
ISSN 2303-4521

Periodicals of Engineering and Natural Sciences Original Research

Vol. 10, No. 3, June 2022, pp.350-367

© The Author 2022. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's

authorship and initial publication in this journal.

Enhancing imputation techniques performance utilizing uncertainty

aware predictors and adversarial learning

Wafaa Mustafa Hameed 1, Nzar A. Ali 2

1 Technical Collage of Informatics, Sulaimani Polytechnic University, Iraq
2 Department of Statistics and informatics, University of Sulaimani, Iraq

1,2 Department of Computer Science, Cihan University Sulaymaniya, Iraq

ABSTRACT

One crucial problem for applying machine learning algorithms to real-world datasets is missing data. The

objective of data imputation is to fill the missing values in a dataset to resemble the completed dataset as

accurately as possible. Many methods are proposed in the literature that mostly differs on the objective

function and types of the variables considered. The performance of traditional machine learning methods is

low when there is a nonlinear and complex relationship between features. Recently, deep learning methods

are introduced to estimate data distribution and generate values for missing entries. However, these methods

are originally developed for large datasets and custom data types such as image, video, and text. Thus, adopting

these methods for small and structured datasets that are prevalent in real-world applications is not

straightforward and often yields unsatisfactory results. Also, both types of methods do not consider uncertainty

in the imputed data. We address these issues by developing a simple neural network-based architecture that

works well with small and tabular datasets and utilizing a novel adversarial strategy to estimate the

uncertainty of imputed data. The estimated uncertainty scores of features are then passed to the imputer

module, and it fills the missing values by paying more attention to more reliable feature values. It results in

an uncertainty-aware imputer with a promising performance. Extensive experiments conducted on some real-

world datasets confirm that the proposed methods considerably outperform state-of-the-art imputers.

Meanwhile, their execution time is not costly compared to peer state-of-the-art methods.

Keywords: Imputation Technique, Uncertainty Estimation, Adversarial Learning, Deep Neural

Network.

Corresponding Author:

Wafaa Mustafa Hameed

Technical Collage of Informatics

Sulaimani polytechnic University

Sulaimani 64001, Iraq

wafaa.mustafa@spu.edu.iq

1. Introduction

Imputation is a technique that fills missing entries in any data source with appropriate values based on available

information. The objective is to impute the missing values in the input dataset to resemble the underlying

completed dataset as accurately as possible. This technique retains the number of samples in a dataset. By

imputing all missing values in a dataset, we can analyze it using many standard methods developed for complete

data. Missing values can arise from different sources such as measurement errors, low signal-to-noise ratio

(SNR), or by deleting aberrant values. Thus, many datasets in the real world contain missing values which can

be in any form such as NA, NAN, NULL, or blank. More formally, the problem can be defined as follows.

Let X(c) be a random variable in d-dimensional space 𝒳(c) = 𝒳1
(c)

× 𝒳2
(c)

× … 𝒳d
(c)

. For each dimension j, we

consider a new element NA ∉ 𝒳j that shows the missing value. Now, we define a new d-dimensional space 𝒳 =

𝒳1 × 𝒳2 × … 𝒳d where 𝒳j = 𝒳j
(c)

∪ {NA}. Also, let M ∈ {0,1}d be a binary random variable called mask that

indicates which components of X(c) are observed, that is Mj = 0 (resp. 1) if Xj
(c)

 is revealed (resp. missing).

The input of an imputer algorithm is a dataset 𝒟 = {(𝐱1, 𝐦1), (𝐱2, 𝐦2), … , (𝐱n, 𝐦n) } where 𝐱i ∈ 𝒳 and 𝐦i ∈
{0,1}d is a mask corresponding to 𝐱i. The aim of an imputer is to fill the unobserved entries in each 𝐱i with

https://creativecommons.org/licenses/by/4.0/
mailto:wafaa.mustafa@spu.edu.iq

 PEN Vol. 10, No. 3, June 2022, pp.350-367

351

plausible values. In ref. [1] it was classified three missing mechanisms based on independency relation between

observed and missing values:

MCAR: MCAR (Missing Completely at Random), in the missing value of a feature neither depends on observed

data nor missed data. More precisely, p(m|x(c)) = p(m).

MAR (Missing at Random): where a missing value only depends on observed values but is independent of

missing data. More precisely, p(𝐦|𝐱(c)) = p(𝐦|𝐱(𝐨𝐛𝐬)) where 𝐱(𝐨𝐛𝐬) indicates observed values of 𝐱.

NMAR (Not Missing at Random): in which a missing value depends on other missing values and possibly on

observed values. Dropping rows or columns in a dataset containing missing values comes at the expense of

losing valuable data. As an illustrative example [2], let 𝐗 ∈ ℝ𝐧×𝐝 be the input data in which each element is

missing at random a probability equal to 1%. In the case of 𝐝 = 𝟓, we expect 95% (≈ 𝟎. 𝟗𝟗𝟓) of rows have no

missing value. However, when 𝐝 = 𝟑𝟎𝟎, only 5% of rows are complete. Therefore, imputing admissible values

for missing places is necessary especially in a high-dimensional dataset. Many methods are proposed to impute

missing data that mostly differ on the objective function, types of the variables considered (numerical,

categorical, both), and assumptions about data distribution or missing data mechanism [3]. Some popular

strategies are in the literature include univariate statistical, low-rank approximation [4], nearest neighbor search

[5, 6], multiple imputations [7], probabilistic [8], and deep learning-based methods. Deep learning methods

attempt to estimate data distribution and generate values for missing entries to preserve the joint and marginal

distribution. They are typically based on variational autoencoders [9, 10], or Generative Adversarial Networks

(GANs) [11, 12,13]. These methods are originally developed for large datasets and custom data types such as

image, video, and text. Thus, adopting these methods for small and tabular datasets that are prevalent in

imputation applications is not straightforward and often yields unsatisfactory results. For example, results

reported in [14] showed that these methods did not achieve competitive performance on a variety of UCI datasets.

On the other hand, while traditional machine learning methods often work well for small datasets and can handle

any feature type, their performance is low when there is a nonlinear and complex relationship between features.

Besides, by utilizing advanced regularization techniques from the deep learning domain such as adversarial

neural networks, we can boost the performance of these algorithms, especially in an out-of-sample setting.

Most existing methods do not account for uncertainty in the input data. For example, at each iteration of the

popular MICE method, a predictor is used to impute values for the current feature j based on other feature

values. Here, some of these values are real while others are the outputs of previously learned imputers and so

are uncertain. Recently, [15] developed an imputer for time-series data that considered the uncertainty in

imputed values. However, the model developed based on variational autoencoders (VAE) and specially

designed for large time-series datasets and has high complexity. To address these issues, we develop a simple

neural network-based architecture that works well with small datasets and utilizes a novel adversarial strategy

to estimate the uncertainty of imputed data. The uncertainty scores of features are passed to the imputer, and it

fills the missing values by paying more attention to confident feature values. In addition to instance-based

feature weighting, we elaborate a novel loss function that enforces the imputer to generate values so that for any

target feature: 1) it can estimate values for known values in the feature precisely, 2) the predicted values for the

missing entries obey the underlying data distribution and could confuse the adversarial neural network module

so that it cannot distinguishes imputed values from real ones. In summary, the contributions of the proposed

model are as followings:

1- We develop uncertainty-aware imputation methods by exploiting a novel adversarial strategy and the

proposed hybrid loss function. Specially, we propose a new and simple strategy for training the adversarial

module for the imputation task that outperforms the common training strategy used in the deep learning

domain.

2- The proposed methods considerably outperform state-of-the-art methods on most evaluated datasets.

Meanwhile, its training time is not costly compared to deep learning-based methods.

3- The proposed model has a very simple structure, can work with any feature type and small data. Also, the

model can be trained in an end-to-end paradigm using any available neural network optimizers through Back-

Propagation (BP).

Table 1 summarizes the main notations used throughout this paper. The rest of the paper is organized as follows.

Section 2 reviews related work. Section 3 presents the proposed model in detail. Implementation details of the

model are provided in Section 4. Section 5 reports the experimental results and provide analysis along with

comparison with the peer state-of-the-art methods. Finally, Section 6 concludes with Conclusion and Future

Work.

file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_1
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_2
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_3
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_4
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_5
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_6
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_7
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_8
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_9
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_10
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_11
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_14
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_15

 PEN Vol. 10, No. 3, June 2022, pp.350-367

352

2. Related work

Many strategies are developed for handling missing data. In this section, we classify and discuss these

techniques with a focus on the works closely related to the proposed model.

Table 1. Summary of the main notations

Notation Description

𝑿 ∈ ℝ𝑛×𝑑
The input dataset containing missing

elements

𝑿(.) ∈ ℝ𝑏×𝑑 A mini-batch sampled from dataset

𝑿:𝑗
(.)

∈ ℝ𝑏 Column j of the matrix 𝑿(.)

𝑿−𝑗
(.)

∈ ℝ𝑏×𝑑−1

Matrix formed by dropping column j

from 𝑿(.)

𝑁𝐴 Missing value

𝑆𝑁𝐴 The set of all columns having missing

value

𝓒 ∈ [0,1]𝑛×𝑑 Certainty matrix

𝐼(. ; 𝜽𝑗) Imputer 𝑗 parametrized by 𝜽𝑗

𝐷(. ; 𝝓𝑗) Discriminator 𝑗 parametrized by 𝝓𝑗

Univariate imputation fills a lost value in a feature only based on other values in that feature. They often impute

a missing value by the mean, median, or mode of the corresponding attribute. These methods have a low

computational cost, but they ignore the correlation among features and thus often lead to poor results. However,

they are widely used as an initializer in many advanced techniques. While, In multivariate imputation, observed

values of other features can be used to impute unknown entries in a variable. kNN is a multivariate imputation

technique that for each instance with missing values finds 𝑘 nearest neighbors in the training set. Then, it

imputes a value for a missing entry based on values in the nearest neighbors. Some extensions include sequential

kNN [6] and iterative kNN [5, 17]. In iterative imputation, each feature with missing values is considered as a

function of other attributes. Let 𝑗 be a selected column containing missing values. Then, we treated other features

in the dataset as inputs 𝑋−𝑗, and fit a regressor on (𝑋−𝑗, 𝑗) for any known values in 𝑗. Subsequently, the trained

regressor is utilized to predict the unknown values of 𝑗. A common regressor used in this approach is the least

squares [18]. Some work also explored other regressor types such as Support Vector Regression (SVR) [19].

Probabilistic approaches assume parametric joint distribution on the entire dataset. The Expectation

Maximization (EM) is utilized to estimate model parameters and missing values by maximizing the log

likelihood function [9]. These approaches provide good theoretical properties but lack flexibility aspects. For

example, in the case that the input dataset contains both numerical and categorical features, multivariate

distributions often failed to model the underlying data distribution. Linear regression-based methods may have

a poor performance when a nonlinear relationship exists among variables. To address this issue, regression trees

are employed for imputation in [20]. Moreover, [21] extends random forest for the imputation task and obtains

promising results. Tree based methods are non-parametric and do not consider any specific distribution of data.

Predictive Mean Matching (PMM) is a popular traditional imputation method. Let j be a variable with some

missing values and X−j denote a set of variables with no missing entries. PMM utilizes logistic regression to

assign an appropriate weight (w) to each variable in X−j. These weights define the posterior predictive

distribution p(j|X−j). Then, it samples a new set of weights 𝐰∗ from the distribution and predicts values of j for

all cases in the dataset. Let I (resp. K) be the set of instances with missing values of j (resp. no missing). For

each instance i in I, PMM finds a set of cases in K that their predicted values are close to the predicted value of

i. Then, it imputes the value of i by randomly choosing a value from this set. (Singular Value Decomposition)

SVD imputation [22] assumes input data are noisy observations produced by linear combinations of a small set

of principal components. SVD learns these components from the dataset and then imputes the missing entries

from a linear combination of them in an iterative process. Bayesian principal component imputation [23] extends

the SVD method to incorporate information about prior distribution on the model parameters.

Multiple imputation creates multiple copies of the dataset and estimates values for missing entries for each

dataset. The imputed outcomes are then combined using an appropriate strategy. These methods often have

three following steps [22]:

file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_22

 PEN Vol. 10, No. 3, June 2022, pp.350-367

353

1- Imputation: that is like to single imputation, however, the imputed values come from m datasets rather

than just one dataset.

2- Analysis: each of m imputed values is analyzed.
3- Pooling: the results are combined by calculating the mean, variance, and or any other combining

technique.

MICE (multiple imputation by chained equations) [7]: is a well-known multiple imputation technique. It

assumes the value of missing data depends on the observed data. It generates a series of regressors or any

other models to impute multiple values for a missing entry. First, a simple mean imputation is applied to each

missing entry referred as placeholder. Second, the “placeholder” mean imputations for one feature are set back

to missing. Third, a suitable regressor is fitted to impute values for the missing variable. These steps are

repeated until the max iteration defined by the user reaches. Once the max number of iterations is completed,

the entire process is repeated to generate the next completed dataset. The following flowchart illustrates the

main steps in the MICE approach. MICE can use PMM, logistic regression, Bayesian linear regression, and

similar methods as the regressor.

Figure 1. Flowchart of MICE

The Amelia method is also a multi-imputation method based on EM and bootstrapping. It assumes data are

drawn from a multivariate Gaussian [25]. [10] analyses the imputation problem from the optimization

perspective and develops optimization-based methods for both single and multiple imputation that refines

existing methods in the out-of-sample setting.

2.1. Deep Learning-Based Imputation

Deep learning-based approaches for data imputation are often generative and developed by extending auto-

encoders and GAN models for incomplete data. MIDA (Multiple Imputation using Denoising Autoencoders)

[10] uses an overcomplete Denoising Autoencoder (DAE) for data imputation. The model projects the input

data to a higher dimensional space to recover missing information.

Figure 2 depicts the architecture where each layer in the encoder increases the dimensionality by adding Θ

neurons. In the decoding stage, it sets half of the input neurons to zero and aim to recover the complete data.

file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_7
file:///C:/Users/hqwert/Downloads/2-5361573134916916957.docx%23_ENREF_10

 PEN Vol. 10, No. 3, June 2022, pp.350-367

354

Figure 2. The architecture of encoder and decoder parts of MIDA [11]

The main problem is that autoencoders require complete data for training. Therefore, MIDA initially uses mean

imputation to fill missing entries producing fake complete data. Also, by this approach, it is impossible to learn

missing patterns in the original dataset. Generative Adversarial Imputation Nets (GAIN) [13] extends

the GAN model to impute missing values. Like standard GAN, it has two components: the

discriminator and generator. The generator aims to accurately fill the missing values whereas the

discriminator tries to distinguish between imputed and real values. Ambient GAN [14] works only with

image data type and extends the standard GAN to incorporate a measurement process such as adding noise, data

removal, and projection. Here, the discriminator goal is to distinguish between real measurements from

simulated ones. This approach assumes that the measurement process is known and has only a few parameters.

However, these assumptions do not hold for many datasets with missing values. In addition to using a GAN
(𝐺𝑥, 𝐷𝑥) to learn data distribution, MisGAN [12] utilizes an auxiliary GAN (𝐺𝑚, 𝐷𝑚) to learn mask distribution.

Let 𝒇𝜏(𝒙, 𝒎) be a function that fills the missing entries in 𝒙 by a constant 𝜏. Also, let 𝒙̃ and 𝒎̃ be the output of

𝐺𝑥 and 𝐺𝑚 respectively. The complete data generator 𝐺𝑥 is trained so that its outputs when masked by 𝒎̃ and

𝒇𝜏 (i.e., (𝒙̃, 𝒎̃)) can not be distinguished from the real partially observed data (𝒙, 𝒎). Figure 3 illustrates the

overall architecture of the MisGAN.

Figure 3. Architecture of the MisGAN

In[15], it is built on the assumption that two random batches from the same dataset should have the same

distribution. It leverages the Sinkhorn divergence to measure the transport distance between two random batches

and impute the missing values by minimizing this loss function.

 PEN Vol. 10, No. 3, June 2022, pp.350-367

355

3. The proposed method

The goal of the proposed model is to impute the missing values so that the adversarial neural network cannot

distinguish real values from imputed ones. Also, we aim to account for the uncertainty of imputed values using

confidence scores obtained from our adversarial module. Figure 4 illustrates the overall architecture of the

proposed model.

Figure 4. Overall architecture and training process of the proposed imputation model

In the first step, the missing places are filled using a univariate imputation technique like mean. Also, we

consider a global certainty matrix 𝓒 ∈ [0,1]𝑛×𝑑 and initialize it using the mask matrix 𝑴 = [𝒎𝟏, 𝒎𝟐, … , 𝒎𝒅]
as 𝓒 = 𝑴. Thus, in the first stage, we are certain only about real (observed) values in the dataset. We choose a

feature at each step according to an appropriate heuristic function. For example, the feature can be selected

according to the increasing order of the number of missing entries. Let 𝑗 ∈ 𝑆𝑁𝐴 be the selected feature in the

current cycle where 𝑆𝑁𝐴 denotes the set of all columns containing missing values. The variable 𝑗 denoted by 𝑿:𝑗

is considered as the target and other features denoted by 𝑿−𝑗 form the input. To impute the missing values in

the 𝑗𝑡ℎ column, we design a specific imputer 𝐼(. ; 𝜽𝑗) parametrized by 𝜽𝑗, and its corresponding discriminator

𝐷(. ; 𝝓𝑗) parameterized by 𝝓𝑗 . Note that for each instance 𝒙𝑖, some of its features have real values and so are

confident, whereas some of them are filled using the corresponding imputer in the previous steps. There exists

uncertainty about the imputed values that must be considered to build a more accurate imputer. More precisely,

to optimize the imputer 𝑗, we aim to have more attention to high confident features per instance. Thus, we target

weighting the features considering their certainty scores. The less confident features of an instance should get

lower weights. The certainty score of an imputed value is obtained from the adversarial module as described in

the following. The adversarial module aims to discriminate imputed values from real ones. We design the loss

function to learn 𝜽𝑗 such that the resulting imputer in addition to estimating a missing entry with high accuracy,

be able to confuse the adversarial module so that:

1- It cannot distinguish between real and imputed values.

2- The imputed values have a similar distribution to the real values.

It implies a minimax game between the imputer and the adversarial module. On one hand, the imputer tries

to fool the adversarial network, and on the other hand, the adversarial module attempts to discover

discriminative information in the observed values and identifies fake values. In the following, we discuss about

each component of the proposed model with more details. The adversarial module aims to estimate how

much the imputed values are similar to real ones. We can model this module by a collection of

adversarial neural networks {𝐷(. ; 𝝓𝑗): 𝒙 ∈ ℝ𝑑 → [0,1]}
𝑗∈𝑆𝑁𝐴

where the output 𝐷𝑗(𝒙; 𝝓𝒋) shows the

probability that how much the input 𝒙 is real. The standard training process in domain adaptation and

GAN is to create mini-batches containing both real and imputed values of the target feature and then

 PEN Vol. 10, No. 3, June 2022, pp.350-367

356

ask the discriminator Dj to distinguish real ones from imputed. However, we experimentally find out

this process is not effective for small tabular datasets containing missing values. Therefore, we propose

the following simple yet effective strategy. First, we sample 𝐗real from instances having real values

on feature j. Second, we corrupt the values on the target feature by adding some noises to the actual

values and thus obtaining a fake sample 𝐗fake. The real and fake samples are mixed and passed to the

adversarial module. Finally, we train the discriminator Dj to distinguish real from fake data accurately.

A well-trained discriminator Dj acts like a critic that can judge how much a sample of imputed data is

similar to a real one. To this end, we use the following BCE loss to train Dj:

(1) ℒ𝑑𝑖𝑠(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑓𝑎𝑘𝑒) = BCE(𝟏, 𝒑(𝑗)) + BCE(𝟎, 𝒑(𝑗)) =
1

𝑏
∑ − log 𝒑𝑖

(𝑗)
− log(1 − 𝒒𝑖

(𝑗)
)

𝑏

𝑖=1
,

where 𝑏 = |𝑿𝑟𝑒𝑎𝑙|, 𝒑𝑖
(𝑗)

= 𝐷𝑗 (𝒙𝑖
(𝑟𝑒𝑎𝑙)

; 𝝓𝑗), and 𝒒𝑖
(𝑗)

= 𝐷𝑗 (𝒙𝑖
(𝑓𝑎𝑘𝑒)

; 𝝓𝑗).

Figure 5 illustrates the overall training process of the adversarial module in the proposed model.

Figure 5. Overall training process of the adversarial module on the target feature

The imputer receives the weighted features as input and optimizes 𝜽𝑗 according to the target feature 𝑗. For a

numeric target feature, we model the imputer using a regressor neural network, and in the case that the target

attribute is categorical, we employ a classifier neural network as the imputer. Nevertheless, the imputer module

is not limited to a neural network, and one can implement it utilizing other gradient-based machine learning

models. Figure 6 illustrates the overall training process of the imputer in the proposed model.

Figure 6. Overall training process of the proposed imputer on the target feature 𝑗

To optimize model 𝑗, we sample two batches from data: 𝑿𝑟𝑒𝑎𝑙 and 𝑿𝑖𝑚𝑝 where 𝑿𝑟𝑒𝑎𝑙 is sampled from data

having real values on feature 𝑗 whereas 𝑿𝑖𝑚𝑝 is chosen from data having missing values. We train the imputer

𝑗 so that it can predict the target values 𝑿:𝑗
𝑟𝑒𝑎𝑙 accurately. On the other hand, it should fill missing entries on

𝑿𝑖𝑚𝑝 so that the adversarial module cannot distinguish the imputed values from real ones.

The proposed hybrid loss function is composed of two terms: 1) ℒ𝑖𝑚𝑝: which ensures the imputed values follow

the true distribution of data so that the adversarial module cannot distinguish between real and unobserved

 PEN Vol. 10, No. 3, June 2022, pp.350-367

357

entries, 2) ℒ𝑓𝑖𝑡: which enforces the imputers to predict the missing entries with high accuracy. For a batch

𝑿𝑖𝑚𝑝 ∈ ℝ𝑏×𝑑 sampled from instances having missing values on the feature 𝑗, first, imputer 𝑗 fills the missing

elements in column j of 𝑿𝑖𝑚𝑝. To this end, we mix the confidence scores with the input 𝑿−𝑗
𝑖𝑚𝑝

 using element-

wise multiplication:

(2) 𝑿−𝑗
𝑖𝑐 = 𝑿−𝑗

𝑖𝑚𝑝
⨀ 𝓒−𝑗

𝑖𝑚𝑝
,

Then, we run 𝐼(. ; 𝜽𝑗) on 𝑿−𝑗
𝑖𝑐 and store the outputs in 𝑿:𝑗

𝑖𝑚𝑝
. Afterward, we pass 𝑿𝑖𝑚𝑝 to the adversarial module

and get its output denoted by 𝒑(𝑗) ∈ ℝ𝑏 . The 𝒑𝑖
(𝑗)

 approximates the probability that 𝒙𝑖
𝑖𝑚𝑝

 (𝑖𝑡ℎ instance in

𝑿𝑖𝑚𝑝) is real. A well-trained imputer 𝑗 should fill the missing elements in 𝑿𝑖𝑚𝑝 so that the adversarial module

cannot classify any instance 𝒙𝑖
𝑖𝑚𝑝

as fake and its output should be near 1. Thus, we define ℒ𝑖𝑚𝑝 as the Binary

Cross-Entropy (BCE) loss between the target vector 𝟏 ∈ ℝ𝑏 and the predicted values 𝒑(𝑗):

(3) ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝) = BCE(𝟏, 𝒑(𝑗)) =
1

𝑏
∑ − log 𝒑𝑖

(𝑗)
𝑏

𝑖=1
 where 𝑏 = |𝑿𝑖𝑚𝑝|

Besides, we update the 𝑗𝑡ℎ column of the certainty matrix 𝓒 by setting its corresponding elements equal to 𝒑(𝑗):

(4) 𝓒[𝐼(𝑖𝑚𝑝), 𝑗] = 𝒑(𝑗),

where 𝐼(𝑖𝑚𝑝) is the set of indices in original dataset corresponding to 𝑿𝑖𝑚𝑝.

For a real batch 𝑿𝑟𝑒𝑎𝑙 ∈ ℝ𝑏×𝑑, let 𝓒𝑟𝑒𝑎𝑙 ∈ ℝ𝑏×𝑑be the corresponding confidence scores obtained by the

adversarial module. We combine the certainty scores with the input 𝑿−𝑗
𝑟𝑒𝑎𝑙 using element-wise multiplication:

(5) 𝑿−𝑗
𝑟𝑐 = 𝑿−𝑗

𝑟𝑒𝑎𝑙⨀ 𝓒−𝑗
𝑟𝑒𝑎𝑙

Now, let 𝒕(𝑗)=𝑿:𝑗
𝑟𝑒𝑎𝑙 be the real values and 𝒑(𝑗) show the output of the regressor when applied on 𝑿−𝑗

𝑟𝑐 . Note that

we know the real values on the target feature 𝑗 for each instance in 𝑿𝑟𝑒𝑎𝑙. In the case that the attribute 𝑗 is a

continues number, we employ an appropriate regression loss term like smooth-L1 to achieve high accurate

predictions. It is defined as:

(6)

ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) =
1

𝑏
∑ ℒ𝑖(𝒕(𝑗), 𝒑(𝑗))

𝑏

𝑖=1
 where 𝑏 = |𝑿𝑟𝑒𝑎𝑙| and

ℒ𝑖(𝒕(𝑗), 𝒑(𝑗)) = {
0.5 (𝑝𝑖

(𝑗)
− 𝑡𝑖

(𝑗)
)

2
/𝛽, if |𝑝𝑖

(𝑗)
− 𝑡𝑖

(𝑗)
| < 𝛽

|𝑝𝑖
(𝑗)

− 𝑡𝑖
(𝑗)

| − 0.5𝛽, otherwise
.

For a categorical target feature j with 𝐾 distinct values, we develop the imputer 𝑗 as a classifier that outputs

𝒑(𝑗) ∈ ℝ𝑏×𝐾 for the input 𝑿−𝑗
𝑟𝑐 . Also, we convert 𝒕(𝑗) to one-hot encoding format and define ℒ𝑖 as a classification

loss like cross-entropy:

(7) ℒ𝑖(𝒑(𝑗), 𝒕(𝑗)) = − ∑ 𝑡𝑖𝑘
(𝑗)

𝐾

𝑘=1
 log 𝐒𝐨𝐟𝐭𝐦𝐚𝐱 (𝑝𝑖𝑘

(𝑗)
).

The final loss is formulated as:

(8) ℒ(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑖𝑚𝑝) = ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) + 𝜆ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝),

where the hyper-parameter 𝜆 balances the trade-off between the ℒ𝑓𝑖𝑡 and ℒ𝑖𝑚𝑝 losses.

Algorithm 1 summarizes the main steps of the proposed algorithm named Uncertainty Aware Adversarial

Imputer (UA-Adv Imputer).

4. Implementation details

We implemented the model using PyTorch deep learning library. The features in input dataset were scaled to

have zero mean and unit variance. We also dropped the label column in the dataset. The architecture of the

imputers is very simple. Here, we consider two variants: 1) Linear and 2) Multi-Layer Perceptron (MLP) with

only two hidden layers. In the case of the target attribute is categorical, we use the Softmax activation in last

layer. Table shows the specifications of imputers. The architecture of the discriminators is also very simple.

 PEN Vol. 10, No. 3, June 2022, pp.350-367

358

We implement them as MLP with only two hidden layers. The Relu activation is used in each hidden layer.

Also, we used the sigmoid activation in the output layer. The architecture of the discriminators is shown in

Table 1.

Table 2. Specification and architecture of the imputers

Algorithm1. The proposed UA-Adv Imputer

Inputs: 𝒟 = {(𝒙1, 𝒎1), (𝒙2, 𝒎2), … , (𝒙𝑛, 𝒎𝑛) }, 𝜆 ∶ controls the trade-off between the 𝓛𝑖𝑚𝑝and ℒ𝑓𝑖𝑡

losses.

 1.Initialize the certainty matrix: 𝓒 = 𝑴.
 2. Fill the 𝑋 = [𝒙1, 𝒙2, … , 𝒙𝑛] using the mean imputer.

 3. for iter = 1,2, … 𝑀𝐴𝑋_𝐼𝑡𝑒𝑟

 3.1. for each 𝑗 ∈ 𝑆𝑁𝐴

 Freeze imputer 𝑗 and unfreeze discriminator 𝑗

 { Train discriminator j: 𝐷(. ; 𝝓𝑗).}

 for ℓ = 1,2, … 𝑀𝐴𝑋_𝐴𝑑𝑣

 Sample 𝑿𝑟𝑒𝑎𝑙 from 𝒟

 Generate 𝑿𝑓𝑎𝑘𝑒 by setting it equal to 𝑿𝑟𝑒𝑎𝑙 and then adding noise

 to the target values 𝑿:𝑗
𝑓𝑎𝑘𝑒

 Compute ℒ𝑑𝑖𝑠(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑓𝑎𝑘𝑒) from (1).

 Backpropagate ℒ𝑑𝑖𝑠 to optimize 𝝓𝑗

 end;

 Update column 𝑗 of the certainty matrix 𝓒: 𝓒:𝑗 = [𝐷(𝒙; 𝝓𝑗) 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝒙 in 𝑿].

 { Train imputer j: I(. ; 𝜽𝑗).}

 Freeze discriminator j and unfreeze imputer j.

 for ℓ = 1,2, … 𝑀𝐴𝑋_𝐼𝑀𝑃

 Sample 𝑿𝑟𝑒𝑎𝑙 and 𝑿𝑖𝑚𝑝 from 𝒟

 Fill 𝑿:𝑗
𝑖𝑚𝑝

 using 𝐼(. ; 𝜽𝑗)

 Compute ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝) from (3)

 Compute ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) from (6)

 ℒ(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑖𝑚𝑝) = ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) + 𝜆ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝),

 Backpropagate ℒ to optimize 𝜽𝑗

 end;

 end; { for each 𝑗 }

 end; { for iter = 1,2, … 𝑀𝐴𝑋_𝐼𝑡𝑒𝑟 }

Output: Trained Imputers: ℐ = {𝐼(; 𝜽𝑗), 𝑗 ∈ 𝑆𝑁𝐴}.

 PEN Vol. 10, No. 3, June 2022, pp.350-367

359

Layer Input Output Connected to #Parameters

Linear Regressor

FC 𝑑 − 1 1 Inupt Data d

Linear Classifier

FC + Softmax 𝑑 − 1 K Inupt Data 𝑑𝐾

MLP Regressor

FC1+Relu 𝑑 − 1 2(𝑑 − 1) Input Data (𝑑 − 1)(2𝑑 − 1)

FC2+Relu 2(𝑑 − 1) 𝑑 − 1 FC1 (𝑑 − 1)(2𝑑 − 1)

FC3 𝑑 − 1 1 FC2 𝑑

MLP Classifier

FC1+Relu 𝑑 − 1 2(𝑑 − 1) Input Data (𝑑 − 1)(2𝑑 − 1)

FC2+Relu 2(𝑑 − 1) 𝑑 − 1 FC1 (𝑑 − 1)(2𝑑 − 1)

FC3+ Softmax 𝑑 − 1 𝐾 FC2 𝑑𝐾

FC: Fully Connected

Table 1. Specification and architecture of the discriminators

Layer Input Output Connected to #Parameters

MLP Classifier

FC1+Relu 𝑑 2𝑑 Input Data 2𝑑(𝑑 + 1)

FC2+Relu 2𝑑 𝑑 FC1 𝑑(2𝑑 + 1)

FC3 + Sigmoid 𝑑 1 FC2 𝑑 + 1

5. Experimental results

This section deals with the experiments conducted to evaluate the effectiveness of the proposed imputer model.

5.1.1. Datasets

We evaluate the proposed model on four public UCI datasets [26]: 1) Breast Cancer Wisconsin Diagnostic

(WDBC), 2) Parkinsons, 3) California, and 4) Yeast. The first two datasets are coming from the medical

diagnosis domain which is considered as one of the main applications of imputing methods. The statistics of

these datasets are summarized in Table 2.

Table 2. The Specifications of four real datasets used in our experiments.

Data Set #Classes n d Description

WDBC 2 569 30

Breast Cancer Wisconsin (Diagnostic) dataset from the

University of California- Irvine. The aim of the data is to

discriminate healthy people from those with cancer disease.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscons

in+(Diagnostic)

Parkinsons 2 195 23

 The dataset is collected of a range of biomedical voice

measurements from 31 individuals where 23 have Parkinson's

disease. Each feature shows a particular voice measure, and

each row corresponds to one person. The target of the data is to

discriminate healthy people from those with Parkinson’s

disease.

https://archive.ics.uci.edu/ml/datasets/parkinsons

California

Real

between

[0.15 – 5]

20640 8

Data are drawn from the 1990 U.S. Census. The target variable

shows the median house value in the logarithmic scale. We

obtained it from the sklearn.datasets package.

Yeast 10 1484 8

 The Yeast dataset include protein-protein interactions. The aim

is to predict localization site of protein.

https://archive.ics.uci.edu/ml/datasets/Yeast

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/Yeast

 PEN Vol. 10, No. 3, June 2022, pp.350-367

360

5.1.2. Evaluation metrics

There are some standard metrics to evaluate the performance of an imputation system. Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) are two measures that show the difference between imputed and real-

values. These metrics used in most studies, are also adopted in our experiments.

(9) 𝑅𝑀𝑆𝐸 =
1

𝑛
√∑(𝑋𝑖

𝑡𝑟𝑢𝑒 − 𝑋𝑖
𝑖𝑚𝑝

)

𝑛

𝑖=1

2

(10) 𝑀𝐴𝐸 =
1

𝑛
|𝑋𝑖

𝑡𝑟𝑢𝑒 − 𝑋𝑖
𝑖𝑚𝑝

|

6. Experimental setup

We compared the proposed UA-Adv Imputer with four typical and state-of-the-art algorithms named:

1. OT-Imputer [15]: two variants are considered in the experiments: 1) Linear and 2) MLP. These

variants are built as described in the original paper.

2. Soft Impute [4]: that is a low-rank approximation method that imputes missing entries by performing

iterative Singular Value Decomposition (SVD).

3. Mean Imputer.

4. ICE (Imputation by Chained equations) [27]: that performs imputation using conditional expectation.

This method is implemented in the scikit-learn python package. ICE is considered one the most popular

method due to providing good imputations with little hyperparameter adjustment.

We refer to these algorithms as peer methods. Additionally, we compare our methods to three deep learning-

based methods:

1. MIWAE [28]: that optimizes Importance Weighted AutoEncoder (IWAE) to impute missing

information.

2. GAIN [13]: that adapts GAN models to the data imputation task.

3. VAEAC [29]: that extends Variational Auto Encoder (VAE) so that they can be conditioned on an

arbitrary observed data. The missing data are then filled by sampling from the trained VAEs.

We split each dataset 80/20 (train/test) and adopt k-fold (k=5) cross-validation to adjust the hyperparameters

of the methods. More specifically, we chose the learning rate (𝑙𝑟) from the range:{10−4, 5 × 10−4, 10−3},

optimizer from {Adam, RmsProp}. The hyperparameters of the competing methods along with their adjustment

are reported in

Table 3.

To generate missing patterns, we selected 𝑝𝑓𝑒𝑎 = 30% of columns as missing. For each missing column,

we randomly chose 𝑝 = 50% of values and set them equal to 𝑁𝑜𝑛𝑒 (missing).

Table 3. Hyperparameters of the competing imputers along their adjustments

Hyper-parameter Method(s) Description Range

𝑀𝐴𝑋_𝐼𝑡𝑒𝑟
OT-Imputer, UA-

Adv

Number of cycles that each feature

optimized
{10,15,20}

𝜆 UA-Adv
Balance factor between the two loss

terms
{0.1, 0.5,1,2,3,5}

𝜆 Soft Impute
Nuclear-norm regularization

parameter

A grid containing 15

values between 𝜆𝑚𝑖𝑛

and 𝜆𝑚𝑎𝑥

 PEN Vol. 10, No. 3, June 2022, pp.350-367

361

Table 4. MAE of Imputation methods on the datasets.

Table 5. RMSE of Imputation methods on the datasets

Methods\Datasets WDBC California Parkinson Yeast

Linear UA-Adv 0.358 0.372 0.653 1.011

MLP UA-Adv 0.369 0.336 0.636 0.999

Linear OT Imputer 0.478 0.621 0.651 1.018

MLP OT Imputer 0.495 0.550 0.640 1.017

Mean 1.002 0.992 1.034 1.036

ICE 0.381 0.363 0.711 1.046

Soft Impute 0.401 0.546 0.636 1.015

6.1. Comparison with peer methods

The results of proposed models on test data along with comparisons with peer methods are reported in

Table 4 and Table 5. Also, we plot the MAE and RMSE of the competing methods versus iterations in Figure

7 and Figure 8 on the evaluated datasets respectively.

7. Discussion

As the results indicate, the proposed models outperform the peer methods in most of the evaluated datasets by

a large margin. It confirms the efficacy of the proposed loss model, novel training strategy of the discriminators,

and considering uncertainty in the training process of imputers. Through the ablation study provided in the next

experiments, we carefully examine the contribution of each factor in the overall performance of the proposed

models. Besides, as expected, the mean imputer achieved the worst results due to neglecting the dependency

between features. Additionally, the state-of-the-art OT Imputer did not obtain competitive results. It can be

explained by the fact that this method only focused on minimizing the distribution difference between two

imputed samples and neglects the importance of the accuracy of imputers to fill the missing entries. In contrast,

the proposed models train accurate imputers via the ℒ𝑓𝑖𝑡loss term.

Finally, in both UA-Adv and OT imputers, the MLP models almost outperform the linear ones due to their

ability to capture the non-linear relationship between features needed for the imputation task.

Methods\Datasets WDBC California Parkinson Yeast

Linear UA-Adv 0.193 0.251 0.341 0.720

MLP UA-Adv 0.209 0.213 0.302 0.712

OT Imputer Linear 0.298 0.292 0.375 0.723

MLP OT Imputer 0.322 0.251 0.344 0.718

Mean 0.725 0.683 0.796 0.740

ICE 0.210 0.254 0.392 0.751

Soft Impute 0.240 0.351 0.370 0.726

 PEN Vol. 10, No. 3, June 2022, pp.350-367

362

Figure 7.MAE of the imputers on the datasets

Figure 8. RMSE of the imputers on the datasets

7.1. Comparison with deep learning-based methods

Figure 9 depicts the results of proposed methods and the competing deep learning-based imputer. Comparison

with deep learning methods indicates that the proposed methods consistently outperform them in all evaluated

datasets. Indeed, deep learning methods results are not even as good as baseline models such as ICE and Soft

 PEN Vol. 10, No. 3, June 2022, pp.350-367

363

Impute. It can be explained as these methods are originally developed for large datasets and custom data types

such as images, video, and text. Thus, adopting these methods for small and tabular datasets used in our

experiments is not straightforward and as seen yielded poor results.

Figure 9. MAE and RMSE of the deep learning-based imputers in comparison with the proposed MLP UA-

Adv Imputer

7.1.1. Effects of the adversarial module

The hyperparameter 𝜆 in the proposed loss function controls the influence of the adversarial module in the

training process of imputers. Thus, to investigate the effectiveness of the module, we change 𝜆 from small to

large values and plot the MAE and RMSE of the MLP UA-Adv Imputer vs 𝜆 on the Parkinsons and Yeast

datasets in Figure 10. Besides, the results were compared to the Soft Impute which provides a better insight into

the sensitivity of results to this hyperparameter. As the result indicate, the performance of MLP UA-Adv Imputer

maximized in the range [1,2] and [0.5,1] on the Parkinsons and Yeast datasets respectively. Also, a small value

of 𝜆 leads to unsatisfactory results in both datasets that reveals the importance of the adversarial module.

Additionally, setting 𝜆 above the optimal value decreases the performance of the imputer slightly but still, the

proposed imputer outperforms the Soft-impute by a large margin. We can conclude that the adversarial module

plays an important role in the overall performance of the proposed model. Also, the results over the large subset

 PEN Vol. 10, No. 3, June 2022, pp.350-367

364

of λ values are acceptable and vary smoothly that making the adjustment of this hyperparameter a

straightforward task.

Figure 10. Influence of the adversarial module in the performance of the MLP UA-Adv

7.1.2. Effects of the uncertainty scores

To examine the role of uncertainty scores for imputed values in the overall performance of the proposed model,

we consider a variant of MLP UA-Adv Imputer named MLP Adv Imputer that does not consider the uncertainty

scores provided by the adversarial module. The results obtained by MLP Adv Imputer are compared with MLP

UA-Adv Imputer in Figure 11. As the results indicate, in both evaluated datasets MLP UA-Adv Imputer

outperforms MLP Adv Imputer considerably. It reveals the importance of considering uncertainty scores in the

training of the imputers. Also, we observed that the optimal value of hyperparameter 𝜆 in MLP Adv is much

greater than MLP UA-Adv in both datasets. That indicates weighting the features by uncertainty scores yields

more reliable input data for training the imputers using regression or classification loss (i.e., ℒ𝑓𝑖𝑡 loss term).

Figure 11. Effects of Uncertainty Scores in the performance of MLP UA-Adv Imputer

 PEN Vol. 10, No. 3, June 2022, pp.350-367

365

7.1.3. Run-time analysis

We compared the runtime of both proposed MLP UA-Adv and Linear UA-Adv methods with that of MLP OT

and Linear OT imputers on some datasets. All methods are implemented with the PyTorch deep learning library

and have been executed on a computer with the GTX 1660-ti (6 GB) graphic card and the Intel 9750H CPU.

The execution time needed to optimize the imputer is plotted in Figure 12. As the results show, the proposed

method has considerably less runtime compared to OT imputers. The main reason is that OT methods require

computing the Sinkhorn divergence between two random batches in the training process which is inefficient in

terms of computational cost. Also, the time required to train the MLP imputers is almost the same as linear ones

and the extra overhead is negligible. Thus, considering the MLP imputers in the proposed model consistently

outperform the linear counterpart, they are the preferred models for the imputation task in practice.

Figure 12. Runtime of the proposed methods vs. OT imputers

8. Conclusion and future work

In this research, we study the imputation for missing datasets. The aims were to train uncertainty-aware imputers

and boost their performance using modern regularization techniques in the deep learning domain. For these

reasons, we develop a simple neural network-based architecture that can train well with small datasets and

utilizes a novel adversarial strategy to estimate the uncertainty of imputed data. Besides, we proposed a novel

hybrid loss function that enforces the imputers to generate values for missing data that on the one hand, obey

the underlying data distribution so that it can confuse the well-trained adversarial module, and on the other hand,

predict existing non-missing values accurately. Experiments conducted on four real datasets collected from the

UCI repository reveal that the proposed imputers are indeed effective and surpass the peer methods by a large

margin almost on all evaluated datasets. Besides, we carefully examined the contribution of the adversarial

module and the uncertainty scores through ablation studies. The results confirm that both considerably boost

the overall performance of our methods. Finally, the run time of the proposed methods was investigated, and

the results show that they are efficient and have less execution time in comparison with that of peer imputer

models. In future work, we aim to extend our work to take the imbalanced nature of the imputation task into

account. Also, we target to examine other methods for incorporating the uncertainty scores in the training

process of imputers.

Declaration of competing interest

The authors declare that they have no any known financial or non-financial competing interests in any

material discussed in this paper.

Funding information

No funding was received from any financial organization to conduct this research.

References

[1] R. J. Little and D. B. Rubin, Statistical analysis with missing data. John Wiley & Sons, 2019.

 PEN Vol. 10, No. 3, June 2022, pp.350-367

366

[2] Z. Zhu, T. Wang, and R. J. Samworth, "High-dimensional principal component analysis with

heterogeneous missingness," arXiv preprint arXiv:1906.12125, 2019.

[3] S. Van Buuren, Flexible imputation of missing data. CRC press, 2018.

[4] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, "Matrix completion and low-rank SVD via fast

alternating least squares," The Journal of Machine Learning Research, vol. 16, no. 1, pp. 3367-3402,

2015.

[5] L. P. Brás and J. C. Menezes, "Improving cluster-based missing value estimation of DNA microarray

data," Biomolecular engineering, vol. 24, no. 2, pp. 273-282, 2007.

[6] K.-Y. Kim, B.-J. Kim, and G.-S. Yi, "Reuse of imputed data in microarray analysis increases imputation

efficiency," BMC bioinformatics, vol. 5, no. 1, pp. 1-9, 2004.

[7] A. S. Khairy, H. Salim, "The Detection of Counterfeit Banknotes Using Ensemble Learning Techniques

of AdaBoost and Voting," International Journal of Intelligent Engineering and Systems, vol. 14, no. 1,

pp. 326-339, 2021.

[8] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, "Multiple imputation by chained equations: what

is it and how does it work?," International journal of methods in psychiatric research, vol. 20, no. 1,

pp. 40-49, 2011.

[9] Z. Ghahramani and M. I. Jordan, "Supervised learning from incomplete data via an EM approach," in

Advances in neural information processing systems, 1994, pp. 120-127.

[10] D. Bertsimas, C. Pawlowski, and Y. D. Zhuo, "From predictive methods to missing data imputation: an

optimization approach," The Journal of Machine Learning Research, vol. 18, no. 1, pp. 7133-7171,

2017.

[11] L. Gondara and K. Wang, "Mida: Multiple imputation using denoising autoencoders," in Pacific-Asia

conference on knowledge discovery and data mining, 2018, pp. 260-272: Springer.

[12] S. C.-X. Li, B. Jiang, and B. Marlin, "Misgan: Learning from incomplete data with generative

adversarial networks," arXiv preprint arXiv:1902.09599, 2019.

[13] J. Yoon, J. Jordon, and M. Schaar, "Gain: Missing data imputation using generative adversarial nets,"

in International Conference on Machine Learning, 2018, pp. 5689-5698: PMLR.

[14] M. Ahmadi, T. Nest, M. Abdelnaim, and T.-D. Le, "Reproducing AmbientGAN: Generative models

from lossy measurements," arXiv preprint arXiv:1810.10108, 2018.

[15] B. Muzellec, J. Josse, C. Boyer, and M. Cuturi, "Missing data imputation using optimal transport," in

International Conference on Machine Learning, 2020, pp. 7130-7140: PMLR.

[16] A. W. Mulyadi, E. Jun, and H.-I. Suk, "Uncertainty-aware variational-recurrent imputation network for

clinical time series," IEEE Transactions on Cybernetics, 2021.

[17] H. T. S. A. Abdul Hadi M.Alaidi Ibtisam A. Aljazaery, "Encryption of Color Image Based on DNA

Strand and Exponential Factor," International Journal of Online and Biomedical Engineering (iJOE),

vol. 18, no. 3, 2022.

[18] T. H. Bø, B. Dysvik, and I. Jonassen, "LSimpute: accurate estimation of missing values in microarray

data with least squares methods," Nucleic acids research, vol. 32, no. 3, pp. e34-e34, 2004.

[19] X. Wang, . Li, Z. Jiang, and H. Feng, "Missing value estimation for DNA microarray gene expression

data by Support Vector Regression imputation and orthogonal coding scheme," BMC bioinformatics,

vol. 7, no. 1, pp. 1-10, 2006.

[20] L. F. Burgette and J. P. Reiter, "Multiple imputation for missing data via sequential regression trees,"

American journal of epidemiology, vol. 172, no. 9, pp. 1070-1076, 2010.

[21] D. J. Stekhoven and P. Bühlmann, "MissForest—non-parametric missing value imputation for mixed-

type data," Bioinformatics, vol. 28, no. 1, pp. 112-118, 2012.

[22] R. Mazumder, T. Hastie, and R. Tibshirani, "Spectral regularization algorithms for learning large

incomplete matrices," The Journal of Machine Learning Research, vol. 11, pp. 2287-2322, 2010.

[23] S. Mohamed, Z. Ghahramani, and K. A. Heller, "Bayesian exponential family PCA," Advances in

neural information processing systems, vol. 21, pp. 1089-1096, 2008.

[24] R. Lall, "How multiple imputation makes a difference," Political Analysis, vol. 24, no. 4, pp. 414-433,

2016.

[25] J. Honaker, G. King, and M. Blackwell, "Amelia II: A program for missing data," Journal of statistical

software, vol. 45, no. 1, pp. 1-47, 2011.

[26] M. Lichman. (2013). UCI Machine Learning Repository University of California, Irvine, School of

Information and Computer Sciences. Available: http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

 PEN Vol. 10, No. 3, June 2022, pp.350-367

367

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, and V. Dubourg, "Scikit-learn: Machine learning in Python," the Journal of machine Learning

research, vol. 12, pp. 2825-2830, 2011.

[28] P.-A. Mattei and J. Frellsen, "MIWAE: Deep generative modelling and imputation of incomplete data

sets," in International conference on machine learning, 2019, pp. 4413-4423: PMLR.

[29] O. Ivanov, M. Figurnov, and D. Vetrov, "Variational autoencoder with arbitrary conditioning," arXiv

preprint arXiv:1806.02382, 2018.

