
ISSN 2303-4521 

Periodicals of Engineering and Natural Sciences  Original Research 

Vol. 10, No. 3, June 2022, pp.350-367 

© The Author 2022. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that 

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's 

authorship and initial publication in this journal.  

  

 

Enhancing imputation techniques performance utilizing uncertainty 

aware predictors and adversarial learning  
 

Wafaa Mustafa Hameed 1, Nzar A. Ali 2 

1  Technical Collage of Informatics, Sulaimani Polytechnic University, Iraq 
2  Department of Statistics and informatics, University of Sulaimani, Iraq 

1,2  Department of Computer Science, Cihan University Sulaymaniya, Iraq 

ABSTRACT   

One crucial problem for applying machine learning algorithms to real-world datasets is missing data. The 

objective of data imputation is to fill the missing values in a dataset to resemble the completed dataset as 

accurately as possible. Many methods are proposed in the literature that mostly differs on the objective 

function and types of the variables considered. The performance of traditional machine learning methods is 

low when there is a nonlinear and complex relationship between features. Recently, deep learning methods 

are introduced to estimate data distribution and generate values for missing entries. However, these methods 

are originally developed for large datasets and custom data types such as image, video, and text. Thus, adopting 

these methods for small and structured datasets that are prevalent in real-world applications is not 

straightforward and often yields unsatisfactory results. Also, both types of methods do not consider uncertainty 

in the imputed data. We address these issues by developing a simple neural network-based architecture that 

works well with small and tabular datasets and utilizing a novel adversarial strategy to estimate the 

uncertainty of imputed data. The estimated uncertainty scores of features are then passed to the imputer 

module, and it fills the missing values by paying more attention to more reliable feature values. It results in 

an uncertainty-aware imputer with a promising performance. Extensive experiments conducted on some real-

world datasets confirm that the proposed methods considerably outperform state-of-the-art imputers. 

Meanwhile, their execution time is not costly compared to peer state-of-the-art methods. 
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1. Introduction 

Imputation is a technique that fills missing entries in any data source with appropriate values based on available 

information. The objective is to impute the missing values in the input dataset to resemble the underlying 

completed dataset as accurately as possible. This technique retains the number of samples in a dataset. By 

imputing all missing values in a dataset, we can analyze it using many standard methods developed for complete 

data. Missing values can arise from different sources such as measurement errors, low signal-to-noise ratio 

(SNR), or by deleting aberrant values. Thus, many datasets in the real world contain missing values which can 

be in any form such as NA, NAN, NULL, or blank. More formally, the problem can be defined as follows. 

Let X(c) be a random variable in d-dimensional space 𝒳(c) = 𝒳1
(c)

× 𝒳2
(c)

× … 𝒳d
(c)

. For each dimension j, we 

consider a new element NA ∉ 𝒳j that shows the missing value. Now, we define a new d-dimensional space 𝒳 =

𝒳1 × 𝒳2 × … 𝒳d where 𝒳j = 𝒳j
(c)

∪ {NA}. Also, let M ∈ {0,1}d be a binary random variable called mask that 

indicates which components of X(c) are observed, that is Mj = 0 (resp.  1) if Xj
(c)

 is revealed (resp. missing).  

The input of an imputer algorithm is a dataset 𝒟 = {(𝐱1, 𝐦1), (𝐱2, 𝐦2), … , (𝐱n, 𝐦n) } where 𝐱i ∈ 𝒳 and 𝐦i ∈
{0,1}d is a mask corresponding to 𝐱i. The aim of an imputer is to fill the unobserved entries in each 𝐱i with 
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plausible values. In ref. [1] it was classified three missing mechanisms based on independency relation between 

observed and missing values: 

MCAR: MCAR (Missing Completely at Random), in the missing value of a feature neither depends on observed 

data nor missed data. More precisely, p(m|x(c)) = p(m). 

MAR (Missing at Random): where a missing value only depends on observed values but is independent of 

missing data. More precisely, p(𝐦|𝐱(c)) = p(𝐦|𝐱(𝐨𝐛𝐬)) where 𝐱(𝐨𝐛𝐬) indicates observed values of 𝐱. 

NMAR (Not Missing at Random): in which a missing value depends on other missing values and possibly on 

observed values. Dropping rows or columns in a dataset containing missing values comes at the expense of 

losing valuable data. As an illustrative example [2], let 𝐗 ∈ ℝ𝐧×𝐝 be the input data in which each element is 

missing at random a probability equal to 1%. In the case of 𝐝 = 𝟓, we expect 95% (≈ 𝟎. 𝟗𝟗𝟓) of rows have no 

missing value. However, when 𝐝 = 𝟑𝟎𝟎, only 5% of rows are complete. Therefore, imputing admissible values 

for missing places is necessary especially in a high-dimensional dataset. Many methods are proposed to impute 

missing data that mostly differ on the objective function, types of the variables considered (numerical, 

categorical, both), and assumptions about data distribution or missing data mechanism [3]. Some popular 

strategies are in the literature include univariate statistical, low-rank approximation [4], nearest neighbor search 

[5, 6], multiple imputations [7], probabilistic [8], and deep learning-based methods. Deep learning methods 

attempt to estimate data distribution and generate values for missing entries to preserve the joint and marginal 

distribution. They are typically based on variational autoencoders [9, 10], or Generative Adversarial Networks 

(GANs) [11, 12,13]. These methods are originally developed for large datasets and custom data types such as 

image, video, and text. Thus, adopting these methods for small and tabular datasets that are prevalent in 

imputation applications is not straightforward and often yields unsatisfactory results. For example, results 

reported in [14] showed that these methods did not achieve competitive performance on a variety of UCI datasets. 

On the other hand, while traditional machine learning methods often work well for small datasets and can handle 

any feature type, their performance is low when there is a nonlinear and complex relationship between features. 

Besides, by utilizing advanced regularization techniques from the deep learning domain such as adversarial 

neural networks, we can boost the performance of these algorithms, especially in an out-of-sample setting.    

Most existing methods do not account for uncertainty in the input data. For example, at each iteration of the 

popular MICE method, a predictor is used to impute values for the current feature j based on other feature 

values. Here, some of these values are real while others are the outputs of previously learned imputers and so 

are uncertain. Recently, [15] developed an imputer for time-series data that considered the uncertainty in 

imputed values. However, the model developed based on variational autoencoders (VAE) and specially 

designed for large time-series datasets and has high complexity.  To address these issues, we develop a simple 

neural network-based architecture that works well with small datasets and utilizes a novel adversarial strategy 

to estimate the uncertainty of imputed data. The uncertainty scores of features are passed to the imputer, and it 

fills the missing values by paying more attention to confident feature values.  In addition to instance-based 

feature weighting, we elaborate a novel loss function that enforces the imputer to generate values so that for any 

target feature: 1) it can estimate values for known values in the feature precisely, 2) the predicted values for the 

missing entries obey the underlying data distribution and could confuse the adversarial neural network module 

so that it cannot distinguishes imputed values from real ones.  In summary, the contributions of the proposed 

model are as followings: 

1- We develop uncertainty-aware imputation methods by exploiting a novel adversarial strategy and the 

proposed hybrid loss function. Specially, we propose a new and simple strategy for training the adversarial 

module for the imputation task that outperforms the common training strategy used in the deep learning 

domain. 

2- The proposed methods considerably outperform state-of-the-art methods on most evaluated datasets. 

Meanwhile, its training time is not costly compared to deep learning-based methods. 

3- The proposed model has a very simple structure, can work with any feature type and small data. Also, the 

model can be trained in an end-to-end paradigm using any available neural network optimizers through Back-

Propagation (BP). 

Table 1 summarizes the main notations used throughout this paper. The rest of the paper is organized as follows. 

Section 2 reviews related work. Section 3 presents the proposed model in detail. Implementation details of the 

model are provided in Section 4. Section 5 reports the experimental results and provide analysis along with 

comparison with the peer state-of-the-art methods. Finally, Section 6 concludes with Conclusion and Future 

Work. 
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2. Related work 

Many strategies are developed for handling missing data. In this section, we classify and discuss these 

techniques with a focus on the works closely related to the proposed model. 

Table 1.  Summary of the main notations 

Notation Description 

𝑿 ∈ ℝ𝑛×𝑑 
The input dataset containing missing 

elements 

𝑿(.) ∈ ℝ𝑏×𝑑 A mini-batch sampled from dataset 

𝑿:𝑗
(.)

∈ ℝ𝑏 Column j of the matrix 𝑿(.) 

𝑿−𝑗
(.)

∈ ℝ𝑏×𝑑−1 

Matrix formed by dropping column j 

from 𝑿(.)  

𝑁𝐴 Missing value 

𝑆𝑁𝐴 The set of all columns having missing 

value  

𝓒 ∈ [0,1]𝑛×𝑑 Certainty matrix 

𝐼(. ; 𝜽𝑗) Imputer 𝑗 parametrized by 𝜽𝑗 

𝐷(. ; 𝝓𝑗) Discriminator 𝑗 parametrized by 𝝓𝑗 

Univariate imputation fills a lost value in a feature only based on other values in that feature. They often impute 

a missing value by the mean, median, or mode of the corresponding attribute. These methods have a low 

computational cost, but they ignore the correlation among features and thus often lead to poor results. However, 

they are widely used as an initializer in many advanced techniques. While, In multivariate imputation, observed 

values of other features can be used to impute unknown entries in a variable.  kNN is a multivariate imputation 

technique that for each instance with missing values finds 𝑘 nearest neighbors in the training set. Then, it 

imputes a value for a missing entry based on values in the nearest neighbors. Some extensions include sequential 

kNN [6] and iterative kNN [5, 17]. In iterative imputation, each feature with missing values is considered as a 

function of other attributes. Let 𝑗 be a selected column containing missing values. Then, we treated other features 

in the dataset as inputs 𝑋−𝑗, and fit a regressor on (𝑋−𝑗, 𝑗) for any known values in 𝑗. Subsequently, the trained 

regressor is utilized to predict the unknown values of 𝑗. A common regressor used in this approach is the least 

squares [18]. Some work also explored other regressor types such as Support Vector Regression (SVR) [19]. 

Probabilistic approaches assume parametric joint distribution on the entire dataset. The Expectation 

Maximization (EM) is utilized to estimate model parameters and missing values by maximizing the log 

likelihood function [9]. These approaches provide good theoretical properties but lack flexibility aspects. For 

example, in the case that the input dataset contains both numerical and categorical features, multivariate 

distributions often failed to model the underlying data distribution. Linear regression-based methods may have 

a poor performance when a nonlinear relationship exists among variables. To address this issue, regression trees 

are employed for imputation in [20]. Moreover, [21] extends random forest for the imputation task and obtains 

promising results. Tree based methods are non-parametric and do not consider any specific distribution of data. 

Predictive Mean Matching (PMM) is a popular traditional imputation method. Let j be a variable with some 

missing values and X−j denote a set of variables with no missing entries. PMM utilizes logistic regression to 

assign an appropriate weight (w) to each variable in X−j. These weights define the posterior predictive 

distribution p(j|X−j). Then, it samples a new set of weights 𝐰∗ from the distribution and predicts values of j for 

all cases in the dataset. Let I (resp.  K) be the set of instances with missing values of j (resp. no missing). For 

each instance i in I, PMM finds a set of cases in K that their predicted values are close to the predicted value of 

i. Then, it imputes the value of i by randomly choosing a value from this set. (Singular Value Decomposition) 

SVD imputation [22] assumes input data are noisy observations produced by linear combinations of a small set 

of principal components. SVD learns these components from the dataset and then imputes the missing entries 

from a linear combination of them in an iterative process. Bayesian principal component imputation [23] extends 

the SVD method to incorporate information about prior distribution on the model parameters. 

Multiple imputation creates multiple copies of the dataset and estimates values for missing entries for each 

dataset. The imputed outcomes are then combined using an appropriate strategy. These methods often have 

three following steps [22]: 
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1- Imputation: that is like to single imputation, however, the imputed values come from m datasets rather 

than just one dataset. 

2- Analysis:  each of m imputed values is analyzed.  
3- Pooling:  the results are combined by calculating the mean, variance, and or any other combining 

technique.  

MICE ( multiple imputation by chained equations)  [7]: is a well-known multiple imputation technique. It 

assumes the value of missing data depends on the observed data. It generates a series of regressors or any 

other models to impute multiple values for a missing entry. First, a simple mean imputation is applied to each 

missing entry referred as placeholder. Second, the “placeholder” mean imputations for one feature are set back 

to missing. Third, a suitable regressor is fitted to impute values for the missing variable. These steps are 

repeated until the max iteration defined by the user reaches. Once the max number of iterations is completed, 

the entire process is repeated to generate the next completed dataset. The following flowchart illustrates the 

main steps in the MICE approach. MICE can use PMM, logistic regression, Bayesian linear regression, and 

similar methods as the regressor. 

 
Figure 1.  Flowchart of MICE 

The Amelia method is also a multi-imputation method based on EM and bootstrapping. It assumes data are 

drawn from a multivariate Gaussian [25].  [10] analyses the imputation problem from the optimization 

perspective and develops optimization-based methods for both single and multiple imputation that refines 

existing methods in the out-of-sample setting. 

2.1. Deep Learning-Based Imputation 

Deep learning-based approaches for data imputation are often generative and developed by extending auto-

encoders and GAN models for incomplete data. MIDA (Multiple Imputation using Denoising Autoencoders ) 

[10] uses an  overcomplete Denoising Autoencoder (DAE) for data imputation. The model projects the input 

data to a higher dimensional space to recover missing information.  

Figure 2 depicts the architecture where each layer in the encoder increases the dimensionality by adding Θ 

neurons. In the decoding stage, it sets half of the input neurons to zero and aim to recover the complete data. 
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Figure 2. The architecture of encoder and decoder parts of MIDA [11] 

 

The main problem is that autoencoders require complete data for training. Therefore, MIDA initially uses mean 

imputation to fill missing entries producing fake complete data. Also, by this approach, it is impossible to learn 

missing patterns in the original dataset.   Generative Adversarial Imputation Nets (GAIN) [13] extends 

the GAN model to impute missing values. Like standard GAN, it has two components: the 

discriminator and generator. The generator aims to accurately fill the missing values whereas the 

discriminator tries to distinguish between imputed and real values. Ambient GAN [14] works only with 

image data type and extends the standard GAN to incorporate a measurement process such as adding noise, data 

removal, and projection. Here, the discriminator goal is to distinguish between real measurements from 

simulated ones. This approach assumes that the measurement process is known and has only a few parameters. 

However, these assumptions do not hold for many datasets with missing values.   In addition to using a GAN 
(𝐺𝑥, 𝐷𝑥) to learn data distribution, MisGAN [12] utilizes an auxiliary GAN (𝐺𝑚, 𝐷𝑚) to learn mask distribution. 

Let 𝒇𝜏(𝒙, 𝒎)  be a function that fills the missing entries in 𝒙 by a constant 𝜏. Also, let 𝒙̃ and 𝒎̃ be the output of 

𝐺𝑥 and 𝐺𝑚 respectively. The complete data generator 𝐺𝑥 is trained so that its outputs when masked by 𝒎̃ and 

𝒇𝜏 (i.e., (𝒙̃, 𝒎̃)) can not be distinguished from the real partially observed data (𝒙, 𝒎). Figure 3 illustrates the 

overall architecture of the MisGAN. 

 
Figure 3. Architecture of the MisGAN 

 

In[15], it is built on the assumption that two random batches from the same dataset should have the same 

distribution. It leverages the Sinkhorn divergence to measure the transport distance between two random batches 

and impute the missing values by minimizing this loss function. 
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3. The proposed method 

The goal of the proposed model is to impute the missing values so that the adversarial neural network cannot 

distinguish real values from imputed ones. Also, we aim to account for the uncertainty of imputed values using 

confidence scores obtained from our adversarial module. Figure 4 illustrates the overall architecture of the 

proposed model. 

 
Figure 4. Overall architecture and training process of the proposed imputation model 

In the first step, the missing places are filled using a univariate imputation technique like mean. Also, we 

consider a global certainty matrix 𝓒 ∈ [0,1]𝑛×𝑑 and initialize it using the mask matrix 𝑴 = [𝒎𝟏, 𝒎𝟐, … , 𝒎𝒅] 
as 𝓒 = 𝑴. Thus, in the first stage, we are certain only about real (observed) values in the dataset.  We choose a 

feature at each step according to an appropriate heuristic function. For example, the feature can be selected 

according to the increasing order of the number of missing entries. Let 𝑗 ∈ 𝑆𝑁𝐴 be the selected feature in the 

current cycle where 𝑆𝑁𝐴 denotes the set of all columns containing missing values. The variable 𝑗 denoted by 𝑿:𝑗 

is considered as the target and other features denoted by 𝑿−𝑗 form the input. To impute the missing values in 

the 𝑗𝑡ℎ column, we design a specific imputer 𝐼(. ; 𝜽𝑗) parametrized by 𝜽𝑗, and its corresponding discriminator 

𝐷(. ; 𝝓𝑗) parameterized by 𝝓𝑗 . Note that for each instance 𝒙𝑖,  some of its features have real values and so are 

confident, whereas some of them are filled using the corresponding imputer in the previous steps. There exists 

uncertainty about the imputed values that must be considered to build a more accurate imputer. More precisely, 

to optimize the imputer 𝑗, we aim to have more attention to high confident features per instance. Thus, we target 

weighting the features considering their certainty scores. The less confident features of an instance should get 

lower weights. The certainty score of an imputed value is obtained from the adversarial module as described in 

the following. The adversarial module aims to discriminate imputed values from real ones. We design the loss 

function to learn 𝜽𝑗 such that the resulting imputer in addition to estimating a missing entry with high accuracy, 

be able to confuse the adversarial module so that: 

1- It cannot distinguish between real and imputed values. 

2- The imputed values have a similar distribution to the real values. 

It implies a minimax game between the imputer and the adversarial module. On one hand, the imputer tries 

to fool the adversarial network, and on the other hand, the adversarial module attempts to discover 

discriminative information in the observed values and identifies fake values.  In the following, we discuss about 

each component of the proposed model with more details. The adversarial module aims to estimate how 

much the imputed values are similar to real ones. We can model this module by a collection of 

adversarial neural networks {𝐷(. ; 𝝓𝑗): 𝒙 ∈ ℝ𝑑 → [0,1]}
𝑗∈𝑆𝑁𝐴

where the output 𝐷𝑗(𝒙; 𝝓𝒋) shows the 

probability that how much the input 𝒙 is real. The standard training process in domain adaptation and 

GAN is to create mini-batches containing both real and imputed values of the target feature and then 
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ask the discriminator Dj to distinguish real ones from imputed. However, we experimentally find out 

this process is not effective for small tabular datasets containing missing values. Therefore, we propose 

the following simple yet effective strategy. First, we sample 𝐗real from instances having real values 

on feature j. Second, we corrupt the values on the target feature by adding some noises to the actual 

values and thus obtaining a fake sample 𝐗fake. The real and fake samples are mixed and passed to the 

adversarial module. Finally, we train the discriminator Dj to distinguish real from fake data accurately. 

A well-trained discriminator Dj acts like a critic that can judge how much a sample of imputed data is 

similar to a real one. To this end, we use the following BCE loss to train Dj: 

(1) ℒ𝑑𝑖𝑠(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑓𝑎𝑘𝑒 ) = BCE(𝟏, 𝒑(𝑗)) + BCE(𝟎, 𝒑(𝑗))  =
1

𝑏
∑ − log 𝒑𝑖

(𝑗)
− log(1 − 𝒒𝑖

(𝑗)
)

𝑏

𝑖=1
, 

where 𝑏 = |𝑿𝑟𝑒𝑎𝑙|, 𝒑𝑖
(𝑗)

= 𝐷𝑗 (𝒙𝑖
(𝑟𝑒𝑎𝑙)

; 𝝓𝑗), and 𝒒𝑖
(𝑗)

= 𝐷𝑗 (𝒙𝑖
(𝑓𝑎𝑘𝑒)

; 𝝓𝑗). 

Figure 5 illustrates the overall training process of the adversarial module in the proposed model. 

 
Figure 5. Overall training process of the adversarial module on the target feature 

 

The imputer receives the weighted features as input and optimizes 𝜽𝑗 according to the target feature 𝑗. For a 

numeric target feature, we model the imputer using a regressor neural network, and in the case that the target 

attribute is categorical, we employ a classifier neural network as the imputer. Nevertheless, the imputer module 

is not limited to a neural network, and one can implement it utilizing other gradient-based machine learning 

models. Figure 6 illustrates the overall training process of the imputer in the proposed model. 

 
Figure 6. Overall training process of the proposed imputer on the target feature 𝑗 

 

To optimize model 𝑗, we sample two batches from data: 𝑿𝑟𝑒𝑎𝑙 and 𝑿𝑖𝑚𝑝 where 𝑿𝑟𝑒𝑎𝑙 is sampled from data 

having real values on feature 𝑗 whereas 𝑿𝑖𝑚𝑝 is chosen from data having missing values. We train the imputer 

𝑗 so that it can predict the target values 𝑿:𝑗
𝑟𝑒𝑎𝑙 accurately. On the other hand, it should fill missing entries on 

𝑿𝑖𝑚𝑝 so that the adversarial module cannot distinguish the imputed values from real ones. 

The proposed hybrid loss function is composed of two terms: 1) ℒ𝑖𝑚𝑝: which ensures the imputed values follow 

the true distribution of data so that the adversarial module cannot distinguish between real and unobserved 
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entries, 2) ℒ𝑓𝑖𝑡: which enforces the imputers to predict the missing entries with high accuracy. For a batch 

𝑿𝑖𝑚𝑝 ∈ ℝ𝑏×𝑑 sampled from instances having missing values on the feature 𝑗, first, imputer 𝑗 fills the missing 

elements in column j of 𝑿𝑖𝑚𝑝. To this end, we mix the confidence scores with the input 𝑿−𝑗
𝑖𝑚𝑝

 using element-

wise multiplication: 

(2) 𝑿−𝑗
𝑖𝑐 = 𝑿−𝑗

𝑖𝑚𝑝
⨀ 𝓒−𝑗

𝑖𝑚𝑝
, 

Then, we run 𝐼(. ; 𝜽𝑗) on 𝑿−𝑗
𝑖𝑐  and store the outputs in 𝑿:𝑗

𝑖𝑚𝑝
. Afterward, we pass 𝑿𝑖𝑚𝑝 to the adversarial module 

and get its output denoted by 𝒑(𝑗) ∈ ℝ𝑏 . The 𝒑𝑖
(𝑗)

 approximates the probability that 𝒙𝑖
𝑖𝑚𝑝

 (𝑖𝑡ℎ instance in 

𝑿𝑖𝑚𝑝) is real. A well-trained imputer 𝑗 should fill the missing elements in 𝑿𝑖𝑚𝑝 so that the adversarial module 

cannot classify any instance 𝒙𝑖
𝑖𝑚𝑝

as fake and its output should be near 1. Thus, we define ℒ𝑖𝑚𝑝 as the Binary 

Cross-Entropy (BCE) loss between the target vector 𝟏 ∈ ℝ𝑏 and the predicted values 𝒑(𝑗): 

(3) ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝) = BCE(𝟏, 𝒑(𝑗)) =
1

𝑏
∑ − log 𝒑𝑖

(𝑗)
𝑏

𝑖=1
 where 𝑏 = |𝑿𝑖𝑚𝑝|  

Besides, we update the 𝑗𝑡ℎ column of the certainty matrix 𝓒 by setting its corresponding elements equal to 𝒑(𝑗): 

(4) 𝓒[𝐼(𝑖𝑚𝑝), 𝑗] = 𝒑(𝑗), 

where 𝐼(𝑖𝑚𝑝) is the set of indices in original dataset corresponding to 𝑿𝑖𝑚𝑝.  

For a real batch 𝑿𝑟𝑒𝑎𝑙 ∈ ℝ𝑏×𝑑, let 𝓒𝑟𝑒𝑎𝑙 ∈ ℝ𝑏×𝑑be the corresponding confidence scores obtained by the 

adversarial module. We combine the certainty scores with the input 𝑿−𝑗
𝑟𝑒𝑎𝑙 using element-wise multiplication: 

(5) 𝑿−𝑗
𝑟𝑐 = 𝑿−𝑗

𝑟𝑒𝑎𝑙⨀ 𝓒−𝑗
𝑟𝑒𝑎𝑙 

Now, let 𝒕(𝑗)=𝑿:𝑗
𝑟𝑒𝑎𝑙 be the real values and 𝒑(𝑗) show the output of the regressor when applied on 𝑿−𝑗

𝑟𝑐 . Note that 

we know the real values on the target feature 𝑗 for each instance in 𝑿𝑟𝑒𝑎𝑙. In the case that the attribute 𝑗 is a 

continues number, we employ an appropriate regression loss term like smooth-L1 to achieve high accurate 

predictions. It is defined as: 

(6) 

ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) =
1

𝑏
∑ ℒ𝑖(𝒕(𝑗), 𝒑(𝑗))

𝑏

𝑖=1
 where 𝑏 = |𝑿𝑟𝑒𝑎𝑙| and 

ℒ𝑖(𝒕(𝑗), 𝒑(𝑗)) = {
0.5 (𝑝𝑖

(𝑗)
− 𝑡𝑖

(𝑗)
)

2
/𝛽, if |𝑝𝑖

(𝑗)
− 𝑡𝑖

(𝑗)
| < 𝛽

|𝑝𝑖
(𝑗)

− 𝑡𝑖
(𝑗)

| − 0.5𝛽, otherwise
. 

For a categorical target feature j with 𝐾 distinct values, we develop the imputer 𝑗 as a classifier that outputs 

𝒑(𝑗) ∈ ℝ𝑏×𝐾 for the input 𝑿−𝑗
𝑟𝑐 . Also, we convert 𝒕(𝑗) to one-hot encoding format and define ℒ𝑖 as a classification 

loss like cross-entropy:    

(7) ℒ𝑖(𝒑(𝑗), 𝒕(𝑗)) = − ∑ 𝑡𝑖𝑘
(𝑗)

𝐾

𝑘=1
 log 𝐒𝐨𝐟𝐭𝐦𝐚𝐱 (𝑝𝑖𝑘

(𝑗)
). 

The final loss is formulated as: 

(8) ℒ(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑖𝑚𝑝) = ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) + 𝜆ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝 ), 

where the hyper-parameter 𝜆 balances the trade-off between the ℒ𝑓𝑖𝑡 and ℒ𝑖𝑚𝑝 losses. 

Algorithm 1 summarizes the main steps of the proposed algorithm named Uncertainty Aware Adversarial 

Imputer (UA-Adv Imputer). 

4. Implementation details 

We implemented the model using PyTorch deep learning library. The features in input dataset were scaled to 

have zero mean and unit variance. We also dropped the label column in the dataset.  The architecture of the 

imputers is very simple. Here, we consider two variants: 1) Linear and 2) Multi-Layer Perceptron (MLP) with 

only two hidden layers. In the case of the target attribute is categorical, we use the Softmax activation in last 

layer. Table  shows the specifications of imputers. The architecture of the discriminators is also very simple. 
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We implement them as MLP with only two hidden layers. The Relu activation is used in each hidden layer. 

Also, we used the sigmoid activation in the output layer. The architecture of the discriminators is shown in  

Table 1. 

 

 

 

Table 2.  Specification and architecture of the imputers  

Algorithm1. The proposed UA-Adv Imputer 

Inputs: 𝒟 = {(𝒙1, 𝒎1), (𝒙2, 𝒎2), … , (𝒙𝑛, 𝒎𝑛) }, 𝜆 ∶ controls the trade-off between the 𝓛𝑖𝑚𝑝and ℒ𝑓𝑖𝑡 

losses. 

 1.Initialize the certainty matrix: 𝓒 = 𝑴.  
 2. Fill the 𝑋 = [𝒙1, 𝒙2, … , 𝒙𝑛] using the mean imputer. 

 3. for iter = 1,2, … 𝑀𝐴𝑋_𝐼𝑡𝑒𝑟  

  3.1. for each 𝑗 ∈ 𝑆𝑁𝐴 

   Freeze imputer 𝑗 and unfreeze discriminator 𝑗 

   { Train discriminator j: 𝐷(. ; 𝝓𝑗).}  

   for ℓ = 1,2, … 𝑀𝐴𝑋_𝐴𝑑𝑣 

    Sample 𝑿𝑟𝑒𝑎𝑙 from 𝒟 

    Generate 𝑿𝑓𝑎𝑘𝑒 by setting it equal to 𝑿𝑟𝑒𝑎𝑙 and then adding noise  

     to the target values 𝑿:𝑗
𝑓𝑎𝑘𝑒

 

    Compute ℒ𝑑𝑖𝑠(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑓𝑎𝑘𝑒 ) from (1). 

    Backpropagate ℒ𝑑𝑖𝑠 to optimize 𝝓𝑗  

   end; 

   Update column 𝑗 of the certainty matrix 𝓒: 𝓒:𝑗 = [𝐷(𝒙; 𝝓𝑗) 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝒙 in 𝑿 ]. 

   { Train imputer j: I(. ; 𝜽𝑗).}  

   Freeze discriminator j and unfreeze imputer j. 

   for ℓ = 1,2, … 𝑀𝐴𝑋_𝐼𝑀𝑃 

    Sample 𝑿𝑟𝑒𝑎𝑙 and 𝑿𝑖𝑚𝑝 from 𝒟 

    Fill 𝑿:𝑗
𝑖𝑚𝑝

 using 𝐼(. ; 𝜽𝑗) 

    Compute ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝) from (3) 

    Compute ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) from (6) 

    ℒ(𝑿𝑟𝑒𝑎𝑙 , 𝑿𝑖𝑚𝑝) = ℒ𝑓𝑖𝑡(𝑿𝑟𝑒𝑎𝑙) + 𝜆ℒ𝑖𝑚𝑝(𝑿𝑖𝑚𝑝 ), 

    Backpropagate ℒ to optimize 𝜽𝑗  

   end; 

  end; { for each 𝑗 } 

 end; { for iter = 1,2, … 𝑀𝐴𝑋_𝐼𝑡𝑒𝑟 } 

Output: Trained Imputers: ℐ = {𝐼(; 𝜽𝑗),   𝑗 ∈ 𝑆𝑁𝐴}. 
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Layer Input Output Connected to #Parameters 

Linear Regressor     

FC 𝑑 − 1 1 Inupt Data d 

Linear Classifier     

FC + Softmax 𝑑 − 1 K Inupt Data 𝑑𝐾 

MLP Regressor     

FC1+Relu 𝑑 − 1 2(𝑑 − 1) Input Data (𝑑 − 1)(2𝑑 − 1) 

FC2+Relu 2(𝑑 − 1) 𝑑 − 1 FC1 (𝑑 − 1)(2𝑑 − 1) 

FC3 𝑑 − 1 1 FC2 𝑑 

MLP Classifier      

FC1+Relu 𝑑 − 1 2(𝑑 − 1) Input Data (𝑑 − 1)(2𝑑 − 1) 

FC2+Relu 2(𝑑 − 1) 𝑑 − 1 FC1 (𝑑 − 1)(2𝑑 − 1) 

FC3+ Softmax 𝑑 − 1 𝐾 FC2 𝑑𝐾 

FC: Fully Connected  

 

Table 1. Specification and architecture of the discriminators  

Layer Input Output Connected to #Parameters 

MLP Classifier      

FC1+Relu 𝑑 2𝑑 Input Data 2𝑑(𝑑 + 1) 

FC2+Relu 2𝑑 𝑑 FC1 𝑑(2𝑑 + 1) 

FC3 + Sigmoid 𝑑 1 FC2 𝑑 + 1 

 

5. Experimental results 

This section deals with the experiments conducted to evaluate the effectiveness of the proposed imputer model.  

5.1.1. Datasets  

We evaluate the proposed model on four public UCI datasets [26]: 1) Breast Cancer Wisconsin Diagnostic 

(WDBC), 2) Parkinsons, 3) California, and 4) Yeast. The first two datasets are coming from the medical 

diagnosis domain which is considered as one of the main applications of imputing methods. The statistics of 

these datasets are summarized in Table 2. 

Table 2. The Specifications of four real datasets used in our experiments. 

Data Set #Classes n d Description 

WDBC  2 569 30 

Breast Cancer Wisconsin (Diagnostic) dataset from the 

University of  California- Irvine. The aim of the data is to 

discriminate healthy people from those with cancer disease. 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscons

in+(Diagnostic)  

Parkinsons  2 195 23 

 The dataset is collected of a range of biomedical voice 

measurements from 31 individuals where 23 have Parkinson's 

disease. Each feature shows a particular voice measure, and 

each row corresponds to one person. The target of the data is to 

discriminate healthy people from those with Parkinson’s 

disease.  

https://archive.ics.uci.edu/ml/datasets/parkinsons  

California 

Real 

between 

[0.15 – 5] 

20640 8 

Data are drawn from the 1990 U.S. Census. The target variable 

shows the median house value in the logarithmic scale. We 

obtained it from the sklearn.datasets package.  

Yeast 10 1484 8 

 The Yeast dataset include protein-protein interactions. The aim 

is to predict localization site of protein. 

https://archive.ics.uci.edu/ml/datasets/Yeast  

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/Yeast
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5.1.2. Evaluation metrics  

There are some standard metrics to evaluate the performance of an imputation system. Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) are two measures that show the difference between imputed and real-

values. These metrics used in most studies, are also adopted in our experiments. 

(9) 𝑅𝑀𝑆𝐸 =
1

𝑛
√∑(𝑋𝑖

𝑡𝑟𝑢𝑒 − 𝑋𝑖
𝑖𝑚𝑝

)

𝑛

𝑖=1

2

  

(10) 𝑀𝐴𝐸 =
1

𝑛
|𝑋𝑖

𝑡𝑟𝑢𝑒 − 𝑋𝑖
𝑖𝑚𝑝

| 

6. Experimental setup  

We compared the proposed UA-Adv Imputer with four typical and state-of-the-art algorithms named:  

1. OT-Imputer [15]: two variants are considered in the experiments: 1) Linear and 2) MLP. These 

variants are built as described in the original paper.  

2. Soft Impute [4]: that is a low-rank approximation method that imputes missing entries by performing 

iterative Singular Value Decomposition (SVD).  

3. Mean Imputer. 

4. ICE (Imputation by Chained equations) [27]: that performs imputation using conditional expectation. 

This method is implemented in the scikit-learn python package. ICE is considered one the most popular 

method due to providing good imputations with little hyperparameter adjustment. 

We refer to these algorithms as peer methods. Additionally, we compare our methods to three deep learning-

based methods: 

1. MIWAE [28]: that optimizes Importance Weighted AutoEncoder (IWAE) to impute missing 

information. 

2. GAIN [13]: that adapts GAN models to the data imputation task. 

3. VAEAC [29]: that extends Variational Auto Encoder (VAE) so that they can be conditioned on an 

arbitrary observed data. The missing data are then filled by sampling from the trained VAEs.  

We split each dataset 80/20 (train/test) and adopt k-fold (k=5) cross-validation to adjust the hyperparameters 

of the methods. More specifically, we chose the learning rate (𝑙𝑟) from the range:{10−4, 5 × 10−4, 10−3}, 

optimizer from {Adam, RmsProp}. The hyperparameters of the competing methods along with their adjustment 

are reported in   

Table 3. 

To generate missing patterns, we selected 𝑝𝑓𝑒𝑎 = 30%  of columns as missing. For each missing column, 

we randomly chose 𝑝 = 50% of values and set them equal to 𝑁𝑜𝑛𝑒 (missing).  

 

Table 3. Hyperparameters of the competing imputers along their adjustments 

Hyper-parameter Method(s) Description Range 

𝑀𝐴𝑋_𝐼𝑡𝑒𝑟 
OT-Imputer, UA-

Adv 

Number of cycles that each feature 

optimized 
{10,15,20} 

𝜆 UA-Adv 
Balance factor between the two loss 

terms 
{0.1, 0.5,1,2,3,5} 

𝜆 Soft Impute 
Nuclear-norm regularization 

parameter 

A grid containing 15 

values between 𝜆𝑚𝑖𝑛  

and 𝜆𝑚𝑎𝑥  

 



 PEN Vol. 10, No. 3, June 2022, pp.350-367 

361 

 

 

Table 4.  MAE of Imputation methods on the datasets. 

Table 5. RMSE of Imputation methods on the datasets 

Methods\Datasets WDBC California Parkinson Yeast 

Linear UA-Adv  0.358 0.372 0.653 1.011 

MLP UA-Adv  0.369 0.336 0.636 0.999 

Linear OT Imputer  0.478 0.621 0.651 1.018 

MLP OT Imputer  0.495 0.550 0.640 1.017 

Mean 1.002 0.992 1.034 1.036 

ICE 0.381 0.363 0.711 1.046 

Soft Impute 0.401 0.546 0.636 1.015 

 

6.1. Comparison with peer methods 

The results of proposed models on test data along with comparisons with peer methods are reported in  

Table 4 and Table 5. Also, we plot the MAE and RMSE of the competing methods versus iterations in Figure 

7 and Figure 8 on the evaluated datasets respectively. 

7. Discussion 

As the results indicate, the proposed models outperform the peer methods in most of the evaluated datasets by 

a large margin. It confirms the efficacy of the proposed loss model, novel training strategy of the discriminators, 

and considering uncertainty in the training process of imputers. Through the ablation study provided in the next 

experiments, we carefully examine the contribution of each factor in the overall performance of the proposed 

models.   Besides, as expected, the mean imputer achieved the worst results due to neglecting the dependency 

between features. Additionally, the state-of-the-art OT Imputer did not obtain competitive results. It can be 

explained by the fact that this method only focused on minimizing the distribution difference between two 

imputed samples and neglects the importance of the accuracy of imputers to fill the missing entries. In contrast, 

the proposed models train accurate imputers via the ℒ𝑓𝑖𝑡loss term. 

Finally, in both UA-Adv and OT imputers, the MLP models almost outperform the linear ones due to their 

ability to capture the non-linear relationship between features needed for the imputation task. 

Methods\Datasets WDBC California Parkinson Yeast 

Linear UA-Adv  0.193 0.251 0.341 0.720 

MLP UA-Adv  0.209 0.213 0.302 0.712 

OT Imputer Linear 0.298 0.292 0.375 0.723 

MLP OT Imputer 0.322 0.251 0.344 0.718 

Mean 0.725 0.683 0.796 0.740 

ICE 0.210 0.254 0.392 0.751 

Soft Impute 0.240 0.351 0.370 0.726 
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Figure 7.MAE of the imputers on the datasets 

 

 

 
Figure 8. RMSE of the imputers on the datasets 

7.1. Comparison with deep learning-based methods 

Figure 9 depicts the results of proposed methods and the competing deep learning-based imputer. Comparison 

with deep learning methods indicates that the proposed methods consistently outperform them in all evaluated 

datasets. Indeed, deep learning methods results are not even as good as baseline models such as ICE and Soft 
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Impute.    It can be explained as these methods are originally developed for large datasets and custom data types 

such as images, video, and text. Thus, adopting these methods for small and tabular datasets used in our 

experiments is not straightforward and as seen yielded poor results. 

 

 
Figure 9. MAE and RMSE of the deep learning-based imputers in comparison with the proposed MLP UA-

Adv Imputer 

7.1.1. Effects of the adversarial module 

The hyperparameter 𝜆 in the proposed loss function controls the influence of the adversarial module in the 

training process of imputers. Thus, to investigate the effectiveness of the module, we change 𝜆 from small to 

large values and plot the MAE and RMSE of the MLP UA-Adv Imputer vs 𝜆 on the Parkinsons and Yeast 

datasets in Figure 10. Besides, the results were compared to the Soft Impute which provides a better insight into 

the sensitivity of results to this hyperparameter. As the result indicate, the performance of MLP UA-Adv Imputer 

maximized in the range [1,2] and [0.5,1] on the Parkinsons and Yeast datasets respectively. Also, a small value 

of 𝜆 leads to unsatisfactory results in both datasets that reveals the importance of the adversarial module. 

Additionally, setting 𝜆 above the optimal value decreases the performance of the imputer slightly but still, the 

proposed imputer outperforms the Soft-impute by a large margin. We can conclude that the adversarial module 

plays an important role in the overall performance of the proposed model. Also, the results over the large subset 
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of λ values are acceptable and vary smoothly that making the adjustment of this hyperparameter a 

straightforward task. 

 
Figure 10. Influence of the adversarial module in the performance of the MLP UA-Adv 

7.1.2. Effects of the uncertainty scores 

To examine the role of uncertainty scores for imputed values in the overall performance of the proposed model, 

we consider a variant of MLP UA-Adv Imputer named MLP Adv Imputer that does not consider the uncertainty 

scores provided by the adversarial module. The results obtained by MLP Adv Imputer are compared with MLP 

UA-Adv Imputer in Figure 11. As the results indicate, in both evaluated datasets MLP UA-Adv Imputer 

outperforms MLP Adv Imputer considerably. It reveals the importance of considering uncertainty scores in the 

training of the imputers. Also, we observed that the optimal value of hyperparameter 𝜆 in MLP Adv is much 

greater than MLP UA-Adv in both datasets. That indicates weighting the features by uncertainty scores yields 

more reliable input data for training the imputers using regression or classification loss (i.e., ℒ𝑓𝑖𝑡 loss term).  

 

 
Figure 11. Effects of Uncertainty Scores in the performance of MLP UA-Adv Imputer 
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7.1.3. Run-time analysis 

We compared the runtime of both proposed MLP UA-Adv and Linear UA-Adv methods with that of MLP OT 

and Linear OT imputers on some datasets. All methods are implemented with the PyTorch deep learning library 

and have been executed on a computer with the GTX 1660-ti (6 GB) graphic card and the Intel 9750H CPU. 

The execution time needed to optimize the imputer is plotted in Figure 12.  As the results show, the proposed 

method has considerably less runtime compared to OT imputers.  The main reason is that OT methods require 

computing the Sinkhorn divergence between two random batches in the training process which is inefficient in 

terms of computational cost. Also, the time required to train the MLP imputers is almost the same as linear ones 

and the extra overhead is negligible. Thus, considering the MLP imputers in the proposed model consistently 

outperform the linear counterpart, they are the preferred models for the imputation task in practice. 

 
Figure 12. Runtime of the proposed methods vs. OT imputers 

8. Conclusion and future work 

In this research, we study the imputation for missing datasets. The aims were to train uncertainty-aware imputers 

and boost their performance using modern regularization techniques in the deep learning domain. For these 

reasons, we develop a simple neural network-based architecture that can train well with small datasets and 

utilizes a novel adversarial strategy to estimate the uncertainty of imputed data. Besides, we proposed a novel 

hybrid loss function that enforces the imputers to generate values for missing data that on the one hand, obey 

the underlying data distribution so that it can confuse the well-trained adversarial module, and on the other hand, 

predict existing non-missing values accurately. Experiments conducted on four real datasets collected from the 

UCI repository reveal that the proposed imputers are indeed effective and surpass the peer methods by a large 

margin almost on all evaluated datasets. Besides, we carefully examined the contribution of the adversarial 

module and the uncertainty scores through ablation studies. The results confirm that both considerably boost 

the overall performance of our methods. Finally, the run time of the proposed methods was investigated, and 

the results show that they are efficient and have less execution time in comparison with that of peer imputer 

models.  In future work, we aim to extend our work to take the imbalanced nature of the imputation task into 

account. Also, we target to examine other methods for incorporating the uncertainty scores in the training 

process of imputers. 
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