like MongoDB [10], Riak [17], Cassandra [4] and Dynamo [7] addressed client-centric 

consistency with this restrictive notion of a session that operates over a single replica set. 

 

In a truly distributed database, however, a client session has to deal with multiple replica sets, each containing 

a shard (partition) of the database in question. The existing theory and formal representations become 

significantly complex when a given query can run over multiple replica sets and consistency needs to be 

ensured across these replicas. 

 

Sections 2.2 and 2.3 explore the existing theory and formal representations surrounding client-centric 

consistency. 

 

2.2. Session 

 

Eventual consistency and the client-centric consistencies that derive from it are defined within the boundaries 

of a session. A session represents a contracting unit of system service to clients (and their applications) and is 

composed of a denumerable sequence of read and write operations (performed by them). Sessions are 

intended to present individual clients with a view of the data storage that is consistent with their own actions 

in the system servicing unit. Within a session, a client can inquire and change the data storage under some 

promised service properties, e.g., consistency guarantee. 

 

A session is usually defined within the boundaries of a server and a sequence of read and write operations 

performed by the client on the server. Thus, a session can simply be represented by equation 1: 

 

St = R[x], W [x] | x is a data item     (1) 

 

For a session Si with n operations, the j
th
 operation opj and the op(j + 1)

th
 operation are related by the equation 2, 

(where op is a read or write operation as seen in equation 1) [24]: 

 

opj<i opj+1 where jε[1, n]     (2) 

 

2.3. Client-centric Consistency 

 

Four client-centric consistencies exist based on the different expectations of data states on session operations 

[6]: 

 

 Read-your-writes - The effect of a write operation in a session is always seen by a later read operation 

within the same session. 

 Monotonic reads - A read in a session always reads the same or more recent version of a data item 

that was previously read within the same session. 

 Write-follows-reads - A write in a session always happens on the version of a data item read in a 

session or a more recent version. 

 Monotonic writes - A write operation in a session is completed on a data item before any subsequent 

write operation on the same data item by the same session. 

This paper will focus on monotonic reads consistency [24]. 

 

2.4. Client-centric consistency and Sharding 

 

Using the formal definitions in section 2.3, it is possible to understand the behaviour of a query in a client 

session, when the data resides on a replication topology. However, when the data is partitioned across multiple 

shards, the same query operates across several replicas, each storing a different partition of the data. Trying to 
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extend the semantics directly from the definition over server replicas can lead to inconsistency between the 

data from the partitions. This cascades into an inability to view the partitioned data as a consistent dataset. 

The next section attempts to list use cases that result in inconsistency when the existing semantics of 

monotonic reads is applied on shards. The decision to explore monotonic reads versus the broader area of 

client-centric consistency was taken to reduce scope, redundancy and clutter, while offering more possibilities 

for detailed analysis. 

 

3. Monotonic reads in a sharded setup 

 

This section provides formal representations for monotonic reads on a sharded setup and explains the 

challenges in performing consistent reads in such a setup. An architecture for overcoming these challenges 

and performing efficient monotonic reads over a sharded setup is also proposed. 

 

3.1. Local vs Global Operations 

 

In a sharded setup, the database schema is partitioned across multiple servers. A database operation (DDL, 

DML or Query) performed by the user happens, 

 

 On a single shard 

 On multiple shards 

An operation that is performed on multiple shards is executed across multiple servers hosting the shards. This 

and the following sections refer to operations that span multiple shards as global operations. Since the paper 

primarily focuses on client-centric consistency, the term Global Operations is used to refer to any client 

operation that requires modifying or fetching data from multiple shards. 

 

3.2. Formal Representations 

 

In this section, the definition of read monotonicity in section 2.3 is extrapolated to sharding and it is shown 

that this can result in inconsistency. The section further refines this definition to include the changes for 

performing consistent reads across shards. 

 

A session that contains reads and writes from multiple shards can be represented by equation 3: 

 

St = Rshk[x], Wshk[x] | shk ε sh1 , sh2 ...shn     (3) 

 

In the absence of global writes, monotonic reads in section 2.3 can be extended with the following definition, 

A set of reads in a session from multiple shards satisfies read monotonicity, if the reads from the high 

availability cluster of each shard are read monotonic. 

 

The definition above implies that equation 4 holds for each shard, where xa, xb, xc are replicas of the data item 

x in the high availability setup on shard shk . 

 

wshk<Rshk(1)(xa) → wshk<Rshk(2)(xb)     (4a) 

wshk<Rshk(1)(xa) → wshk<Rshk(3)(xc)     (4b) 

 
Equation 4 explains read monotonicity with respect to the local writes that happen on shard shk . 

 

 Equation 4a states that the set of writes that happen on xa before Rshk(1) also happen on the copy xb 

before Rshk(2). 

 Equation 4b states that the set of writes that happen on xa before Rshk(1) also happen on the copy xc 

before Rshk(3). 

Note: The reads Rshk(1), Rshk(2) and Rshk(3) are reads that happen on different replicas for a given shard. 
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This explains the impact of writes localized to the shards. However, this does not explain the impact of writes 

that are global across all the shards. The need for global writes and their impact on read monotonicity are 

explained in the next section. 

 

3.3. Reading Consistent Data 

 

Equation 4 talks about the relationship between writes and reads localized to a shard. In the event of a global 

write, however, the impact of the write is seen across all the shards in the topology. 

 

In a sharded system, a user query might often need to access data from multiple shards. The data set 

corresponding to such a query will contain data from multiple shards. In order to be consistent, the dataset 

should take into account the impact of the global write operation across all the shards. 

 

Thus, in the presence of global writes, equation 4 might ensure a read monotonic dataset, but it will not ensure 

a consistent dataset. 

 

Wg(x), Rsh1(1)(x), Rsh2(1)(x), Rsh3(1)(x)     (5) 

 

In the equation 5, the write Wg(x) influences all the three shards sh1, sh2, sh3. Thus, the consistency of the data 

represented by the read set Rsh1(1)(x), 

 

Rsh2(1)(x), Rsh3(1)(x) would depend on the result of the global write Wg(x) being reflected in all the shards. 

This can be illustrated with the following example: 

 

Consider a write Wg(x) that occurs before a projection πck(R) and adds the column ck to the schemas in shards 

sh1, sh2, sh3. Assume that the write has not yet been reflected in the shard sh2. If the projection runs on shard 

sh2, it will fail because the column has still not been created in shard sh2. 

 

This data can still be presented to the user without violating the definition of read monotonicity. However, 

depending on the nature of the information, the absence of the data from a shard would make the dataset 

illogical to a user. For example, if each of the shards represented information from a country, the result of a 

query that summarizes information across all countries would look inconsistent with the information from a 

country completely missing. 

 

3.4. Global State 

 

The problem of presenting inconsistent data in section 3.3 happens because it becomes difficult to verify if all 

the shards are at the same global state. This section explains what global state means, creates formal 

representations for the global state and includes it in the representations of monotonic reads from the previous 

sections. 

 

Sharding horizontally partitions a database across a given set of servers. Although the goal of sharding is to 

partition the database into independent elements, the user is oblivious to the underlying partitioning. The 

requirement of presenting the user with a unified picture of the underlying store forces the system designer to 

maintain some aspects that are common across all the shards, e.g., Schema, Global Tables, etc. 

 

The global state represents the state of the aspects that are common across the shards. The schema of the 

sharded tables is one example of a global state. The user should see the same schema, irrespective of the shard 

queried. A change in schema needs to be reflected across all the shards. Similarly, the system designer could 

decide to keep a few tables common to all the shards. Pincode table is one common example of a global table. 

 

It is also important to remember that not all aspects of the global schema are relevant to every query that is 

run. For example, if the sharded database contains the relations R1, R2, R3 ... Rn and the global relations RG1, 

RG2 … RGn , a projection πRcol>val R1 cares only about the global state of the relation R1. Thus, performing 

consistent monotonic reads can be defined as follows, 



 PENVol. 7, No.1, June 2019, pp.125-140 

130 

A set of reads in a session from multiple shards satisfies monotonic reads and is consistent, if the reads from 

the high availability cluster of each shard satisfy monotonic reads and the shards have the same state for those 

aspects of the global schema that are relevant to the query being run. 

 

The next section describes an efficient architecture for performing consistent monotonic reads across shards in 

the presence of global updates. 

 

3.5. Proposed architecture for consistent reads in the presence of global updates 

 

 
 

Figure 2: Version token aware prefetch cache 

 

The proposed architecture extends a semantic cache [16] [21] to add version token awareness. The sections 

3.5.1 and 3.5.2 give a brief introduction to semantic caching and version tokens respectively, before diving 

into the nuances of the proposed methodology in section 3.5.3. 

 

3.5.1. Semantic caching of data in shards 

 

Semantic caching [16] [21] allows a client to maintain both the semantic description and the result of a query 

in the cache. For a sharded setup, each query is decomposed into the constituent queries that need to be fired 

on each shard. The results of each of these queries are cached alongside the semantic descriptions. 

 

The join EMP ▷ ◁ emp_id SAL ▷ ◁ dept_idDEPT, for example, is fired separately in each of the shards, for the 

appropriate emp ID ranges of these shards. That is, if the range of values in each of these shards is, 

 

 emp_id1<emp_id< emp_id2 

 emp_id2<emp_id< emp_id3 

 emp_id3>emp_id 

the join is decomposed into the following three joins, 

 

 EMP ▷ ◁ emp_id1 <emp_id< emp_id2 SAL ▷ ◁ dept_idDEPT 

 EMP ▷ ◁ emp_id2 <emp_id< emp_id3 SAL ▷ ◁ dept_id DEPT 

 EMP ▷ ◁ emp_id>emp_id3 SAL ▷ ◁ dept_id DEPT 

Each of the above joins is executed on each shard and the results are cached against the respective query. 

 

3.5.2. Version tokens for cross-shard consistency 

 

A version vector [14] [1] is often used as a mechanism for tracking the state of data in a distributed system. 

This section describes how version vectors can be used to track the state of the global aspects of the sharded 

system. 
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Each shard in the topology contains one vector element for each global aspect of the sharding topology. For 

example, if the sharded database contains the relations R1, R2, R3, R4 and the global relations RG1, RG2, the 

vector elements in a shard can be represented by the following; 

 

R1 R2 R3 R4 RG1 RG2   

0 0 0 0 0 0 S1  

 

The vector above contains 0 as the value for each of the vector elements. This represents the initial state of the 

global aspects when the topology has not changed. When the state of a particular global aspect changes, the 

corresponding vector element is increased by 1. When the schema of the relation R2 is changed, the vector is 

updated as follows: 

 
R1 R2 R3 R4 RG1 RG2  

0 1 0 0 0 0 S1 

 

One more schema update of R2 and an insert into a global table RG1 result in the following version vector: 

 
R1 R2 R3 R4 RG1 RG2  

0 2 0 0 1 0 S1 

 

Thus, a change in the global aspect causes a change in the corresponding vector element. 
 

The vectors from each of the servers can be consolidated as a matrix of vectors, such as the one given below: 

 

R1 R2 R3 R4 RG1 RG2  

0 0 0 0 0 0 S1 

0 0 0 0 0 0 S2 

0 0 0 0 0 0 S3 

 

When a query that runs across multiple shards is executed, the aspects relevant to the query are extracted from 

the above matrix and this subset matrix is used for generating a consistent result. 

 
For example, when a query that runs with relevant information from relations R1, R2 and the global relation 

RG1 is executed, the following matrix can be used to verify if the data is consistent: 

 

R1 R2 RG1  

0 0 0 S1 

0 0 0 S2 

0 0 0 S3 

 

A consistent query is executed when all the shards have the same state for the global aspects relevant to a 

query. Thus, all the values in a column should be the same, for consistent query execution. Therefore, in the 

above matrix the following conditions should be satisfied: 

 

 (0, 0) = (1, 0) = (2, 0) 

 (0, 1) = (1, 1) = (2, 1) 

 (0, 2) = (1, 2) = (2, 2) 

3.5.3. The Architecture 

 

The basic idea of the architecture is shown in the figure 2. Each component of the architecture is explained in 

greater detail in this section. 
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Client The client is agnostic to the presence of shards, and fires a query as it would on an unsharded setup. 

For example, a client fires the join, EMP ▷ ◁ emp_idSAL▷ ◁ dept_idDEPT, oblivious to the fact that the data in the 

tables is distributed across multiple shard servers. The client receives a consolidated result set containing the 

results of firing the query on all the shards. 

 

Client Cache The client cache is a semantic cache that stores consolidated results from the prefetch cache. A 

query to be executed is sent from the client to the client cache. The client cache maps a query to its 

consolidated result. If a mapping is found, the results of the query are returned to the client immediately. A 

pipeline of consistent results is formed by the client cache by combining with the prefetch cache. 

 

The client cache can be designed to be part of the same process as the client or be deployed in a different 

process, e.g., as a cluster of memcached servers. 

 

Prefetch cacheThe prefetch cache is used for the amalgamation of a consistent dataset from the shards. It 

contains the logic for parsing a query and extracting the shard key range it operates over. This sharding key 

range is used to decide the shards the query should be executed on. The query is then passed to the semantic 

cache front-ends and the results obtained are combined into a consistent dataset before being presented to the 

client cache. 

 

Result: Fetch consistent data from the shards 
sh = 1; 

sync = false; 

iteration = 1; 

max_iterations = 5; 

 

while !sync and iteration≤ max_iterations do 
 Refresh the semantic caches and update their version tokens; 
 Lock the result map and update its contents; 
 sync = true; 
 Unlock the result map; 
 if version_token of all the shards is not the samethen 
  sync = false; 

 end 

 iteration = iteration + 1; 

end 
 

 
if !sync then 
 Lock the arbitrator for updates; 
 Refresh the semantic caches and update their version tokens; 
 Lock the result map and update its contents; 
 Unlock the result map; 
 Unlock shards for updates; 

end  

 
Algorithm 1: Performing Efficient Monotonic Reads 

 

The prefetch cache fetches the version tokens associated with the datasets along with the datasets themselves.  

The version tokens are used to ensure that the datasets fetched from the shards are consistent with each other. 

The prefetch cache also contains the logic necessary to compare the fetched version tokens and trigger a 

refetchin the event that an inconsistency is detected. 

 

The prefetch cache does not necessarily need to run separately from the client cache. The choice of prefetch 

cache location is implementation dependent. 
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Result Map The result map performs the basic functionality of the semantic cache, mapping the query to its 

consolidated result set. If the result set is not available, a fetch is triggered from the shards. 
Query Parser The query parser extracts the value of the shard key from the query that is fired on the cache. 

The value of the shard key is used for mapping the incoming query to the shards. 

 

Shard Map The shard map caches the metadata of the sharding topology. It is responsible for splitting the 

incumbent query into the constituent queries on the shards. Given an incoming query EMP 

▷ ◁ emp_idSAL▷ ◁ dept_id DEPT, the shard map splits the query into the following queries on three shards: 

 

 EMP ▷ ◁ emp_id1 <emp_id< emp_id2 SAL ▷ ◁ dept_idDEPT 

 EMP ▷ ◁ emp_id2 <emp_id< emp_id3 SAL ▷ ◁ dept_id DEPT 

 EMP ▷ ◁ emp_id>emp_id3 SAL ▷ ◁ dept_id DEPT 

Semantic Caches There is one semantic cache for each shard. The constituent queries are fired on the 

semantic cache of the respective shard. 

 

The version tokens fetched are used to check if the data from the shards are consistent with each other. If an 

inconsistency is detected, the maximum of the fetched version tokens is used as a baseline and a refetch is 

triggered on that semantic cache. 

 

Version Token Based Consistency Coordinator The version token based consistency coordinator maintains 

the consistency between the contents of the semantic caches. It maintains the version vector matrix for the 

global data in the shards, as explained in section 3.5.2, and ensures that the data fetched from the shards 

belong to the same global state in the shards. 

 

For example, assume a setup containing sharded relations R1, R2 and a global relation RG1 . If a fetch from the 

shards results in the following version vector matrix, 

 

R1 R2 RG1  

0 0 0 S1 

0 0 0 S2 

0 0 0 S3 

 

it can be seen that there is a version token mismatch for relation R1. The maximum of the fetched version 

tokens is 1. Since the version token for the shard in server S3 is 0, a re-fetch happens from this server. 
For the same setup, the following version vector matrix will trigger a re-fetch from all the shards: 

 

R1 R2 RG1  

1 0 0 S1 

1 0 0 S2 

0 0 1 S3 

 

When the global update rate is very high, there could be a situation where the prefetch cache is playing catch 

up and consensus cannot be reached. Although such a continuous set of global updates is illogical and 

signifies a failure of the sharding scheme, there are multiple techniques for attaining consensus, e.g., Atomic 

commitment protocols [11] [15], Distributed Locking [3] [8], Central Arbitration, etc. 

 
In this paper, a central arbitrator is used for routing updates across all the shards. This is shown in figure 3. A 

client who wants to update all the shards sends the updates to the central arbitrator. The arbitrator takes care of 

reliably routing the updates to all the shards. 

 

When the update rate becomes very high, the central arbitrator is used to lock updates for a brief interval, 

allowing the shards to reach consensus. Algorithm 1 formally states this refresh algorithm. 
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Version Token Enabled Data Stores Several data stores support the creation of persistent version tokens in 

databases [13]. These version tokens can be queried to enquire for the state of the data in the specific shard. 

The architecture represented in figure 2 assumes support for version tokens in the datastores. 

In the next section, the results of deploying the architecture on cloud servers are presented. 

 

4. Quantitative Analysis 

 

4.1. Cloud Setup and Sharding Schema 

 

 
 

Figure 3: Basic setup 

 

The setup used to obtain the quantitative metrics was built on virtual private servers (VPS) obtained from the 

cloud service provider - cloudatcost [5]. This is shown in figure 3, which also depicts the flow of updates 

through the setup. Four VPS were used to deploy the components of the system. The VPS were Ubuntu based, 

with 6 GB RAM and 100 GB of hard disk each. The client and the prefetch cache were written in Python, 

whereas the central arbitrator and the shards were MySQL 5.7 servers. 

 

The client, the prefetch cache and the central arbitrator were deployed on the same VPS. The central arbitrator 

in this case was a database server (MySQL) in an asynchronous replication setup with the servers that were 

part of the shards. If the central arbitrator were locked for updates, it would also stop the flow of updates to 

the shards. Queries from the client were routed through the prefetch cache. If the prefetch cache contained the 

results of the query, it is returned to the clients directly. Otherwise, the pre-fetch cache fetches the results from 

the servers and returns them to the client. 
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Figure 4: MySQL Employee Schema 

 
Figure 4 contains the Entity Relationship diagram of the schema used to store the data that was sharded. The 

schema represents the popular Employees Sample Database [12], which helps provide a large base of data 

spread over six separate tables. This structure is simple and easy to visualize, while at the same time being 

comprehensive. The employee database was sharded using the emp_no as the sharding key. 

 

The schema was populated with 100 first names and 1000 last names. A full join of these two generated 

100000 unique names. The emp_no was changed to an auto-generated column to generate primary keys. For 

each employee a birth_date and hire_datewere randomly generated. An insert trigger was created on the 

employees table for generating the salary history of an employee starting from the joining date to the current 

date. Each employee was assigned a department from one of the 9 available departments. 

 
A simple range based partitioning scheme was used to distribute the data across the shards. In the range based 

scheme employees with emp_no 0 – 9999 were placed in shard 1, emp_no 10000 - 19999 were placed in 

shard 2 and so on. An increment of the salary of all the employees by 1 was used as the global update 

operation. The global update was performed at random intervals through the central arbitrator. 

 

Listing 1: Table Scan Query 

SELECT COUNT( ∗ ) FROM ( 

  SELECT S.emp_no, E.first_name, E.last_name, MAX(S.salary) 

  FROM Salaries AS S, Employees AS E, 

  WHERE S.emp_no = E.emp_no 

        AND S.emp_no< %(max)s 

        AND S.emp_no> %(min)s 
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  GROUP BY S.emp_no 

) 
 

The query in listing 1 was used to generate load and also for latency measurements. The query was designed 

to perform a full scan of the data in the shard. 

 
4.2. Quantitative Analysis 

 

 
Figure 5: Latency (in ms) for 100 requests in each shard N (1 - 9) 

 

Figure 5 plots the latency of 100 requests for each shard setup. It should be noted that the latencies are in 

milliseconds. It can be seen from the figure that barring a few spikes that can be accounted for by unreliable 

performance of the cloud machines and the network, the latency numbers obtained are uniform across the 

shards. From the graph it is safe to conclude that the proposed architecture performs extremely well as the 

number of shards increases. 

 
Figure 6: Latency (in ms) for 100 requests for shard counts 1 and 5 

 

Figure 6 plots the latency of the requests in the unsharded setup (N = 1) against the setup having 5 shards. The 

impact of the unreliable cloud machines and the network can be seen in the unsharded setup, too. Analysis of 
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the reason for the prominent spikes in the sharded setup revealed that they coincided with the times when the 

result map was locked for updating from the semantic caches. 

 

It can be observed that the spiking latencies are not clustered and that the latency in the unsharded case is very 

similar to the latency of the requests in the sharded case. This shows that with the proposed architecture the 

performance of monotonic reads is not impacted by sharding. Thus, the architecture leverages the reduced 

consistency guarantees very efficiently. 

 
Table 1: Mean and Median latency (in ms) of 100 requests in each shard N (1- 9) 

 

Shards (N) Mean Median 

1 331.66 327.05 

2 518.83 379.05 

3 361.06 346.57 

4 349.00 344.22 

5 352.11 332.51 

6 372.76 351.10 

7 370.88 371.76 

8 377.50 360.17 

9 418.49 381.65 

 

The mean and median of the obtained latencies over the 100 observations were also calculated to find the 

average performance of the proposed architecture. The obtained measures of central tendency are presented in 

table 1 and plotted in figure 7. 

 
Figure 7: Mean and Median latency (in ms) of 100 requests in each shard N (1- 9) 

 

It can be seen that, in spite of the spike caused due to cloud server and network performance, the observations 

are still close to each other. This indicates that the average latency is not influenced by the change in 

partitioning. The architecture thus shows excellent scaling for the central tendency measures across increasing 

shards. 

 

A point worth noting is that averages are prone to being heavy influenced by the outliers. The median, on the 

other hand, is relatively free of spikes. However, for the given observations both the mean and the median are 

within acceptable boundaries. 
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Thus, it can be concluded from the quantitative analysis that the architecture scales with almost no change in 

performance as the number of shards increases. Hence it provides a very efficient solution for consistent 

monotonic reads in the presence of global updates. 

 

5. Conclusion and Future Work 

 

This paper looks in detail at the existing theory behind client-centric consistency, and monotonic reads in 

particular. The shortcomings of the existing theory surrounding read monotonicity when applied to a sharding 

/ partitioning setup are discussed. It is shown that directly extending the existing theory to a partitioned setup 

can result in inconsistency. A novel method is then proposed that can help avoid inconsistency without 

affecting the performance the user will see from monotonic reads. This method is implemented on the cloud, 

and as shown the method performs well even as the number of shards increases. 

 

It should be noted that the paper deliberately focuses on read monotonicity for the sake of simplicity and to 

emphasize the issues that arise when migrating to a sharded setup. Each of the client-centric models offers 

additional complexity and challenges that should be addressed on a case-by-case basis. Analysis of these 

models on a sharded setup would offer considerable scope for research. 
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