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ABSTRACT   

This paper dealt with the autoregressive model when the coefficient is random. The residuals series of the 

model exhibit two behaviors, kurtosis, and volatility. These volatilities are usually seasonal in the real 

financial data, which always uses GARCH models. So, the use of RCA and GARCH models together will 

provide an appropriate framework to study and analysis of time-varying volatility as well as the presence of 

seasonal effects in financial series. Applying copper's daily economic close prices when the errors series are 

distributed, as usual, 𝑡(3)  and 𝑡(7) distributions are achieved. Therefore, the RCA(1) model, when residuals 

follow the GARCH(1, 0)𝑥(0, 1)5 model together, is the appropriate model. 
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1. Introduction  

The volatility can generally be defined as deviations and unexpected movements that appear in time series, 

especially financial ones. Therefore, most financial economists are concerned with return volatilities as they 

measure risk. 

Other studies have shown that the pattern of much financial time series, such as stock returns, exhibit two 

behaviors, leptokurtosis, and time-varying volatility (Engle, [8]; Nicholls & Quinn, [13]; Bollerslev, [3]). Thus, 

the appropriate model for formulating the behaviors together is the generalized autoregressive conditional 

heteroscedasticity (GARCH) and the random coefficient autoregressive (RCA) models. Thavaneswaran et al.  

[15] derive the kurtosis of various GARCH models such as non-Gaussian GARCH, nonstationary, and random 

coefficient GARCH. Thavaneswaran et al. [14] derive the general properties for RCA models with GARCH 

innovations such as mean, variance, and kurtosis under autoregressive assumptions. Frank et al. [10] derive the 

kurtosis of RCA with seasonal GARCH, the variance of the 𝑙-steps ahead forecast errors, and the kurtosis of the 

error distribution. Gorka [6] found out that the RCA-GARCH models can be successfully used for pricing 

options for the dynamics of the volatility. Goryainov and Goryainova [11] proved the asymptotic normality of 

the minor absolute deviations estimate for the autoregressive models with a random coefficient.  In much 

financial time series, such as foreign exchange rates, volatility or seasonal volatility effects and conditional non -

normality can induce the leptokurtosis typically observed in economic data. These features are not appropriate  

for well-known models when used in future forecasting . So, other proper models must be used to study volatility 

or its seasonal effects in financial markets. Accordingly, RCA models have been used with the seasonal GARCH 

model as they provide this framework. 

Our research is designed to study and analyze the Random coefficient Autoregressive Model with seasonal 

volatility innovations (RCA-SGARCH) and using real data of daily world copper price series (minimum prices) 

to estimate the appropriate studied model and then compare it with the same process when the errors series 

distributed as T- distribution with degree of freedom (3) and (5).   

https://creativecommons.org/licenses/by/4.0/
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2. RCA models 

The Random coefficient autoregressive time series were introduced by Nicholls and Quinn [13], and some of 

their properties have been studied recently by Appadoo et al. [2]. RCA models exhibiting extended memory 

properties have been considered in Leipus and Surgallis [12]. A sequence of random variables {𝑦𝑡} is called an 

RCA(1) time series if it satisfies the equations: 

𝑦𝑡 = (𝛽 + 𝑏𝑡) 𝑦𝑡−1+ 𝑒𝑡                                                                (1) 

t ∈ Z, where Z denotes the set of integers, 𝛽 is a real parameter and  

(i) ( 
𝑏𝑡

𝑒𝑡
 ) ~𝑁 ((

0
0

) , (
 𝜎𝑏

2 0

0  𝜎𝑒
2)) 

(ii)   𝛽2 + 𝜎𝑏
2< 1.  

 

Where {𝑏𝑡} and {𝑒𝑡} are the errors sequences in the model. According to Nicholls and Quinn [13], condition 

(ii) is necessary and sufficient for the second-order stationarity of {𝑦𝑡}.  

The RCA model parameters are usually estimated using the least squares method [1,4].  

 

Theorem 1. Let {𝑦𝑡} be an RCA(1) time series satisfying conditions (i) and (ii), and let 𝛾𝑦 be its covariance 

function. Then,  

 

(a) E𝑦𝑡  =  0, 𝐸𝑦𝑡
2 =  

𝜎𝑒
2

1−𝛽2−𝜎𝑏
2, the kth lag autocovariance for 𝑦𝑡 is given by 𝛾𝑦(𝑘)  = 

𝛽𝑘𝜎𝑏
2

1−𝛽2−𝜎𝑏
2 and the 

autocorrelation for 𝑦𝑡 is 𝜌𝑘  = 𝛽𝑘  for all k ∈ Z.  

(b) If {𝑏𝑡} and {𝑒𝑡} are normally distributed random variables and if 𝑒𝑡 and 𝑏𝑡 are correlated with correlation 

coefficient 𝜌, then the kurtosis 𝐾(𝑦)of the RCA process {𝑦𝑡} is given by  

 

𝐾(𝑦) =
6(𝜎𝑏

2  + 𝛽2 )[1 − 𝛽3  −  3𝛽𝜎𝑏
2 ] +  72𝛽3𝜌2𝜎𝑏

2  + 3[1 − (𝛽2  +  𝜎𝑏
2)][1 −  𝛽3  −  3𝛽𝜎𝑏

2]

 [1 −  𝛽3  −  3𝛽𝜎𝑏
2 ][1 −  6𝛽2𝜎𝑏

2  −  𝛽4  −  3𝜎𝑏
4 ]

 

  

*[1 − (𝛽2  +  𝜎𝑏
2) ] .                                                                                                       (2) 

 

On the other hand, if 𝑒𝑡 and 𝑏𝑡 are uncorrelated, then 𝜌 = 0, and the kurtosis 𝐾(𝑦)of the RCA process {𝑦𝑡} is 

given by: 

𝐾(𝑦)= 
 3[1 − (𝛽2 + 𝜎𝑏

2)
2

]

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4 ]
                                                                     (3) 

 

And if 𝑒𝑡 and 𝑏𝑡 are correlated with correlation coefficient 𝜌, then the skewness  𝑆(𝑦) of the RCA process {𝑦𝑡} 

is given by : 

𝑆(𝑦) =
6𝛽𝜌𝜎𝑏

   [1 −  (𝛽2  + 𝜎𝑏
2)

 
]

1/2

[1 −  𝛽3 −  3𝛽 𝜎𝑏
2   ]

                                                      (4) 

 

If 𝑒𝑡 and 𝑏𝑡 are uncorrelated, then 𝜌 = 0, and the skewness  𝑆(𝑦) = 0. 
 

3. GARCH model 

The general class of these models which introduced by Bollerslev (1986) [3] can be written as: 

 

𝑒𝑡= √ℎ𝑡  𝑍𝑡                                                                            (5) 

ℎ𝑡 = 𝜔 + ∑ 𝛼𝑖 𝑒𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝛽𝑗 ℎ𝑡−𝑗
 𝑞

𝑗=1 ,                                                    (6) 
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Where ℎ𝑡 is the conditional variance of the returns, 𝑍𝑡 is (i.i.d.) random variables with 𝐸𝑍𝑡 = 0 and 𝑉𝑎𝑟(𝑍𝑡) =
0. Let 𝑢𝑡 = 𝑒𝑡

2 − ℎ𝑡 and 𝜎𝑢
2 is the variance of 𝑢𝑡 . Then the model could be as: 

 

𝑒𝑡
2 − 𝑢𝑡 = 𝜔  + ∑ 𝛼𝑖 𝑒𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗 (𝑒𝑡−𝑗

2 − 𝑢𝑡−𝑗)
𝑞
𝑗=1  

[1 − ∑ 𝛼𝑖 𝐵
𝑖 −

𝑝

𝑖=1

∑ 𝛽𝑗 𝐵
𝑗 

𝑞

𝑗=1

] 𝑒𝑡
2 = 𝜔 − ∑ 𝛽𝑗 𝑢𝑡−𝑗

𝑞

𝑗=1

 

𝜙(𝐵)𝑒𝑡
2 = 𝜔 + 𝛽(𝐵)𝑢𝑡,                                                          (7) 

 

Where 𝜙(𝐵) = ∑ 𝜙𝑖 𝐵
𝑖  𝑟

𝑖=1 , 𝜙𝑖 = (𝛼𝑖 + 𝛽𝑖 ) , 𝛽(𝐵) = ∑ 𝛽𝑗 .
𝑞
𝑗=1  

 

4. Multiplicative seasonal GARCH models 

This model can be written as follows [7]:   

𝑒𝑡 =  √ℎ𝑡  𝑍𝑡                                                                                (8) 

𝜃(𝐵)𝛩(𝐿)ℎ𝑡 = 𝜔 + 𝛼(𝐵)𝑒𝑡
2

 
                                                         (9) 

Where {𝑍𝑡} is (i.i.d.) random variables with 𝐸𝑍𝑡 = 0 and 𝑉𝑎𝑟(𝑍𝑡) = 0.  

𝛼(𝐵) =  𝜃(𝐵)𝛩(𝐿) − 𝜙(𝐵)Ф(𝐿) , 

𝜙(𝐵) = 1 − ∑ 𝜙𝑖 𝐵
𝑖 

𝑝

𝑖=1

, 𝜃(𝐵) = 1 − ∑ 𝜃𝑖 𝐵
𝑖 

𝑞

𝑖=1

 

Ф(𝐿) = 1 − ∑ Ф𝑖 𝐿
𝑖 𝑃

𝑖=1 , 𝛩(𝐿) = 1 − ∑ 𝜃𝑖 𝐿
𝑖 

𝑄
𝑖=1 , and 𝐿 = 𝐵𝑠 

 

Letting 𝑢𝑡 = 𝑒𝑡
2 − ℎ𝑡,  then equation (9) may be written as a seasonal 𝐴𝑅𝑀𝐴 (𝑝, 𝑞)𝑥(𝑃, 𝑄)𝑠 of 𝜖𝑡

2. 

 

𝜃(𝐵)𝛩(𝐿)[𝑒𝑡
2 − 𝑢𝑡]   = 𝜔 + [𝜃(𝐵)𝛩(𝐿) − 𝜙(𝐵)Ф(𝐿)]𝑒𝑡

2
 
 

Then, 

𝜙(𝐵)Ф(𝐿) 𝑒𝑡
2 = 𝜔 +  𝜃(𝐵)𝛩(𝐿)𝑢𝑡                                                    (10) 

5. RCA - SGARCH Model 

The RCA - SGARCH model has been suggested by   ( Frank, Ghahramani & Thavaneswarant, 2011 [11]). Then, 

by using the same transformation when obtaining equation (10),  the general form of the model is given by : 

 𝑦𝑡 = (𝛽 + 𝑏𝑡) 𝑦𝑡−1+ 𝑒𝑡                                                                  (11) 

𝑒𝑡 =  √ℎ𝑡 𝑍𝑡                                                                                    (12) 

𝜙(𝐵)Ф(𝐿) 𝑒𝑡
2 = 𝜔 +  𝜃(𝐵)𝛩(𝐿)𝑢𝑡                                                    (13) 

Where 𝑍𝑡, 𝜙(𝐵), Ф(𝐿), 𝜃(𝐵), and 𝛩(𝐿)  were defined in section 6, and 𝑒𝑡
2, as given in (10), is stationary.  

Consider the RCA(1) −  SGARCH (1, 0)𝑥(0, 1) process: 
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 𝑦𝑡 = (𝛽 + 𝑏𝑡) 𝑦𝑡−1+ 𝑒𝑡                                                               (14) 

𝑒𝑡 =  √ℎ𝑡  𝑍𝑡                                                                                (15) 

(1 − 𝜙𝐵)𝑒𝑡
2 = 𝜔 + (1 − 𝛩𝐿)𝑢𝑡                           (16) 

where 𝑢𝑡 = 𝑒𝑡
2 − ℎ𝑡 , and 𝜓 -weights are given by:  

 𝜓1 = 𝜙 ,..., 𝜓𝑠−1 = 𝜙𝑠−1,  𝜓𝑠  = (𝜙𝑠 − 𝛩)  ,  𝜓𝑠+𝑗 = 𝜙𝑗𝜓𝑠  , 𝑗 ≥ 1. It can be shown that  

∑ 𝜓𝑗
2 =

[1+(𝜙𝑠 −𝛩)2]

1−𝜙2
∞
𝑗=0 . Then we have the following expectations of to find the kurtosis of the process. 

𝐸(𝑦𝑡
2) =

𝐸(𝑒𝑡
2)

[1 − 𝛽2 − 𝜎𝑏
2]

 

 

𝐸(𝑦𝑡
4) =  

6  [𝜎𝑏
2 + 𝛽2]{𝐸(𝑒𝑡

2)}2

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 6𝛽2𝜎𝑏

2 − 𝛽4 − 3𝜎𝑏
4]

+
𝐸(𝑒𝑡

4)

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
 

 

𝑘(𝑦) =  
6  [𝜎𝑏

2+𝛽2][1−(𝛽2+𝜎𝑏
2)]

[1−6𝛽2𝜎𝑏
2−𝛽4−3𝜎𝑏

4]
+

[1−(𝛽2+𝜎𝑏
2)]

2

[1−6𝛽2𝜎𝑏
2−𝛽4−3𝜎𝑏

4]
  𝑘(𝑒)                  (17) 

If 𝑍𝑡 is distributed as normal and 𝑏𝑡 is noise process and correlated 𝐸𝑏𝑡 = 0 and 𝑉𝑎𝑟(𝑏𝑡) = 𝜎𝑏
2. Then, 

𝐸(𝑦𝑡
2) =

𝐸(ℎ𝑡)

[1 − 𝛽2 − 𝜎𝑏
2]

 

𝐸(𝑦𝑡
4) =  

6  [𝜎𝑏
2 + 𝛽2]{𝐸(ℎ𝑡)}2

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 6𝛽2𝜎𝑏

2 − 𝛽4 − 3𝜎𝑏
4]

+
3𝐸(ℎ𝑡

2)

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
 

 

𝑘(𝑦) =  
6  [𝜎𝑏

2 + 𝛽2][1 − (𝛽2 + 𝜎𝑏
2)]

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
+

3[1 − (𝛽2 + 𝜎𝑏
2)]

 

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
   

𝐸(ℎ𝑡
2)

{𝐸(ℎ𝑡)}2
 

where, 

𝐸(ℎ𝑡
2)

{𝐸(ℎ𝑡)}2
=

1

𝐸(𝑍𝑡
4) − {𝐸(𝑍𝑡

4) − 1} ∑ 𝜓𝑗
2 ∞

𝑗=0

                                              (18) 

For a standard normal variate  𝐸(𝑍𝑡
4) = 3, then the kurtosis of 𝑦𝑡 is: 

𝑘(𝑦) =  
6  [𝜎𝑏

2+𝛽2][1−(𝛽2+𝜎𝑏
2)]

[1−6𝛽2𝜎𝑏
2−𝛽4−3𝜎𝑏

4]
+

3[1−(𝛽2+𝜎𝑏
2)]

 

[1−6𝛽2𝜎𝑏
2−𝛽4−3𝜎𝑏

4]{3−2
[1+(𝜙𝑠 −𝛩)2]

1−𝜙2 }
                                    (19) 

The forecast error variance of the series 𝑦𝑛+1 is denoted by 𝑒𝑛
(𝑦)

(𝑙), where (𝑙) is the steps-ahead, and the 

variance of 𝑒𝑛
(𝑦)

(𝑙) for  the 𝑅𝐶𝐴(1) −  𝐺𝐴𝑅𝐶𝐻(1, 0)𝑥(0, 1)𝑠  model is given by: 

𝑣𝑎𝑟 [𝑒𝑛
(𝑦)

(𝑙)] =
𝜔(1 − 𝛽2)

(1 − 𝜙  )[1 − (𝛽2 + 𝜎𝑏
2)]

∑ 𝐵2𝑗  

𝑙−1

𝑖=1

                                       (20) 
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6. Estimating RCA (1) 

 Let 𝑦𝑛, 𝑦𝑛, … , 𝑦𝑛 be a sample size 𝑛 observations, and the RCA(1) process in (1)  may be written as follows [1]: 

𝑦𝑡 =  𝛽 𝑦𝑡−1+ 𝑣𝑡                                                                   (21) 

Where 𝑣𝑡 = 𝑏𝑡  𝑦𝑡−1+ 𝑒𝑡  ,  

then the least squares estimate 𝛽̂𝑙𝑠of 𝛽 is given by: 

 

𝛽̂𝑙𝑠 =
∑ 𝑦𝑡𝑦𝑡−1

𝑛
𝑡=2

∑   𝑦𝑡−1
2𝑛

𝑡=2

                                                                          (22) 

After estimating  𝛽, we may then estimate 𝜎𝑏
2 for all 𝑖 and 𝜎𝑒

2 by considering equation (21) such that 

𝑣𝑡,𝑙𝑠 = 𝑦𝑡 − 𝛽̂𝑙𝑠𝑦𝑡−1                                                                         (23) 

𝜎𝑏,𝑙𝑠
2 =

∑ 𝑣𝑡,𝑙𝑠
2 (𝑦𝑡−1

2 − 𝑧̅ )𝑛
𝑡=2

∑   𝑦𝑡−1
4𝑛

𝑡=2 − 𝑧̅2
                                                               (24) 

𝜎𝑒,𝑙𝑠
2 =

∑ 𝑣𝑡,𝑙𝑠
2  − 𝜎𝑏,𝑙𝑠

2 𝑧̅  𝑛
𝑡=2

𝑛 − 1
                                                                  (25) 

Where 𝑧̅ = ∑
𝑦𝑡−1

2

𝑛−1
𝑛
𝑡=2  

7. Application 

The sample representing the time series of copper's daily financial close prices in US dollars per pound from 

10/1/2010 to 29/5/2015 was approved. Figure 1 depicts the graph of the studied time series observations. It is 

illustrated by a graph that there is a trend with various volatilities, and then the series is nonstationary in the 

mean. An Augmented Dicky – Fuller test was performed, with a value (DF=-2.4579) and probability of (P-

value=0.1262), indicating that the series was nonstationary. Accordingly, the first difference was taken as in 

Figure 2, which confirms that the series becomes stationary. 

 
Figure 1. Daily closing prices of copper time series 

 
Figure 2. Daily closing prices of copper time series with the first difference 
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After preparing the series, the random coefficient autoregressive process RCA by using the traditional least 

squares (LS) was estimated as follows: 

Table 1. Results of parameters estimation of RCA (1) model  

statistics Estimate Standard 

Error 

Probability 

𝛽̂𝑙𝑠 0.99321 0.10874 0.0001 

𝜎̂𝑏
2 0.00152 0.00035 0.0003 

𝜎̂𝑒
2 0.00231 0.00051 0.0000 

Hence, employing a series of residuals resulting from the estimation of the RCA process to build the GARCH 

process. It shows that the 𝑒𝑡 series is leptokurtic (𝑘𝑢𝑟 = 5.664) and that the volatilities in the series are apparent. 

Therefore, the GARCH model should be applied to the residuals series of 1682 observations plotted in Figure 

3.  

 
Figure 3. Residuals series of Copper data 

Figures 4 and 5 show graphs of the coefficients of the (ACF) and (PACF) of the squared residuals. The ACF 

and PACF feature exponential decay with significant points at seasonal lags with seasonality index s = 5. To 

investigate the existence of the ARCH effect for the residuals of the RCA model, the Lagrange multiplier test 

was used, where the value of (LM-test=891.26) with probability (P-value = 0.000), so the null hypothesis stating 

that there is no effect of ARCH was rejected. Thus, the residuals series has an ARCH effect. 

 
Figure 4. The ACF coefficients of squared residuals (Series Yt) 

 
        Figure 5. The PACF coefficients of squared residuals (Series Yt) 
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The residual series was also stationary since (DF=- 43.47482) and the probability of (P-value=0.0001). A 

seasonal GARCH(1,0)x(0,1)5  model given by (15)-(16) with standard normal 𝑍𝑡 was estimated by (MLE) for 

the copper data, and the results of the estimation are shown in Table 2. After evaluating a set of a running model 

by the maximum likelihood method when (s=5), it turns out that GARCH(1,0)x(0,1)5 is the appropriate model.  

Table 2. The results of estimation of the GARCH(1,0)x(0,1)5 model  

Parameters Parameters 

Est. 

Stand. Error  

of 

Estimator   

Probability 

𝜇 0.000277 0.000072 0.0002 

𝜔 5.74E-07 2.97E-08 0.0000 

𝜙 0.1283 0.00609 0.0000 

𝛩 0.8807 0.00487 0.0000 

Finally, the Lagrange multiplier test is applied to verify the estimated model's suitability. Table 3 found that the 

probability of the test (P-value) was the largest (0.05), which refers to the lack of effect ARCH.    

Table 3. ARCH test of the estimated model  

Test Value of test Probability 

F-statistic 0.053931 0.8164 

LM- test 0.053994 0.8163 

 

Then, the seasonal GARCH (1, 0)𝑥(0, 1)5  model for the residuals is given by:  

ℎ𝑡 = 𝜔 + 𝜙𝑒𝑡−1
2 − 𝛩𝑒𝑡−5

2 + 𝛩ℎ𝑡−5 

ℎ𝑡 = 5.74E − 07 + 0.1283𝑒𝑡−1
2 − 0.8807𝑒𝑡−5

2 + 0.8807ℎ𝑡−5 

And for comparison, A model GARCH(1, 0)𝑥(0, 1)5 model was fitted individually for the origin data by (MLE)  

using two distributions of residuals,  𝑡(3) and 𝑡(7). And the results of the estimation are shown in Table (2) as 

follows 

Table 4. The results of estimation of the GARCH(1,0)x(0,1)5 model for the origin data 

Parameters Normal(0,1) errors  𝑡(3) errors 𝑡(7) errors 

Parameters 

Est. 

Stand .E. 

of 

estimators 

 Parameters 

Est. 

Stand .E. 

of 

estimators 

parameters 

Est. 

Stand .E. 

of 

estimators 

𝜇 .00027  .00007   .00043 .00021 .00068 .00039 

𝜔 5.74E- 7 2.97E-8  2.77E-5 1.39E-5 1.65E-5 7.01E-6 

𝜙 0.1283 0.00609  0.06100 0.01603 0.03929 0.00816 

𝛩 0.8807 0.00487  0.95383 0.01166 0.95389 0.00935 

AIC -8.0483  -3.4079 -3.4216 

 

8. Conclusion  

In this work, the RCA-SGARCH process is considered. The properties of moments and kurtosis of the volatility 

model are presented. The model studied in the paper is an example of the seasonal volatility model. High 

moments and kurtosis properties are also shown under the assumption of the normal distribution when (𝑒𝑡) and 

(𝑏𝑡) are correlated and not. An application of the daily financial close prices of copper is used. Then we made a 

comparison among the studied model with errors distributed as 𝑁(0,1) and the same process when the errors 

series were distributed as T- distribution with degrees of freedom (3) and (5). It shows that the studied model is 

the best according to its parameters' significance and the Akaike information criterion (AIC) value. Also, to 

compare the process when the errors series are distributed as 𝑡(7)  and 𝑡(3), the model with 𝑡(7) is the better since 

the standard error of the parameters and AIC of it is the least.  
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APPENDIX   

 

Proof for Theorems 1   

𝑦𝑡 = (𝛽 + 𝑏𝑡) 𝑦𝑡−1+ 𝑒𝑡 

𝑦𝑡
2 = 𝛽2𝑦𝑡−1

2 + 𝑏𝑡
2𝑦𝑡−1

2 + 2𝛽𝑏𝑡𝑦𝑡−1
2 + 2𝛽𝑒𝑡𝑦𝑡−1

 + 2𝑏𝑡𝑒𝑡𝑦𝑡−1
 + 𝑒𝑡

2 

𝐸(𝑦𝑡
2) = 𝛽2𝐸(𝑦𝑡−1

2 ) + 𝐸(𝑏𝑡
2𝑦𝑡−1

2 ) + 2𝛽𝐸(𝑏𝑡𝑦𝑡−1
2 ) + 2𝛽𝐸(𝑒𝑡𝑦𝑡−1

 ) + 2𝐸(𝑏𝑡𝑒𝑡𝑦𝑡−1
 ) + 𝐸(𝑒𝑡

2) 

= 𝛽2𝐸(𝑦𝑡−1
2 ) + 𝜎𝑏

2𝐸(𝑦𝑡−1
2 ) + 𝐸(𝑒𝑡

2) 

𝐸(𝑦𝑡
2) =

𝜎𝑒
2

[1 − 𝛽2 − 𝜎𝑏
2]

 

 

𝑦𝑡
3 = 𝛽3𝑦𝑡−1

3 + 3𝛽2𝑦𝑡−1
3 𝑏𝑡 + 3𝛽2𝑦𝑡−1

2 𝑒𝑡 + 3𝛽𝑦𝑡−1
3 𝑏𝑡

2 + 6𝛽 𝑦𝑡−1
2 𝑏𝑡𝑒𝑡 + 3𝛽𝑦𝑡−1

 𝑒𝑡
2 + 𝑏𝑡

3𝑦𝑡−1
3 + 3𝑏𝑡

2𝑦𝑡−1
2 𝑒𝑡

+ 3𝑏𝑡
 𝑦𝑡−1

 𝑒𝑡
2 + 𝑒𝑡

3 

𝐸(𝑦𝑡
3) = 𝛽2𝐸(𝑦𝑡−1

3 ) + 3𝛽𝜎𝑏
2𝐸(𝑦𝑡−1

3 ) + 6𝛽 𝜌𝜎𝑏
  𝜎𝑒

 𝐸(𝑦𝑡−1
2 ) 

𝐸(𝑦𝑡
3) = 𝛽2𝐸(𝑦𝑡−1

3 ) + 3𝛽𝜎𝑏
2𝐸(𝑦𝑡−1

3 ) + 6𝛽 𝜌𝜎𝑏
  𝜎𝑒

 
𝜎𝑒

2

[1 − 𝛽2 − 𝜎𝑏
2]

 

𝐸(𝑦𝑡
3) = 𝛽2𝐸(𝑦𝑡−1

3 ) + 3𝛽𝜎𝑏
2𝐸(𝑦𝑡−1

3 ) + 
6𝛽 𝜌𝜎𝑏

 𝜎𝑒
3

[1 − 𝛽2 − 𝜎𝑏
2]

   

 

𝐸(𝑦𝑡
3) =

6𝛽 𝜌𝜎𝑏
 𝜎𝑒

3

[1 − 𝛽2 − 3𝛽𝜎𝑏
2][1 − (𝛽2 + 𝜎𝑏

2)]
 

 

Then, the skewness is given by: 

𝑆(𝑦) =
𝐸(𝑦𝑡

3)

[𝐸(𝑦𝑡
2)]3/2

 

=

6𝛽𝜌𝜎𝑏
 𝜎𝑒

3

[1 − 𝛽2 − 3𝛽𝜎𝑏
2][1 − (𝛽2 + 𝜎𝑏

2)]

[
𝜎𝑒

2

[1 − 𝛽2 − 𝜎𝑏
2]

]

3/2
 

=
6𝛽 𝜌𝜎𝑏

 𝜎𝑒
3

[1 − 𝛽2 − 3𝛽𝜎𝑏
2][1 − (𝛽2 + 𝜎𝑏

2)]
 .

[1 − (𝛽2 + 𝜎𝑏
2)]3/2

𝜎𝑒
3   

𝑆(𝑦) =
6𝛽 𝜌𝜎𝑏

 [1 − (𝛽2 + 𝜎𝑏
2)]1/2 

[1 − 𝛽2 − 3𝛽𝜎𝑏
2]

 

 

If 𝑒𝑡 and 𝑏𝑡 are uncorrelated then 𝜌 = 0 ,then 𝑆(𝑦) = 0 

𝐸(𝑦𝑡
4) = 6𝛽2𝐸(𝑦𝑡−1

4 𝑏𝑡
2) + 6𝐸(𝑏𝑡

2𝑦𝑡−1
2 𝑒𝑡

2) +  𝛽4𝐸(𝑦𝑡−1
4 ) + 𝐸(𝑏𝑡

4𝑦𝑡−1
4 ) + 𝐸(𝑒𝑡

4) + 12𝛽2𝐸(𝑦𝑡−1
3 𝑏𝑡𝑒𝑡)

+ 6𝛽2𝐸(𝑦𝑡−1
2 𝑒𝑡

2)  
= 6𝛽2𝜎𝑏

2𝐸(𝑦𝑡−1
4 ) + 6𝜎𝑏

2𝜎𝑒
2𝐸(𝑦𝑡−1

2 ) +  𝛽4𝐸(𝑦𝑡−1
4 ) + 3𝜎𝑏

4𝐸(𝑦𝑡−1
4 ) + 3𝜎𝑒

4 + 12𝛽2𝜌𝜎𝑏
 𝜎𝑒

 𝐸(𝑦𝑡−1
3 )

+ 6𝛽2𝜎𝑒
2𝐸(𝑦𝑡−1

2 )  
[1 − 6𝛽2𝜎𝑏

2 − 𝛽4 − 3𝜎𝑏
4]𝐸(𝑦𝑡

4) = 6𝜎𝑒
2𝐸(𝑦𝑡−1

2 )[𝜎𝑏
2 + 𝛽2] + 12𝛽2𝜌𝜎𝑏

 𝜎𝑒
 𝐸(𝑦𝑡−1

3 ) + 3𝜎𝑒
4 

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]𝐸(𝑦𝑡
4) =

6𝜎𝑒
4 [𝜎𝑏

2 + 𝛽2]

[1 − (𝛽2 + 𝜎𝑏
2)]

+
72𝛽3𝜌2𝜎𝑏

2𝜎𝑒
4

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 𝛽2 − 3𝛽𝜎𝑏

2]
+ 3𝜎𝑒

4 

𝐸(𝑦𝑡
4) = { 

6𝜎𝑒
4 [𝜎𝑏

2 + 𝛽2]

[1 − (𝛽2 + 𝜎𝑏
2)]

+
72𝛽3𝜌2𝜎𝑏

2𝜎𝑒
4

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 𝛽2 − 3𝛽𝜎𝑏

2]
+ 3𝜎𝑒

4} /[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4] 

 

𝑘(𝑦) =
6(𝜎𝑏

2  + 𝛽2 )[1 −  𝛽3  −  3𝛽𝜎𝑏
2 ] +  72𝛽3𝜌2𝜎𝑏

2  + 3[1 − (𝛽2  +  𝜎𝑏
2)][1 −  𝛽3  −  3𝛽𝜎𝑏

2]

 [1 −  𝛽3  −  3𝛽𝜎𝑏
2 ][1 −  6𝛽2𝜎𝑏

2  −  𝛽4  −  3𝜎𝑏
4 ]

 

*[1 − (𝛽2  +  𝜎𝑏
2) ] . 

 

If 𝑒𝑡 and 𝑏𝑡 are uncorrelated then 𝜌 = 0, then: 
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𝐸(𝑦𝑡
4) =

3𝜎𝑒
4[1 + (𝛽2 + 𝜎𝑏

2)]

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 6𝛽2𝜎𝑏

2 − 𝛽4 − 3𝜎𝑏
4]

 

 𝑘(𝑦) =
 3[1 − (𝛽2 + 𝜎𝑏

2)
2

]

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4 ]
 

 

 

Proof for equation (17) 

 

𝑦𝑡
2 = 𝛽2𝑦𝑡−1

2 + 𝑏𝑡
2𝑦𝑡−1

2 + 2𝛽𝑏𝑡𝑦𝑡−1
2 + 2𝛽𝑒𝑡𝑦𝑡−1

 + 2𝑏𝑡𝑒𝑡𝑦𝑡−1
 + 𝑒𝑡

2 

𝐸(𝑦𝑡
2) = 𝛽2𝐸(𝑦𝑡−1

2 ) + 𝐸(𝑏𝑡
2𝑦𝑡−1

2 ) + 2𝛽𝐸(𝑏𝑡𝑦𝑡−1
2 ) + 2𝛽𝐸(𝑒𝑡𝑦𝑡−1

 ) + 2𝐸(𝑏𝑡𝑒𝑡𝑦𝑡−1
 ) + 𝐸(𝑒𝑡

2) 

= 𝛽2𝐸(𝑦𝑡−1
2 ) + 𝜎𝑏

2𝐸(𝑦𝑡−1
2 ) + 𝐸(𝑒𝑡

2) 

𝐸(𝑦𝑡
2) =

𝐸(𝑒𝑡
2)

[1 − 𝛽2 − 𝜎𝑏
2]

 

𝐸(𝑦𝑡
4) = 6𝛽2𝐸(𝑦𝑡−1

4 𝑏𝑡
2) + 6𝐸(𝑏𝑡

2𝑦𝑡−1
2 𝑒𝑡

2) +  𝛽4𝐸(𝑦𝑡−1
4 ) + 𝐸(𝑏𝑡

4𝑦𝑡−1
4 ) + 𝐸(𝑒𝑡

4) + 6𝛽2𝐸(𝑦𝑡−1
2 𝑒𝑡

2)  
= 6𝛽2𝜎𝑏

2𝐸(𝑦𝑡−1
4 ) + 6𝜎𝑏

2𝐸(𝑦𝑡−1
2 )𝐸(𝑒𝑡

2) + 𝛽4𝐸(𝑦𝑡−1
4 ) + 3𝜎𝑏

4𝐸(𝑦𝑡−1
4 ) + 𝐸(𝑒𝑡

4)
+ 6𝛽2 𝐸(𝑦𝑡−1

2 )𝐸(𝑒𝑡
2)  

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]𝐸(𝑦𝑡
4) = 6𝐸(𝑒𝑡 

2)[𝜎𝑏
2 + 𝛽2]𝐸(𝑦𝑡−1

2 ) + 𝐸(𝑒𝑡
4) 

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]𝐸(𝑦𝑡
4) =

6  [𝜎𝑏
2 + 𝛽2]{𝐸(𝑒𝑡

2)}2

[1 − (𝛽2 + 𝜎𝑏
2)]

+ 𝐸(𝑒𝑡
4) 

𝐸(𝑦𝑡
4) =  

6  [𝜎𝑏
2 + 𝛽2]{𝐸(𝑒𝑡

2)}2

[1 − (𝛽2 + 𝜎𝑏
2)][1 − 6𝛽2𝜎𝑏

2 − 𝛽4 − 3𝜎𝑏
4]

+
𝐸(𝑒𝑡

4)

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
 

𝑘(𝑦) =  
6  [𝜎𝑏

2 + 𝛽2][1 − (𝛽2 + 𝜎𝑏
2)]

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
+

[1 − (𝛽2 + 𝜎𝑏
2)]

2

[1 − 6𝛽2𝜎𝑏
2 − 𝛽4 − 3𝜎𝑏

4]
  𝑘(𝑒) 

 

Proof for equation (18) 

From equation (7), 𝜙(𝐵)𝑒𝑡
2 = 𝜔 + 𝛽(𝐵)𝑢𝑡  where 𝑢𝑡 = 𝑒𝑡

2 − ℎ𝑡. For any stationary process, 

𝑣𝑎𝑟(𝑒𝑡
2) = 𝜎𝑢

2[𝜓1
2 + 𝜓2

2 + ⋯ ], 
𝜎𝑢

2 = 𝐸(𝑒𝑡
4) − 𝐸(ℎ𝑡

2)   
= 𝐸(ℎ𝑡

2𝑍𝑡
4) − 𝐸(ℎ𝑡

2) = 𝐸(ℎ𝑡
2)𝐸(𝑍𝑡

4) − 𝐸(ℎ𝑡
2)  

= 𝐸(ℎ𝑡
2)[𝐸(𝑍𝑡

4) − 1] 
∴  𝑣𝑎𝑟(𝑒𝑡

2) = 𝐸(ℎ𝑡
2)[𝐸(𝑍𝑡

4) − 1][𝜓1
2 + 𝜓2

2 + ⋯ ].                                      (A.1) 

But from equation (7), it follows that, 

𝑣𝑎𝑟(𝑒𝑡
2) = 𝐸(𝑒𝑡

4) − [𝐸(𝑒𝑡
2)]2 

= 𝐸(ℎ𝑡
2𝑍𝑡

4) − [𝐸(ℎ𝑡
 )]2 

= 𝐸(ℎ𝑡
2)𝐸(𝑍𝑡

4) − [𝐸(ℎ𝑡
 )]2                               (A.2) 

Equating (A.1) and (A.2), 

𝐸(ℎ𝑡
2)𝐸(𝑍𝑡

4) − [𝐸(ℎ𝑡
 )]2 = 𝐸(ℎ𝑡

2)[𝐸(𝑍𝑡
4) − 1][𝜓1

2 + 𝜓2
2 + ⋯ ]  

 𝐸(𝑍𝑡
4) −

[𝐸(ℎ𝑡
 )]2

𝐸(ℎ𝑡
2)

=  [𝐸(𝑍𝑡
4) − 1][𝜓1

2 + 𝜓2
2 + ⋯ ]  

 
[𝐸(ℎ𝑡

 )]2

𝐸(ℎ𝑡
2)

=   𝐸(𝑍𝑡
4) − [𝐸(𝑍𝑡

4) − 1][𝜓1
2 + 𝜓2

2 + ⋯ ]  

 


