
Periodicals of Engineering and Natural Sciences ISSN 2303-4521

Vol. 7, No.1, June 2019, pp.109-124

Available online at: http://pen.ius.edu.ba

 109

Using machine learning for intelligent shard sizing on the cloud

Narayanan Venkateswaran
1
, Anurag Shekhar

2
, Suvamoy Changder

3
 and

Narayan C. Debnath
4

1Department of Computer Science and Engineering, National Institute of Technology Durgapur, India
2MySQL Oracle India Pvt Ltd., India

3Department of Computer Science and Engineering, National Institute of Technology Durgapur, India
4Department of Software Engineering, Eastern International University, Vietnam

Article Info ABSTRACT

Received Dec 31
st
, 2018

 Sharding implementations use conservative approximations for determining

the number of cloud instances required and the size of the shards to be stored

on each of them. Conservative approximations are often inaccurate and result

in overloaded deployments, which need reactive refinement. Reactive

refinement results in demand for additional resources from an already

overloaded system and is counterproductive.

This paper proposes an algorithm that eliminates the need for conservative

approximations and reduces the need for reactive refinement. A multiple

linear regression based machine learning algorithm is used to predict the

latency of requests for a given application deployed on a cloud machine. The

predicted latency helps to decide accurately and with certainty if the capacity

of the cloud machine will satisfy the service level agreement for effective

operation of the application. Application of the proposed methods on a

popular database schema on the cloud resulted in highly accurate predictions.

The results of the deployment and the tests performed to establish the

accuracy have been presented in detail and are shown to establish the

authenticity of the claims.

Keyword:

Machine Learning

Sharding

Horizontal Partitioning

Cloud

Server Sizing

Deployment Planning

Resource Allocation

Data Sizing

Corresponding Author:

Suvamoy Changder,

Department of Computer Science and Engineering,

National Institute of Technology Durgapur,

Mahatma Gandhi Avenue, Durgapur 713209,

West Bengal, INDIA

Email: suvamoy.nitdgp@gmail.com

1. Introduction

Any increase in the number of users of an application causes the data stored and used by the application to

increase. This raises the demand for storage and processing resources. Since the cloud allows for such on-

demand scaling of resources, it is a popular choice for similar applications requiring elastic backends [16].

Sharding topologies split the database into multiple shards and store one or more shards in each cloud instance

[11] [18]. Resharding operations, shard splits and merges, are done on demand by leveraging the elasticity

provided by the cloud instances. Several datastores with successful and popular sharding implementations

have added elastic extensibility on the cloud [6] [26].

Sharding implementations distribute the data uniformly across the set of available servers [23] [27]. If the

uniform distribution causes workload in excess of server capacity, the amount of data stored is refined

reactively.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

110

Reactive refinement is often performed after the load spike is detected on a shard. Refining shards imposes an

additional workload to the system, and can prove to be inefficient.

This paper proposes an application specific, machine learning based partitioning scheme as an alternative for

the uniform distribution of data across servers. The methods proposed in this paper allow for accurate server

sizing and reduce the need for reactive refinement in an application specific sharding solution. Unlike the

existing solutions, the proposed solution attempts to create accurate partitions from the beginning by learning

from empirical and existing data.

section 2 talks about existing sharding solutions, their use of reactive refinement and the associated problems.

section 3 on page 4 proposes the predictive sharding scheme. The proposed method is tested quantitatively in

section 4 on page 7 and it is shown that the proposed methods help create efficient shards, given a Service

Level Agreement (SLA) for application latency.

2. Background and Applicability

This section begins with a brief introduction to the distributions created by popular sharding setups. The need

for reactive refinement, its downsides and its alternatives are also discussed in detail. This is followed by an

explanation for SLA, its implication for applications and the motivation behind relating it to shard sizes and

other database and system parameters.

2.1. Background

Existing sharding implementations begin with a conservative estimate of the number of cloud server instances.

The data items are distributed across the servers by using consistent hashing [5] [19] [2]. Consistent hashing

maps the sharding key to a server in the topology. This is accomplished by using a hashing function that

operates on the sharding key. The range of values of the hash function is referred to as a hash ring. For

example, MD5 is a popular hashing function that forms a ring of values from 0 to 2
128

-1.

Figure 1: Creating Partitioning Buckets

A data item is mapped to a position on the MD5 hashing ring by applying the MD5 hashing function on the

sharding key of the data item. Consider, for example, an employee schema that is sharded on employee ID. A

data item with an employee ID as EMP_ID is mapped to a position in the hash ring by using the value of

md5(EMP_ID). Thus each data item is being mapped to a unique position on the hash ring.

The consistent hashing implementation divides the MD5 hash ring [20] into multiple equal size ranges as

shown in fig. 1. Each of these ranges is referred to as a virtual partition. Equal number of virtual partitions are

distributed to each server in the topology.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

111

In fig. 1 the hash ring is divided into 16 virtual partitions. The hashing starts with a conservative estimate of 4

servers. Each server is associated with four virtual partitions.

Consistent hashing distributes the data uniformly across the servers. This is achieved by virtue of the

randomness associated with the hashing function [9] [20]. The randomness property ensures an equal

probability of selection for each shard, thus ensuring a uniform distribution over them.

Figure 2: Distribution Using Consistent Hashing

The uniform distribution created is independent of the type or value of the sharding key. Fig. 2 shows four

graphs. The graphs show the distribution of 10000, 100000, 1000000, 10000000 items in the topology

represented in fig. 1. Each graph contains three lines, for three different types of keys. The distribution was

attempted on integer, string and random keys and the data was plotted as a line graph for each key count. It

can be seen from this graph that consistent hashing creates a uniform distribution in each case. It can also be

seen that distribution becomes more uniform as the number of data items increases.

However, uniform distribution is often not ideal and can cause load in excess of what can be handled in a

shard. This can result in overloading the shard server. In such an event the amount of data stored is refined

reactively.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

112

Figure 3: Sharding on the cloud.

fig. 3 shows an example of reactive refinement in the form of a shard split operation. The initial shard setup

contains four shard key ranges, where K represents the key of a data item that is resolved to one of the shard .

1. Shard 1 – [key(0), key(1))

2. Shard 2 – [key(1), key(2))

3. Shard 3 – [key(2), key(3))

4. Shard 4 – [key(3), key(4))

The shard 3 is split into two new shards,

• Shard 3_1 – [key(2), key(S))

• Shard 3_2 – [key(S), key(3))

The range [key(S), key(3)) is moved into a new cloud instance. Application logic is used to route queries to

the shard containing the key range relevant to the query. For example, if a query is fired for a data item whose

key value K1 is in the range key(1) < K1 < key(2), the query is routed to shard 2.

Fine granularity reactive refinement was discussed in detail in the E-Store framework [22] [4]. There has been

active research on predictive provisioning. P-Store [23] proposes a dynamic algorithm for predicting load and

automatically scaling the servers. Although P-Store addresses the problem of reactive partitioning during

overloads, it does not address the problem of disproportionate allocation of data caused by uniform

distribution. Thus, the actual cause of reactive partitioning is not addressed by P-Store.

2.2. Applicability

Applications serve responses within a predetermined SLA. Addressing requests within the SLA is of prime

importance, especially for online services. An online shopping website could lose customers if it takes too

much time to respond to customer requests.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

113

Uniform distribution of load does not always result in accurate partition sizes and desired SLAs. Existing

sharding implementations reactively refine the uniform distributions to produce accurate shard sizes.

Figure 4: Response Times

Fig. 4 shows the response times of such an application with SLA violations circled in red [15]. Such SLA

violations trigger repartitioning. Reactive partitioning of this nature places additional demand for resources on

an already overloaded system. However, if it were possible to predict appropriate sizes for a given cloud

instance, the number of reactive refinements could be drastically reduced.

Consistent hashing in itself does not take into account the performance of an application for a given shard size

on the target server. Assuming uniform load, the maximum size of the data that can be deployed on a given

server instance while still managing to meet SLA expectations depends on several parameters. These include

application specific metrics, server capacity, the promised SLA, etc. By correlating these parameters with the

latency metrics from the application, the appropriate data size can be determined. Since the parameters are

application specific and vary with each deployment, the method proposed must be generic enough to be

applied to any setup. Also, there might be several parameters that have different degrees of influence. It can be

very difficult to determine, manually, the exact relationship between these parameters and their influence on

shard size.

In the next section we consider how all the parameters influencing application performance can be taken into

account and their degree of influence be accurately determined for correct shard size prediction.

3. Proposed Implementation

3.1. Intuition

When an application runs on a given server configuration, there are several parameters that affect the response

time of the application. The parameters can be broadly classified into,

• System Level - e.g. RAM, CPU cores, etc.

• Application Level - e.g. Data size, Buffer Size, Etc.

Let the latency be represented by Y, while the system level and application level parameters are given by

RAM (X1), CPU (X2), Data size (X3) and Buffer size (X4). The relationship between latency and a system /

application level parameter is represented by eq. (1).

Y α X1 (1)

 PEN Vol. 7, No. 1, June 2019, pp.109-124

114

This can in turn be expressed as,

Y = c1X1 + b1 (2)

In eq. (2) c1 represents the weight of the parameter and can be interpreted as a quantitative representation of

the influence of the parameter X1 on the latency. The larger the weight, the larger the influence of the

parameter on the latency.

A summation of eq. (2) over all the system and application level parameters can be represented by eq. (3),

Y = c0 + c1X1 + c2X2 + c3X3 + c4X4 (3)

Y is a dependent variable, while X1, X2, X3, X4 are referred to as independent variables. Thus, eq. (3) predicts

the latency, assuming RAM, CPU, Data size and Buffer size are known. This equation forms the underlying

principle of a multiple linear regression model [24] [13].

3.2. Building the prediction model

The prediction model is built from metrics collected by running the applications on heterogenous cloud

configurations. The metrics collected can be classified into:

1. System Metrics - Collected from the cloud machine on which the application is deployed

2. Application Metrics - Collected through observing application performance

The system metrics involve parameters like RAM and CPU usage, collected during application operation. The

application metrics involve metrics like latency, data size, writes, reads, etc. The collection is done over

multiple data points (> 100) and averaged to even out spikes. The application and the collection process are

explained in greater detail in section 4 on page 7.

The collected metrics are used to form training and test sets using the K-fold cross-validation method. K-fold

cross-validation divides the dataset into K partitions and uses each in turn for testing. When one of the

partitions is used for testing the rest are used for training. Repeating this K times ensures that all the partitions

are used for testing. From this, the best-fitted parameters are used to build and validate the model. [1] [12].

3.3. Validating the prediction model

After collecting data, the parameters collected need to be analyzed to identify the most relevant ones for

regression analysis. The following statistical metrics are used to perform backward elimination on the

parameters to eliminate the irrelevant ones,

 P-Value: The p-value is used to determine the significance of the results. It also helps determine if

there is a linear relationship between the dependent and the independent variables at agiven level of

significance. [10] [21] [17].

The p-value is used to perform a t-test on each parameter and to determine if there is sufficient

evidence of a linear relationship between the dependent and the independent variables at the 5% level

of significance [10] [8].

 Adjusted R-squared: The adjusted R-squared helps determine if a given parameter improves the

model more than expected by chance. The value of the adjusted R-square for the model increases with

the addition of a parameter that improves the model. The value decreases otherwise. [10] [21] [17].

 Variance Inflation Factors (VIFs): Multi-collinearity between parameters in the regression model can

be determined using the VIFs. A large value for the VIF (greater than 10) implies that two parameters

 PEN Vol. 7, No. 1, June 2019, pp.109-124

115

in the regression model are multi-collinear and can be linearly predicted from each other. The

presence of both of the parameters in this case leads to biasing the model [10].

section 4 on the facing page builds an application deployed on the cloud for collecting metrics. The methods

described above are then applied on these metrics to determine the most relevant metrics for predicting the

latency, given a partition size.

3.4. Applying the model for sizing and resource allocation

In this section the basic workflow of collecting metrics (training data) from applications running on the cloud

is discussed. It is then shown how the proposed machine learning algorithm can be used to predict the

performance of a sharding topology. The section also takes a brief look at predictive partitioning.

3.4.1. Collecting metrics from applications running on the cloud

Figure 5: Using the prediction model for making predictions

Over its lifetime of operation, a cloud may host several applications. Many of these applications can be

classified under a common type e.g. Payroll Management, Employee Management, Billing. Gusto, On-Pay,

BambooHR, Xero etc are common examples of popular payroll management applications [25]

A machine learning algorithm will be able to use the information collected from the various deployments of a

particular type of application to make accurate partitioning and sizing decisions for that application. The size

of the training data increases as the number of instances of the application deployed increases. The increase in

the size of the training data automatically increases the accuracy of the predictions made. Thus, a monitoring

layer that classifies the metrics, collected from applications, into its different types will be able to build

accurate prediction layers for each of them. This is shown in the fig. 5.

In the figure A1, A2, A3 ...An are applications running on the cloud. The cloud monitoring layer collects metrics

from all the applications and hands them over to the metrics classifier. The metrics classifier organizes the

metrics into different types. The classified metrics are used as the training data for the machine learning

predictor, that predicts the performance of an application on a given cloud server configuration.

3.4.2. Predicting the performance of a sharding topology

Algorithm 1 Verifying the shard server capacity

1) csm ← Cloud server metrics

2) am ← Application metrics

3) ds ← Size of data on the cloud server

4) sla ← Expected latency of the application

5) predicted_latency← ml_predictor(csm, am, ds,

sla)

6) capacity_estimate ← (predicted_latency − sla)

7) return capacity_estimate

 PEN Vol. 7, No. 1, June 2019, pp.109-124

116

The algorithm 1 accepts the cloud server metrics, the application metrics and the size of the data to be stored

in the shard and returns the expected latency. It returns an integer capacity_estimate that can be interpreted as

follows,

 capacity_estimate < 0: The predicted latency is lesser than the expected latency. A very large negative

value implies that the server metrics have been over estimated and can be reduced.

 capacity_estimate = 0: The predicted latency is same as the expected latency. The server metrics have

been accurately estimated and can be used to get the desired performance.

 capacity_estimate > 0: The predicted latency is greater than the expected latency. A very large

positive value implies that the server capacity estimate is not enough and needs to be increased to get

the desired performance.

The algorithm helps us determine if we should scale down or scale up to meet the required latency. This helps

in the creation of accurate capacity estimations.

3.4.3. Performing predictive partitioning

The machine learning algorithm proposed in this paper can be used together with a time series algorithm to

predict the overload in a given shard. A time series algorithm can be used to determine the load (reads/writes)

on a given shard and also the size of the shard, at a future time. This can be done by applying the algorithm on

samples of the load and size of data at different times. The predicted load and the size of data in the shard can

be used to estimate the latency of requests in the shard at a future time. Periodically applying the time series

algorithm can help determine if the given setup will result in a latency for requests that is much larger than the

expected latency for good performance, thus predicting overload. This is however out of scope for the current

paper.

4. Quantitative Analysis

The methods presented in this paper can be applied to a specific deployment, for multiple deployments from

the same organization or at the cloud provider level itself.

When the methods collected are applied to a specific deployment, the collected metrics become very specific

to that deployment. The data generated in this case would become available only after empirical analysis is

performed on an application deployment in the cloud setup.

Applying these methods at the level of the cloud provider would need a more general collection of metrics. It

will also help to classify the metrics specific to different applications; for example, the metrics collected for a

payroll system would be very different from a system used for facial recognition. However, as the number of

applications deployed on the cloud increases, it would help create recommendation systems which can be used

to build accurate deployment templates depending on the nature of the application.

This section presents the empirical data collected for a specific application deployment and the analysis that

was done on the collected data.

4.1. Application Setup and Data Generation

 PEN Vol. 7, No. 1, June 2019, pp.109-124

117

Figure 6: MySQL Employee Schema

The quantitative analysis was done using a standard employee database schema [14]. The employee database

was sharded using the emp_no as the sharding key. The shards were distributed on cloud servers obtained

from cloudatcost [3]. Queries were run on this sharded setup for obtaining empirical metrics. Regression

analysis was performed over these empirical metrics for building a machine learning model and for using it to

make predictions. The following sections describe the setup used for data generation and follow it up with a

detailed description of how the machine learning regression model is built and the measure of its validity.

Listing 1: Table Scan Query

SELECT COUNT(∗) FROM (

 SELECT S.emp_no, E.first_name, E.last_name, MAX(S.salary)

 FROM Salaries AS S, Employees AS E,

 WHERE S.emp_no = E.emp_no

 AND S.emp_no < %(max)s

 AND S.emp_no > %(min)s

 GROUP BY S.emp_no

)

fig. 6 on the previous page contains the Entity Relationship diagram of the schema used to store the data that

was sharded. The schema represents the popular Employees Sample Database [14], which helps provide a

large base of data spread over six separate tables. This structure is simple and easy to visualize, while at the

same time being comprehensive.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

118

The schema was populated with 5494 first names and 88799 last names. A full join of these two generated

5494 X 88799 unique names. The emp_no was changed to an auto-generated column to generate primary

keys. For each employee a birth_date and hire_date were randomly generated. An INSERT TRIGGER was

created on the employees table for generating the salary history of an employee starting from the joining date

to the current date. Each employee was assigned a department from one of the 9 available departments.

The query in listing 1 was used to generate load and also for latency measurements. The query was designed

to perform a full scan of the data in the shard. Since the number of tuples in the shard corresponds to the size

of the data in the shard, the performance of the query was directly influenced by the size of data in the shard.

This query was fired on multiple client threads and the latencies were measured across multiple iterations of

each of these client threads.

4.2. Cloud Setup
Table 2: Cloud Setup

Server Configuration

VPS 1 2 Virtual Server Cores 2GB RAM

VPS 2 4 Virtual Server Cores 4GB RAM

The setup used to collect empirical metrics was hosted on the cloud provider - cloudatcost [3]. Virtual Private

Servers (VPS) were used to deploy both the application and the database instance.

Two different configurations (for the VPS) were used for creating the setup. The configurations used are

shown in table 2. The application was deployed on one VPS, while the database was deployed on the other.

Figure 7: Cloud Setup

The two VPS were alternately used to deploy the application and the database, as seen in fig. 7. Data was

collected from both these configurations. The advantages of doing so were twofold,

 Avoided bias introduced by a configuration.

 Ensured that the data collected represented the relationship between the parameters accurately.

4.3. Data Size and Metrics

The collected metrics helped establish the correlation between the shard size on a given setup and the latency.

In order to create accurate predictions, a large volume of data needs to be collected. However, it would

become difficult to present the entire set within this paper. Hence, this paper presents a reduced subset of the

data size and metrics.

The following metrics were chosen for performing the regression analysis.

Latency The latency of a full table scan is indicative of the performance of the application. Predicting the

latency of a table scan query given the data size and cloud machine configuration helps in starting with an

ideal cloud topology, given the performance requirements of the application.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

119

Tuple Count The tuple count is directly proportional to the size of the data handled by the query.

innodb_buffer_pool_size The innodb_buffer_pool_size [7] indicates the amount of memory used by the

MySQL storage engine to cache the able and the index data. A lage value for this reduces the amount of disk

I/O required to access the same relation data more than once.

Hence the innodb_buffer_pool_size configuration parameter was picked due to its correlation with the RAM

size of the cloud server on which the MySQL Server is deployed.

4.4. Data Collected

The goal of using multiple client threads to run the query was to create a real-time simulation of load.

However, its performance is impacted due to contention with the other client threads. Thus, for a given

configuration the spikes introduced due to the contention between the threads need to be evened out before

performing regression analysis on the data.

Table 3: Data Set

Data Size (Tuple

Count)

innodb_buffer_pool_

size (MB)

Latency (ms)

100000 64 1467.5

200000 64 3209.5

300000 64 5723.35

400000 64 7926.8

500000 64 10415.05

100000 96 1498.75

200000 96 3109.5

300000 96 5777.5

400000 96 7902.5

500000 96 12672.5

100000 128 1341.25

200000 128 2769.75

300000 128 4469

400000 128 6094.75

500000 128 8103.75

100000 256 1317.5

200000 256 2645.5

300000 256 4348.5

400000 256 5866

500000 256 7635

Forty data points were collected on each thread for each combination of innodb_buffer_pool_size and data

size. Four hundred data points were collected for each combination of innodb_buffer_pool_size and data size.

The medians of these points were used to fix the latency for the innodb_buffer_pool_size and data size

combination. A subset of this data is shown in the table 3.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

120

Figure 8: Latency vs Data Size

Each of the chosen metrics has a linear relation with the observed latency. This is shown in the graphs in fig. 8

and fig. 9. The graph in fig. 8 shows the relationship between the data size and the latency. As the size of the

data increases the latency of the query increases, as expected.

Figure 9: Latency vs InnoDB Buffer Pool Size

The graph in fig. 9 shows the relationship between the InnoDB buffer pool size and the latency. As the buffer

size increases the latency drops, as expected. However, as the buffer size crosses 125 MB the latency benefit

becomes less evident. 125 MB represents the threshold limit for the InnoDB buffer pool size for significant

performance benefit given the available data size.

4.5. Building the Prediction Model

 PEN Vol. 7, No. 1, June 2019, pp.109-124

121

Figure 10: Test Latency vs Predicted Latency

The median of the latency observed on each of the threads and the overall median across threads on each

configuration were used to create the data set. The K-Fold cross validation technique was used to form the

training and the test sets. table 4 illustrates the test data vs the predicted latencies in milliseconds obtained by

using the 5-Fold cross validation technique for 15 latencies from the collected data. The scatter graph for the

same is presented in fig. 10.

Table 4: Test Latency vs Predicted Latency

Test Latency (ms) Predicted Latency (ms)

1467.5 1616.55

3209.5 3511.31

5723.35 5406.06

7926.8 7300.82

10415.05 9195.58

1341.25 1279.75

2769.75 3174.51

4469 5069.26

6094.75 6964.02

8103.75 8858.78

1317.5 606.15

2645.5 2500.91

4348.5 4395.66

5866 6290.42

7635 8185.17

4.6. Parameter Validation

4.6.1. P – Value
Table 5: P-Value

SNo Parameter Value

1 innodb_buffer_pool_size 0.003

2 data_size 0.000

The p-value for the parameters in table 3 was calculated and it was found to be less than 0.05. This showed

that there is a linear relationship between the dependent and the independent variables at a 5% level of

 PEN Vol. 7, No. 1, June 2019, pp.109-124

122

significance. This also validates our use of the multiple linear regression model for making predictions. The

calculated p-values are shown in table 5.

4.6.2. Adjusted R-squared

The adjusted R-squared for the data set was found to be 0.988. This value is closer to 10. When the

innodb_buffer_pool_size was removed, the value was 0.978. When data_size was removed the value was

found to be 0.496. Since removing either one of the parameters results in reducing the adjusted R-squared

value, it can be established that the parameters improve the model more than might be attributable to chance.

4.6.3. Variance Inflation Factors (VIFs)

Table 6: Variance Inflation Factors (VIFs)

SNo Parameter Value

1 innodb_buffer_pool_size 1

2 data_size 1

The variance inflation factors for both the parameters were calculated and were found to be lesser than 5.

These VIFs are shown in the table 6. This shows that the variables do not contain redundant information and it

also confirms the absence of multicollinearity.

5. Conclusion and future work

This paper showed how machine learning can be used to make accurate resource planning and sizing

decisions. An application was created and deployed on the cloud. Empirical analysis was performed on this

application for collecting metrics. Regression analysis was performed on the collected metrics for predicting

the latency of the application on a given setup. P-Value, Adjusted R-squared and Variance inflation factors

were used to establish the validity of the regression analysis. The predicted values were plotted against the

actual values to verify the accuracy of the proposed methods.

A first step to extending the work in this paper would be to test the ideas on a more generic deployment at the

organization level and then move up to the level of a cloud provider.

The next step would be to analyze the growth of the data on the shards and predict when it will hit the

threshold predicted. Time series algorithms present one way of analyzing the data growth in the shards. Once

it is possible to predict when the data size will hit the threshold, it should be possible to initiate the refinement

proactively, rather than reactively.

The methods presented in this paper merely scratch the surface of the world of possibilities that surrounds the

building of intelligent clouds. In addition to the obvious reduction in cost and efficient utilization these

methods achieve, they set the platform for building intelligent recommendation systems for creating self-

managed clouds.

Acknowledgments

I would like to express my deepest gratitude to Dr Suvamoy Changder and Dr Narayan C. Debnath without

whose guidance and encouragement, the paper would not have taken shape.

References

[1] Lionel C. Briand et al. “An Assessment and Comparison of Common Software Cost Estimation Modeling

 Techniques”. In: Proceedings of the 21
st
 International Conference on Software Engineering. ICSE ’99. Los

 Angeles, California, USA: ACM, 1999, pp. 313–322.

 PEN Vol. 7, No. 1, June 2019, pp.109-124

123

[2] Cassandra Architecture. https://docs.datastax.com/en/archived/cassandra/2.0/. Accessed: Jan, 2019.

[3] Cloud At Cost. http://www.cloudatcost.com/. Accessed: October, 2018.

[4] Carlo Curino et al. “Schism: A Workload-driven Approach to Database Replication and Partitioning”. In:

 Proc. VLDB Endow. 3.1-2 (Sept. 2010), pp. 48–57.

[5] Deniz Hastorun et al. “Dynamo: amazon’s highly available key-value store”. In: In Proc. SOSP. 2007, pp.

 205–220.

[6] Chao-Wen Huang et al. “The improvement of auto-scaling mechanism for distributed database - A case

 study for MongoDB”. In: Network Operations and Management Symposium (APNOMS), 2013 15th Asia

 Pacific. Sept. 2013, pp. 1–3.

[7] InnoDB Buffer Pool Size. https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html. Accessed:

 January, 2019.

[8] S. Jamil et al. “Impact of facebook intensity on academic grades of private university students”. In: 2013

 5th International Conference on Information and Communication Technologies. Dec. 2013, pp. 1–10.

[9] David Karger et al. “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving

 Hot Spots on the World Wide Web”. In: In ACM Symposium on Theory of Computing. 1997, pp. 654–

 663.

[10] Peter Kennedy. A Guide to Econometrics, 5th Edition. 5th ed. Vol. 1. The MIT Press, 2003.

[11] P. Kookarinrat and Y. Temtanapat. “Analysis of Range-Based Key Properties for Sharded Cluster of

 MongoDB”. In: Information Science and Security (ICISS), 2015 2nd International Conference on. Dec.

 2015, pp. 1–4.

[12] John J. Marciniak. Encyclopedia of Software Engineering. 2nd. New York, NY, USA: John Wiley &

 Sons, Inc., 2002. isbn: 0471210072.

[13] Floyd A. Miller. “Improving Heuristic Regression Analysis”. In: Proceedings of the 6
th

 Annual Southeastern Regional Meeting of the Associatio for Computing Machinery and National Meeting

 of Biomedical Computing- Volume 1. ACM-SE 6. Chapel Hill, North Carolina: ACM, 1967, pp. 1–23.

[14] MySQL Employee Sample Database. https://dev.mysql.com/doc/employee/en/sakila-structure.html.

 Accessed: January, 2019.

[15] Sam Newman. Building Microservices. O’Reilly Media, Inc., Feb. 2015.

[16] Oracle MySQL Cloud Service. https: / / www. mysql.com/cloud/. Accessed: 2018-06-22.

[17] M. G. E. Peterson. “Multiple comparisons and the p-value in evaluation”. In: Proceedings 12th IEEE

 Symposium on Computer-Based Medical Systems (Cat. No.99CB36365). 1999, pp. 260–263.

[18] Man Qi et al. “Big Data Management in Digital Forensics”. In: Computational Science and Engineering

 (CSE), 2014 IEEE 17th Internationa Conference on. Dec. 2014, pp. 238–243.

[19] Riak Architecture. https://docs.basho.com/riak/kv/2.2.3/using/reference/v3-multi-datacenter/architecture/.

 Accessed: January, 2019.

[20] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321. Apr. 1992.

[21] T. Rögnvaldsson et al. “Estimating p-Values for Deviation Detection”. In: 2014 IEEE Eighth

 International Conference on Self-Adaptive and Self Organizing Systems. Sept. 2014, pp. 100–109.

[22] Rebecca Taft et al. “E-store: Fine-grained Elastic Partitioning for Distributed Transaction Processing

 Systems”. In: Proc. VLDB Endow. 8.3 (Nov. 2014), pp. 245–256.2735514.

[23] Rebecca Taft et al. “P-Store: An Elastic Database System with Predictive Provisioning”. In: Proceedings

 of the 2018 International Conference on Management of Data. SIGMOD ’18. Houston, TX, USA: ACM,

 2018, pp. 205–219. isbn: 978-1-4503-4703-7.

[24] Hee Beng Kuan Tan, Yuan Zhao, and Hongyu Zhang. “Conceptual Data Model-based Software Size

 Estimation for Information Systems”. In: ACM Trans. Softw. Eng. Methodol. 19.2 (Oct. 2009), 4:1–4:37

[25] Typical cloud applications. https: //financesonline.com/top-15-payroll-management-software-systems/.

 Accessed: October, 2018.

[26] Xiaolin Wang, Haopeng Chen, and Zhenhua Wang. “Research on Improvement of Dynamic Load

 Balancing in MongoDB”. In: Dependable, Autonomic and Secure Computing (DASC), 2013 IEEE 11
th

 International Conference on. Dec. 2013, pp. 124–130.

[27] Wikipedia page view statistics. https://dumps.wikimedia.org/other/pageviews/2018/. Accessed: January,

 2019.

https://docs.datastax.com/en/archived/cassandra/2.0/
http://www.cloudatcost.com/
https://dev.mysql.com/doc/employee/en/sakila-structure.html
https://docs.basho.com/riak/kv/2.2.3/using/reference/v3-multi-datacenter/architecture/
https://dumps.wikimedia.org/other/pageviews/2018/

 PEN Vol. 7, No. 1, June 2019, pp.109-124

124

Authors

Narayanan Venkateswaran is a researcher in the Computer Science and

Engineering Department of National Institute of Technology Durgapur. He

has over 13 years of experience in the industry having worked in Enterprise

DB, Oracle, Amazon, Microsoft and Sun Microsystems. He is an open

source committer in the Apache Derby project and has contributed

extensively to several databases, including JavaDB and MySQL.

Anurag Shekhar is a Senior Principal Member Technical Staff at Oracle

India Pvt Ltd. He has over 22 years of experience in the Software industry,

having worked in Sun Microsystems, IBM and Oracle. He has contributed

heavily to several databases including, DB2, MySQL and JavaDB. He has

mentored several junior engineers and has worked extensively in the area

of database internals and file systems.

Dr Suvamoy Changder is an Assistant professor in the Department of

Computer Science and Engineering of National Institute of Technology

Durgapur. He completed his PhD in Information Security, with

specialization in Steganography and watermarking, from NIT Durgapur.

He has over 15 years of teaching experience in addition to several years in

the information technology industry before that. Some of the subjects that

Dr Suvamoy handles include Data Structures, Design and Analysis of

Algorithms, Information and Coding Theory, Database Management

Systems.

Dr. Narayan C. Debnath has been a Full Professor of Computer Science

since 1989 and currently the Chairman of Computer Science at Department

of Software Engineering, Eastern International University, Vietnam. He is

also serving as the Director and Past-President of the International Society

for Computers and Their Applications (ISCA). Dr. Debnath is a recipient

of a Doctorate degree in Computer Science and a Doctorate degree in

Applied Physics (Electrical Engineering). In the past, he served as the

President, Vice President, and Conference Coordinator of the International

Society for Computers and Their Applications (ISCA), and has been a

member of the ISCA Board of Directors since 2001. He served as the

Acting Chairman of the Department of Computer Science at Winona State

University and received numerous Honors and Awards. During 1986-1989,

Dr. Debnath was a faculty of Computer Science at the University of

Wisconsin-River Falls, USA, where he was nominated for the National

Science Foundation Presidential Young Investigator Award in 1989.

