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ABSTRACT   

A new estimator for the Poisson model is introduced in this study. Poisson regression model is an 

important log- Linear models which is the tool of modeling the dependent variable when its values are 

positive and as a form of count data or rates additional to be the appropriate model for analyzing rare 

events. The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of 

multicollinearity for a Poisson regression model (PRM). The purpose of this study is to make a comparison 

of parameters estimation methods for the Poisson regression model when that model suffer from semi 

multicollinearity problem through the possible methods with proposed method and also propositions for the 

biased parameter. A Monte Carlo simulation experiment used to generate data follows Poisson regression 

model and suffer from multicollinearity problem according to variation factors like sample size, the value 

of simple correlation coefficient and the number of independent variables. So mean squared error and 

relative efficiency is adopted as a criteria to the comparison of the parameters estimation methods for the 

model. The simulation results and the real-life application evidenced that the proposed estimator performs 

better than the rest of the estimators.  
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1. Introduction 

There have been many of books and research studies that address the authors effects linear multicollinearity to 

estimate regression models parameters problem, especially non-linear, and develop ways to reduce the effects 

of that problem, also the proposals of these researchers in the choice of (Biased Parameters), and the following 

is a review of the most important studies about this topic [1-16]. 

The method proposed by the researchers (Hoerl and Kennard, 1970) [16, 17] that of the most common and 

widely used in the treatment of (Multicollinearity) problem, as suggested researchers add a small amount of 

positive elements diameter in a matrix of information (𝑋′𝑋), and the method is called (Ridge regression 

Estimators) and explained theoretically that the estimated resulting from that addition will be estimated 

biased, but it is estimated will be effective more than the least-squares estimator being less variation compared 

by the other, making it the most efficient in spite of bias. 

In (1994) the researcher (Al-Mashhadani) [18] studied the use of the principle compounds analysis method in 

diagnosing and treating the problem of (Multicollinearity) compared to the method of ridge regression, and 

applied her research to some economic phenomena by using the Cobb-Douglas model of production functions, 

and she concluded that the use of the ridge regression method it may address the effects of the 

multicollinearity problem, but it does not completely remove it, unlike the method of the principle 

compounds. 

In (1997) the researcher (Long) [8] composed ensures regression analysis when they are approved (Dependent 
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Variable) in the form of (Categorical) or (Limited), as referred to the Poisson distribution as one of the cases 

in which the response variable is distributed according to it,, one of the first researchers who mention on 

Poisson regression model in terms of the fundamentals of building this model and the process of estimating 

the parameters. 

In (2004) the researcher (Famoye et al.) [19] discussed the General Poisson Regression Model through a study 

that included a sample of vehicle drivers in one of the American states whose ages were (65) years and over, 

as they studied through that sample. Road accidents and their relationship to a number of demographic factors, 

driving experiences and the health aspect of those drivers, and through this study, the researchers confirmed 

that the general Poisson regression model is the best among the regression models in expressing the 

phenomenon of road accidents. 

Within the framework of the research that discussed the problem of multilinearity when the distribution of 

random errors is not a normal distribution, the researchers (Urgan and Tez) [20] in the same year compared 

theoretically between the maximum likelihood estimator (MLE) and the letter regression estimator (RRE) and 

the Liu Estimator ) for the logistic regression model, as it was shown that the Liu estimator is the best despite 

being a biased estimator because it is the estimator with the least mean squared error (MSE). 

In (2011) the researchers began to discuss the problem of multilinearity in the diversity of regression models. 

The researchers (Kebria and Shukur and Mansson) [21] compared the Liu Estimator with the estimator of the 

maximum likelihood function of the logistic regression model when the multilinearity problem occurs. They 

also found the optimal value for the bias parameter (𝑑), and the researchers used the absolute mean of errors 

(MAE) in the process of comparing the two methods of estimating the model parameters, and the researchers 

applied the comparison to real data that included a set of economic indicators as well as the use of simulation, 

and the results they obtained showed the superiority of the Liu estimator on the maximum likelihood estimator 

for the lack of mean absolute errors for the estimated model parameters 

The researchers (Mansson and Shukur) [1]in (2011) also returned to suggest an estimate They call it the ridge 

regression estimator for the Poisson regression model, based on the basic idea put forward by the researchers 

(Hoerl and Kennard) in finding the ridge regression estimator for the linear regression model. The researchers 

also referred to several formulas for estimating the bias parameter in that estimator, and then we compared 

that estimator with the maximum likelihood estimator by using the Monte - Carlo method in generating data 

that follows the Poisson distribution and suffers at the same time from the problem of multilinearity. For 

comparison, the results they obtained showed the superiority of the ridge regression estimator when 

substituting all the ridge parameters in it to the maximum likelihood measure. They found the product of 

dividing the variance of the estimated random error by the largest value of the characteristic root of the 

information matrix, and then they calculated the largest value of the reciprocal of that indicator, which was the 

best estimator. The bias parameter, which indicates the great importance of the values ??of the distinct roots 

and the variance of random errors, as shown by some previous research by other researchers. 

In the (2012), researchers (Mansson and Kibria and Shukur and Sjalander) [2] created a Liu Estimator for the 

Poisson regression model, based on the basic idea of the ? researcher (Liu) estimator, which he created in 

(1993) to address the problem of multilinearity in the linear regression model, and they found the optimal 

value for the bias parameter (𝑑) and made five proposals to get the best estimate for it, and as (Liu) the 

researchers agreed with him that the priority of the Liu estimator is that it is a linear function in the bias 

parameter (𝑑) , and then the researchers used the Monte-Carlo method in the simulation to compare between 

the (Liu) estimator and the maximum likelihood estimator by using the mean squared error (MSE) and the 

average absolute error (MAE), the researchers concluded that the (Liu) estimator is preferred for all the bias 

parameters calculated on the maximum likelihood method when estimating the parameters of the Poisson 

regression model when the multilinearity problem occurs. 

In (2013) researchers (Shukur and Kebria and Mansson) [3] suggested a ridge regression estimator for the 

inflated zero-Poisson regression model when that model suffers from the problem of multilinearity. The 

researchers used the Monte-Carlo method in the simulation to show the preference of that estimator compared 

to the maximum likelihood estimator, as well as to find the optimal value for the bias parameter (ridge 

parameter). The ridge with all the proposed ridge parameters is better than the maximum likelihood method to 

depend on the value of the largest eigen root with the variance of the estimated error, as the researchers noted 

that these methods work well as the number of independent variables increases and the sample size increases, 

as well as the greater the value of the correlation coefficients between the independent variables. 

In (2013) the researcher (Hossam) [25] studied a comparison of methods for estimating the parameters of the 

Poisson regression model when there is a problem of multilinearity, and the researcher used two proposed 
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methods in estimating the parameters of the model and compare it with the maximum likelihood estimator 

(𝑀𝐿𝐸) method, he also used simulation in his experiment and adopted the mean squares error as a criterion 

for comparison. 

In (2016) researchers Turkan and Ozel [22] adopted the modified jackknifed ridge regression estimator 

(MJRE) to the Poisson regression model as a treatment to the problem of multicollinearity. 

In (2017 ) Asar and Genc [23] implemented the two-parameter estimator to the Poisson regression model. 

In (2019 ) Rashad and Algamal [24] developed a new ridge estimator for the Poisson regression model by 

modifying Poisson modified jackknifed ridge regression. 

This paper is organized as follows: In Section (2,3,4), the statistical methodology is described. In Section 5, 

the design of the Monte Carlo experiment is presented and the result from the simulation study is discussed. 

An application is presented in Section 6. Finally, a brief summary and conclusions is given in section 7. 

2. Estimation of the parameters for Poisson regression model 

The Poisson regression model can be expressed by the following formula [3, 4, 5, 14] 

 

 𝑌 = 𝑒𝑋𝛽+𝑈, (1) 

  

where 𝑌:vector of a response variable of degree (𝑛 × 1), 𝑋: matrix of explanatory variables of degree 

(𝑛 × (𝑝 + 1)), 𝛽: vector of parameters with degree ((𝑝 + 1) × 1), 𝑈: vector of random errors of degree 

(𝑛 × 1) 

 

2.1. Maximum likelihood estimators method 

In order to estimate the parameters of the Poisson regression model using this method, the basic assumptions 

of the distribution will be based on the fact that the Poisson distribution represents the characteristic feature on 

which the model is built, given that the distribution is specific to the dependent variable (𝑌𝑖), if the dependent 

variable (𝑌𝑖) follows the Poisson distribution with a parameter of its value 𝜇𝑖, the distribution function will be 

in the following form [1]: 

 

 𝑃(𝑌 = 𝑦𝑖) =
𝑒−𝜇𝑖𝜇𝐼

𝑌𝑖

𝑌𝑖!
    𝑖 = 1,2, … , 𝑛                                                                                (2) 

 

By maximizing the observations of the dependent variable distribution (𝑌𝑖) given in the above formula, the 

likelihood function is as follows 

 

 𝐿(𝑌1, 𝑌2, … , 𝑌𝑛; 𝜇𝑖) =
𝐸− ∑𝑛

𝑖=1 𝜇𝑖𝜇
𝑖

∑𝑛
𝑖=1 𝑌𝑖

∏𝑛
𝑖=1 𝑌𝑖!

 

 

By taking the natural logarithm of the likelihood function for the above observations, we get 

 

 : log𝐿(𝑌𝑖/𝑥𝑖, 𝛽) = − ∑𝑛
𝑖=1 𝜇𝑖 + ∑𝑛

𝑖=1 𝑌𝑖(log{𝜇𝑖}) − log{∏𝑛
𝑖=1 𝑌𝑖!}                                 (3) 

 

Depending on one of the basic assumptions of the Poisson regression model (𝜇𝑖 = 𝑒{𝑥𝑖
′𝛽}), this assumption is 

replaced by the function (3) above, as follows: 

 

 log𝐿(𝑌𝑖/𝑥𝑖, 𝛽) = − ∑𝑛
𝑖=1 𝑒𝑥𝑖

′𝛽 + ∑𝑛
𝑖=1 𝑌𝑖 (log {𝑒𝑥𝑖

′𝛽} − log{∏𝑛
𝑖=1 𝑌𝑖!}                        (4) 

 

By deriving equation (4) for the parameter vector 𝛽, we get: 

 

 
𝜕log𝐿

𝜕𝛽
= ∑𝑛

𝑖=1 (𝑌𝑖 − 𝑒𝑥𝑖
′𝛽) 𝑥𝑖                                                                                           (5) 
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By equating the derivative of the likelihood function of the observations with respect to the parameter (𝛽) 

zero, an estimate of the parameters of the Poisson regression model shown in the formula (1) can be obtained. 

 

 
𝜕log𝐿

𝜕𝛽
= 0 

 ∑𝑛
𝑖=1 (𝑌𝑖 − 𝑒𝑥𝑖

′𝛽̂) 𝑥𝑖 = 0 (6) 

Equation (6) is non-linear with respect to the vector of estimators (𝛽̂), and to solve this equation, one of the 

iterative methods known as the Least square Iterative Weighted is used, as the estimators of the parameters 𝛽 

of the Poisson regression model are: [1, 2] 

 

 𝛽̂𝑀𝐿𝐸 = (𝑋′𝑊̂𝑋)
−1

(𝑋′𝑊̂𝑍)                                                                                               (7) 

Where: 

𝛽̂𝑀𝐿𝐸: vector of the parameters of a Poisson regression model estimated according to the maximum likelihood 

metho. 

𝑊̂: a diagonal matrix in which the elements of the diameter are equal to the estimated values of the parameter 

Poisson (𝜇𝑖) distribution according to the second assumption: 

 

 𝑊̂ = (

𝑒𝜇̂

𝑒𝜇̂

⋱
𝑒𝜇̂

)                          

 

𝑍: vector, and the element (𝑖) in the vector 𝑍 is equal to: 

 

 𝑍𝑖 = log(𝜇̂𝑖) +
𝑌𝑖−𝜇̂𝑖

𝜇̂𝑖
                                                                                                          (8) 

 

The covariance matrix of the maximum likelihood estimators of the Poisson regression model shown in the 

formula ( 5) is produced from the inverse of the second derivative of equation (8) [1]. 

 

 𝐶𝑜𝑣(𝛽̂𝑀𝐿) = [𝐸 {
𝜕2𝐿(𝑋;𝛽)

𝜕𝛽𝜕𝛽
}]

−1

= 𝜎𝑢
2(𝑋′𝑊̂𝑋)

−1
                                                              (9) 

 

Where: 𝜎𝑢
2: the variance of the random error of the population. Thus, the mean squared error for the 

parameters of the Poisson regression model estimated according to the method of maximum likelihood 

estimators is as follows: 

 

 𝑀𝑆𝐸(𝛽̂𝑀𝕃) = 𝐸(𝛽̂𝑀𝐿 − 𝛽)
′
(𝛽̂𝑀𝐿 − 𝛽) = 𝑡𝑟(𝑋′𝑊̂𝑋)

−1
= ∑𝑝

𝑗=1
1

𝜆𝑗
                              (10) 

Where: 

𝜆𝑗: is the eigen value of the element (𝑗) in the matrix (𝑋′𝑊̂𝑋). 

When there is a strong correlation and a linear relationship between the independent variables, the 

performance of the weighted matrix will be (𝑋′𝑊̂𝑋) weak, especially in the case of calculating an estimate of 

the model parameters, which leads to the instability and stability of the estimations, and at the same time, 

those linear relationships between the explanatory variables will lead to an inflated variance of the parameters 

estimated according to this method, Which calls for not adopting this method and the statistical inference 

based on it, despite the fact that the obtained estimations are unbiased [1, 3]. 

 

3.  Estimating the parameters for Poisson regression model with Multicollinearity problem 

 Like other regression models, the explanatory variables involved in building a Poisson regression model may 

be exposed to a high correlation and linear correlation between two or more variables, which negatively 

affects the process of estimating the model parameters. linearity as well as a statement of the pros and cons of 

these methods on the estimation process) [1]. 



 PEN Vol. 10, No. 2, April 2022, pp.164-188 

168 

 

3.1. Ridge regression estimators method 

The ridge regression estimators method is one of the alternatives for estimating the parameters of regression 

models when there is linear multiplicity or linear duplication between the explanatory variables. The model as 

a linear logarithmic Poisson regression model [8][10]. This method starts with noting that the Maximum 

Likelihood method for estimating the parameters of the model works by minimizing the Weighted Error Sum 

(WSSE), and if another estimator is tested and so 𝛽𝑅𝑅, then the weighted sum of squared errors can be written 

as below [1]. 

 

 𝑢′𝑢 = (𝑌 − 𝑋𝛽𝑀𝐿)′(𝑌 − 𝑋𝛽𝑀𝐿) + (𝛽𝑅𝑅 − 𝛽𝑀𝐿)′(𝑋′𝑊̂𝑋)(𝛽𝑅𝑅 − 𝛽𝑀𝐿) 

 = 𝜙min + 𝜙(𝛽𝑅𝑅) (11) 

 

Where: 𝜙min: Represents the increase in the average of the weighted squares of errors if the estimated 

parameters are replaced by the Maximum Likelihood method (𝛽𝑀𝐿) with the parameters to be found (𝛽𝑅𝑅). 

And through the inverse relationship between the characteristic values and the variance of the parameters 

estimated according to the method of Maximum Likelihood, which is indicated in the formula (10), then the 

parameter vector to be calculated will be reduced (𝛽𝑅𝑅) to the sum of the squares of the weighted errors 

according to the following constraint 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐹 = 𝛽𝑅𝑅
́ 𝛽𝑅𝑅 + (

1

𝐾
) (𝛽𝑅𝑅 − 𝛽𝑀𝐿)′(𝑋′𝑊̂𝑋)(𝛽𝑅𝑅 − 𝛽𝑀𝐿 − 𝜙0) (12) 

 Since: Lacrange multiplier:: ( 
1

𝐾
 ) 

 

 𝜙0 = 𝜙(𝛽𝑅𝑅) (13) 

 

 

 𝑢′𝑢 = (𝑌 − 𝑋𝛽𝑀𝐿𝐿)′(𝑌 − 𝑋𝛽𝑀𝐿) + 𝛽′
𝑅𝑅

𝛽𝑅𝑅 

 + (
1

𝐾
) (𝛽𝑅𝑅 − 𝛽𝑀𝐿𝐿)′(𝑋′𝑊̂𝑋)(𝛽𝑅𝑅 − 𝛽𝑀𝐿 − 𝜙0) (14) 

 

By deriving the formula (14) for the parameter vector (𝛽𝑅𝑅) and by equalizing the value of the derivative in 

the formula to zero, the ridge regression estimators for the Poisson regression model can be found, as follows: 

 

 𝛽̂𝑅𝑅 = (𝑋′𝑊̂𝑋 + 𝐾𝐼)−1(𝑋′𝑊̂𝑋)𝛽̂𝑀𝐿                                                                                   (15) 

 

 

 𝛽̂𝑅𝑅 = 𝑍𝛽𝑀𝐿                                                                                                                       (16) 

 

The ridge regression estimators are biased when they are (𝑘 > 0) and the amount of bias is [1].  

 𝐵𝑖𝑎𝑠(𝛽̂𝑅𝑅) = 𝐸(𝛽̂𝑅𝑅) − 𝛽                                                                                                 

 = 𝑍𝛽 − 𝛽 = (𝑍 − 𝐼)𝛽 (17) 

 

The variance matrix of character regression estimators is as follows [1]. 

 

 

 𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛽̂𝑅𝑅) = 𝑍𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛽̂𝑀𝐿)𝑍′ 

 = 𝑍𝜎𝑢
2(𝑋′𝑊̂𝑋)

−1
𝑍′ (18) 

 

The mean squares error (𝑀𝑆𝐸) for the parameters of the Poisson regression model estimated according to the 

ridge regression method is: 
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𝑀𝑆𝐸(𝛽̂𝑅𝑅) = 𝐸(𝛽̂𝑅𝑅 − 𝛽)
′
(𝛽̂𝑅𝑅 − 𝛽)

= 𝐸[𝛽̂𝑀𝐿 − 𝛽)
′
𝑍′𝑍(𝛽̂𝑀𝐿 − 𝛽)] + (𝑍𝛽 − 𝛽)′(𝑍𝛽 − 𝛽)

= 𝑡𝑟 ⋅ [𝛽̂𝑀𝐿 − 𝛽)
′
(𝛽̂𝑀𝐿 − 𝛽)𝑍′𝑍] + (𝑍𝛽 − 𝛽)′(𝑍𝛽 − 𝛽)

= ∑𝐽
𝑗=1

𝜆𝑗

(𝜆𝑗+𝐾)
2 + 𝛽′ {(𝑋′𝑊̂𝑋 + 𝐾𝐼)

−1
(𝑋′𝑊̂𝑋) − 𝐼 }   { (𝑋′𝑊̂𝑋 + 𝐾𝐼)

−1
(𝑋′𝑊̂𝑋) − 𝐼} 𝛽

= ∑𝑝
𝑗=1

𝜆𝑗

(𝜆𝑗+𝐾)
2 + 𝐾2 ∑𝑝

𝑗=1
𝛼2𝑗

(𝜆𝑗+𝐾)
2

 

 

since:  

 𝛼𝑗 = 𝛾𝛽̂𝑀𝐿                                                                                                                       (19) 

 

𝛼𝑗 :The parameter (𝑗) represents one of the parameters of the Poisson regression model when taking the 

natural logarithm of the model shown in the formula (1) 𝛾: represents the (Eigen vector) of the matrix 

(𝑋′𝑊̂𝑋). 

The ridge regression estimators of the Poisson regression model are desirable for two reasons [1]. the first is 

that it is a simple method and does not need any changes in the presence of software algorithms, and the 

second is that the mean of the error squares for the estimated parameters is less than that of the parameters 

estimated using the method of maximum likelihood, because the first term in the derivative of the formula (2) 

which represents the variance of the estimated parameters is a decreasing convergent function in(𝑘), and that 

the second term in the same formula which represents the bias square is an increasing convergent function in 

(𝑘) and as shown below, 

 

 
𝜕𝑀𝑆𝐸(𝛽̂𝑅𝑅)

𝜕𝐾
= −2 ∑𝑝

𝑗=1

𝜆𝑗

(𝜆𝑗+𝐾)
3 + 2𝐾 ∑𝑝

𝑗=1

𝜆𝑗𝛼2
𝑗

(𝜆𝑗+𝐾)
3                                                           (20) 

 Thus, we note that the first term in the above formula (20) is less than zero, which reflects the decreasing 

variance of the character regression estimators with the increase in the second term, which reflects the amount 

of bias, and (Horel and Kennard) explained that it is necessary that the value of the bias parameter ( ridge 

parameter) and defined (𝑘) within the field below[4]: 

 

 𝐾 ∈ {0,
𝜕𝜎𝑢

2

𝛼max
}                                                                                                                   (21) 

 

This is in order that the derivation of the mean squared errors of the ridge regression estimators is less than 

zero [4]. 

 

 
𝜕𝑀𝑆𝐸(𝛽̂𝑅𝑅)

𝜕𝐾
< 0                                                                                                                  (22) 

 

3.1.1. Ridge parameter estimators 

 After finding the estimators for the ridge regression and showing that these estimators are biased but more 

efficient than their counterparts through the method of Maximum likelihood, and as a result of the principle of 

the ridge regression method, which includes adding a small positive quantity (𝑘) , which represents the cause 

of bias in the value of the estimator, the researchers differed in the development of many and varied formulas 

to propose and choose an estimator for the ridge parameter (the bias parameter) to be substituted for later in 

the ridge regression estimators and to indicate which of these formulas is better via common comparison 

criteria. The following is a review of the researchers’ most prominent formulas for estimating the character 

parameter (the bias parameter). 

  

    • (Horel and Kennard) formula [19]. 
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It is the first and oldest proposal for estimating the ridge parameter (the bias parameter), which was presented 

by the researchers in (1970), which depends on the mean of the error squares of the observations and the 

squared values (𝛼2
𝑗) within the Eigen vector as follows: 

 

 𝐾1 =
𝜎̂𝑢

2

𝛼̂2max
                                                                                                                    (23) 

 

where: 𝜎̂𝑢
2: The estimated mean squared error, which is calculated in the Poisson regression model according 

to the formula below [20]. 

 

 𝑆𝑒
2 =

∑𝑛
𝑖=1 (𝑌𝑖−𝜇̂𝑖)2

𝑛−𝑝−1
                                                                                                           (24) 

 

𝛼̂2max: represents the largest element in the formula ( 19) 

    • (Horel and Kennard) modified formula [6, 13] 

In an improvement to the proposal proposed and presented by the same researchers, the improved form of the 

proposal took into account the existence of the linear regression theory. In the Yoisson regression model, the 

improved formula for the optimal value of the ridge parameter (𝑘) is as follows: 

 

 𝐾2 =
1

𝛼̂2
max

                                                                                                                     (25)                    

  

    • Formula (Kibria)[6] 

It was presented by the researcher (Kibria) based on the improvement of the estimator (Horel and Kennard) 

shown in formula (23) by calculating its geometric mean and its formula as follows: 

 

 𝐾3 =
𝑆𝑒

2

[∏
𝑝
𝑗=1 𝛼̂𝑗

2]

1
𝑝

                                                                                                                (26) 

 

    • The second formula(Kibria) [6, 7] (Kibria) came back to present another proposal to find the optimal 

value for the ridge parameter based on calculating the median with the idea of transforming the square root of 

the estimator (Horel and Kennard) shown in formula (23) and its formula as follows 

 

 𝐾4 = 𝑀𝑒𝑑𝑖𝑎𝑛{𝑚𝑗
2}                                                                                                             (27) 

 

 𝑚𝑗 = √
𝜎̂2

𝛼̂𝑗
2                                                                                                                             (28) 

 

 

    • Formula (AL Khamisi et al.)[1] 

This estimator connects the eigen values and the variance of random errors, as well as taking into account the 

effect of the eigens vectors by calculating the largest value, and the optimal value of the bias parameter when 

analyzing the Poisson regression model are: 

 

 𝐾5 = 𝑀𝑎𝑥{𝑆𝑗}                                                                                                                 (29) 

 

Since:  

 𝑆𝑗 =
𝜆𝑗𝜎̂2

(𝑛−𝑝)𝜎̂2+𝜆𝑗𝛼̂𝑗
2                                                                                                           (30) 

 

𝜆𝑗: represents the distinct values (Eigen values) of the matrix (𝑋′𝑊̂𝑋). 

 

    • Formula (Munez and Kibria) [6, 1, 7] 
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The researchers (Munez and Kibria) and based on the idea of ?the inverse square root of the estimator (Horel 

and Kennard) shown in the formula (23) presented by (AL Khamisi and Shukur) made three proposals, the 

first of which is the optimal value that represents the largest value of the reciprocal of the square root 

transformation of the following formula :  

 𝐾6 = 𝑀𝑎𝑥 {
1

𝑚𝑗
}                                                                                                                 (31) 

 

 

    • Second Formula (Munez and Kibria) [1] 

The second proposal was based on calculating the geometric mean with the reciprocal of the square root 

transformation of the estimator (Horel and Kennard) shown in formula (23) and its formula is as follows: 

 

 𝐾7 = {∏𝑝
𝑗=1

1

𝑚𝑗
}

1

𝑝
                                                                                                              (32)                                                  

 

 

    • The third (Munez and Kibria) formula [6, 1]. 

This proposal was based on combining the idea of the inverse square root of an estimator (Horel and Kennard) 

shown in formula (23) and finding the median and its formula as follows: 

 

 𝐾8 = 𝑀𝑒𝑑𝑖𝑎𝑛 {
1

𝑚𝑖
}                                                                                                            (33) 

 

It should be noted that the process of estimating the parameters of the Poisson regression model according to 

the ridge regression method for each parameter is done by substituting the eight formulas for calculating the 

bias parameter in the estimation formula (15). 

 

 

 

3.2.  Liu estimators method [3][14] 

This method deals with the issue of inflating the variance of the estimated model parameters, as it was (Liu) 

who laid the foundations of this method in (1993) when he created it for the linear regression model in the 

presence of the problem of linear multiplicity (31). 

This method is established by the same method followed by (Liu) with the different nature of the type of the 

Poisson regression model as it is a non-linear model, so by returning to the model formula in equation (4 - 2) 

and taking the natural logarithm of it, we get: 

 

 log(𝑌) = log{𝑒𝑋𝛽+𝑈} 

 𝑌∗ = 𝑋𝛽 + 𝑈 (34) 

 

Since: 

 

 𝑌∗ = log(𝑌)                                                                                                                        (35) 

 

By adopting the same constraint set by (Liu) 

 

 ∈′∈= (𝑑𝛽̂ − 𝛽∗)
′
(𝑑𝛽̂ − 𝛽∗)                                                                                        (36) 

 

where: ∈′∈ : Represents the amount of increase in the mean squares of the weighted error in the event that the 

vector of parameters estimated by the method of maximum likelihood (𝛽̂) is replaced by the vector of 

parameters estimated according to the method of Liu (𝛽∗). (𝛽̂): The vector of the capabilities of the maximum 

likelihood when neutralizing the model to a linear model (𝛽∗) :vector of the model parameters estimated 

according to the (Liu) method 𝑑: add parameter (bias parameter) 
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∈′ 𝑊 ∈ = (𝑌∗ − 𝑋𝛽∗)′𝑊̂(𝑌∗ − 𝑋𝛽∗) + (𝑑𝛽̂ − 𝛽∗)

′
(𝑑𝛽̂ − 𝛽∗)

= 𝑌∗𝑊̂𝑌∗ − 2𝛽∗𝑋′𝑊̂𝑌∗ + 𝛽∗′𝑋′𝑊̂𝑋𝛽∗ + 𝑑′𝛽̂𝛽̂𝑑 − 2𝑑𝛽̂𝛽∗ + 𝛽∗𝛽∗
           (37) 

                  

By differentiating equation (37) for the parameter vector  (𝛽∗) , we get: 

 

 
𝜕∈′𝑊∈

𝜕𝛽∗
= −2𝑋′𝑊̂𝑌∗ + 2𝑋′𝑊̂𝑋𝛽∗ − 2𝑑𝛽̂ + 2𝛽∗                                                     (38) 

 

By setting the derivation product to zero, the estimations (Liu) are obtained for the parameters of the Poisson 

regression model [2, 3]. 

 

 𝛽̂𝐿𝑖𝑢 = (𝑋′𝑊̂𝑋 + 𝐼)
−1

(𝑋′𝑊̂𝑌∗ + 𝑑𝛽̂)                                                                   (39) 

 

Since the: 

 

 𝛽̂ = 𝛽̂𝑀𝐿                                                                                                                     (40) 

 

Which were previously defined in equation (36) as the estimators of the maximum likelihood when 

neutralizing the Poisson regression model to a linear model. 

 

 ∵ 𝛽̂ = 𝛽̂𝑀𝐿 = (𝑋′𝑊𝑋)−1                                                                                         (41) 

             ∴ 𝑋′𝑊̂𝑌∗ = (𝑋′𝑊𝑋)𝛽̂𝑀𝐿                                                                                         (42) 

 

By substituting a value (𝑋′𝑊̂𝑋) with its equivalent in the formula (40), we get another form of the estimators 

(liu) for the parameters of the Poisson regression model [2, 3]. 

 

 𝛽̂𝐿𝑖𝑢 = ((𝑋′𝑊̂𝑋 + 𝐼)
−1

((𝑋′𝑊̂𝑋)𝛽𝑀𝐿 + 𝑑𝛽̂𝑀𝐿) 

 𝛽̂𝐿𝑖𝑢 = (𝑋′𝑊̂𝑋 + 𝐼)
−1

(𝑋′𝑊̂𝑋 + 𝑑𝐼)𝛽̂𝑀𝐿 (43) 

 

Liu’s estimators are biased when the value (𝑑 > 0)and amount of bias is [10], [26]. 

 

 𝐵𝑖𝑎𝑠(𝛽̂𝐿𝑖𝑢) = 𝐸(𝛽̂𝐿𝑖𝑢) − 𝛽 

 = 𝑍𝛽 − 𝛽 

 = (𝑍 − 𝐼)𝛽 (44) 

 

since  

 𝑍 = (𝑋′𝑊̂𝑋 + 𝐼)
−1

(𝑋′𝑊̂𝑋 + 𝑑𝐼)                                                                                     (45) 

 

The variance matrix of (Liu) capabilities is as follows: [2, 3]. 

 

 𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛽̂𝑙𝑢𝑢) = 𝑍𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛽̂𝑀𝐿)𝑍′ 

 = 𝑍𝜍𝑢
2(𝑋′𝑊̂𝑋)

−1
𝑍′ (46) 

 

As for the mean squares error (𝑀𝑆𝐸) for the parameters of the Poisson regression model estimated according 

to the method of (Liu) estimators, it is 

 

 

𝑀𝑆𝐸(𝛽̂𝐿𝑖𝑢) = 𝐸(𝛽̂𝐿𝑖𝑢 − 𝛽)
′
(𝛽̂𝐿𝑖𝑢 − 𝛽)

= ∑𝑝
𝑗=1

(𝜆𝑗+𝑑)
2

𝜆𝑗(𝜆𝑗+1)
2 + (𝑑 − 1)2 ∑𝑝

𝑗=1

𝛼𝑗
2

(𝜆𝑗+1)
2

                                           (47) 

 



 PEN Vol. 10, No. 2, April 2022, pp.164-188 

173 

The (Liu) estimators are a linear function in the bias parameter referred to ( 𝑑), as this can be easily seen in the 

formulas (39) and (45), and the (Liu) estimators, although they are biased, the mean of the calculated error 

squares It has less than the average error squares for the same parameters if estimated according to the method 

of maximum likelihood, as this is shown as follows [2, 3]: First, the first derivative of the mean squared error 

is found in the formula (47) with respect to the bias parameter (𝑑). 

 

 
𝜕𝑀𝑆𝐸(𝛽̂𝐿𝑖𝑢)

𝜕𝑑
= 2 ∑𝑝

𝑗=1

𝜆𝑗+𝑑

𝜆𝑗(𝜆𝑗+1)
2 + 2(𝑑 − 1) ∑𝑝

𝑗=1

𝛼𝑗
2

(𝜆𝑗+1)
2                                                (48) 

 

And by substituting a value (d=1) into the above equation: 

 

 
𝜕𝑀𝑆𝐸(𝛽̂𝐿𝑖𝑢)

𝜕𝑑
= 2 ∑𝑝

𝑗=1
1

𝜆𝑗(𝜆𝑗+1)
2                                                                                            (49) 

 

The value of the derivative in the formula )49( is greater than zero if the egine values 𝜆𝑗 are greater than zero, 

so there is a value of the bias parameter ( 𝑑) that falls within the domain (0,1) and makes the mean of the error 

squares The parameters estimated according to the (Liu) estimators method are less than the mean squares of 

error for the same parameters estimated according to the maximum likelihood method. 

 

3.2.1. Liu biased parameter estimators 

We mentioned earlier that Liu’s estimators are biased and that the cause of the bias is the presence of an added 

value ( 𝑑) , and we showed that this value ranges between (0,1), and in order to find the proposed estimators 

for this bias parameter (𝑑), the optimal value must be found for it, by equating the value of the derivative of 

the average error squares shown in the formula (48) with respect to zero. 

 

 
𝜕𝑀𝑆𝐸(𝛽̂𝐿𝑖𝑢)

𝜕𝑑
= 0 

     2
𝜆𝑗+𝑑̂

𝜆𝑗(𝜆𝑗+1)
2 + 2(𝑑̂ − 1)

𝛼𝑗
2

(𝜆𝑗+1)
2 = 0 (50) 

 

Performing some algebraic operations, we get 

 

 𝑑̂ =

𝛼𝑗
2−1

(𝜆𝑗+1)
2

1
𝜆𝑗

+𝛼𝑗
2

(𝜆𝑗+1)
2

=
𝛼𝑗

2−1
1

𝜆𝑗
+𝛼𝑗

2
                                                                                                             (51) 

 

It is the optimal value of the parameter ( 𝑑) [2], as it is noted that this value will be negative if the value 𝛼𝑗
2 is 

less than one, and positive if it exceeds the value 𝛼𝑗
2 of one. As (Liu) pointed out that the value of the bias 

parameter ( 𝑑) is within the domain (0,1), so there is no specific rule for its estimation, as it is possible to find 

a single value for this parameter as follows: 

  

    • The first formula [1, 3] 

 

 𝐷1 = 𝑀𝑎𝑥 [0,
𝛼̂max

2 −1
1

𝜆max
+𝛼̂max

2
]                                                                                       (52) 

 

This estimator was based on the basic idea adopted by (Horel and Kennard) in adding a positive value to the 

matrix diameter elements ( 𝑋`𝑋) for the linear regression model, as well as finding the largest element in the 

formula (19). Where: 𝜆max: represents the largest distinct value in the matrix ( 𝑋`𝑊̂𝑋). 
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    • The second formula [2, 3] This proposal depends on finding the value of the median as one of the 

measures of central tendency in relation to the bias parameter estimator because it deals with abnormal values 

in the data that may cause bias 

 𝐷2 = 𝑀𝑎𝑥[0, 𝑚𝑒𝑑𝑖𝑎𝑟 [
𝛼̂𝑗

2−1
1

𝜆𝑗
+𝛼̂𝑗

2]]                                                                              (53) 

    • The third version [2, 3]. 

The idea of this proposal comes from the same application of the multiple linear regression model by dealing 

with the arithmetic mean as the most prominent measure of central tendency, as well as taking into account 

the number of explanatory variables in the model. 

 

 𝐷3 = 𝑀𝑎𝑥 [0,
1

𝑝
[∑𝑝

𝑗=1

𝛼̂𝑗
2−1

1

𝜆𝑗
+𝛼̂𝑗

2
]]                                                                            (54) 

 

    • The fourth formula [1,2] 

 

 𝐷4 = 𝑀𝑎𝑥 [0, max [
𝛼̂𝑗

2−1
1

𝜆𝑗
+𝛼̂𝑗

2]]                                                                                   (55) 

 

 

    • The fifth version [2],[3] 

 

 𝐷5 = 𝑀𝑎𝑥 [0, min [
𝛼̂𝑗

2−1
1

𝜆𝑗
+𝛼̂𝑗

2]]                                                                                 (56) 

 

Proposals (4) and (5) depend on calculating the largest and smallest value of the bias parameter estimator, 

respectively. It should be noted that finding Leo estimations for the parameters of the Poisson regression 

model is done by substituting the five formulas into the estimation formula (43). 

4. Proposed method  

 In order to achieve the objectives of the research, the method was proposed to estimate the parameters of the 

Poisson regression model when that model suffers from the problem of multicollinearity, as method was based 

on the neutral model shown in formula (1) and then go in two directions in the estimation process. By 

multiplying the estimator proposed by (Batah) and others in (2008) by the estimator (
𝐼−𝐾3𝐴−3

𝐼−𝐾2𝐴−2), a method that 

many researchers follow in arriving at better estimators [12]. 

 

The Poisson Regression (PR) model is only applicable when the dependent variable deals with count data. 

Suppose, is the dependent variable and follows adistribution with parameter (𝜇) and is denoted as 𝑃(𝜇) with 

the following probability mass function 

 

 𝑃𝑟(𝑌/𝜇) =
𝑒−𝜇𝜇𝑌

𝑌!
    𝑌𝑖 = 0,1,2, … (57) 

  

where 𝜇 represents the parameter of the distribution, which has a value greater than zero 𝜇 > 0. The Poisson 

regression model can be expressed by the formula (1) and taking its logarithm we get: 

 

 𝑙𝑜𝑔(𝑌) = 𝐿𝑜𝑔𝑒𝑋𝛽+𝑈 (58) 

 𝑌∗ = 𝑋𝛽 + 𝑈 
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And when the above model suffers from a problem (multicollinearity ), The transformation method is used. 

The Poisson regression model can be rewritten as follows: 

 

 𝑌∗ = 𝑋𝑇𝑇`𝛽 + 𝑈  

 𝑌∗ = 𝑍𝛼 + 𝑈                                                                                                                      (59) 

where 𝑇: an orthogonal matrix of degree 𝑝 × 𝑝 containing (Eigen Vectors) for the matrix ( `𝑋𝑊̂𝑋). 𝑍: matrix 

of explanatory (independent) variables after transformation. 𝛼: vector for form parameters after conversion. 

and that: 

 

 𝑍 = 𝑋𝑇 (60) 

 𝛼 = 𝑇́𝛽 (61) 

  

 Also:  

 𝑍́𝑊̂𝑍 = 𝑇́𝑋́𝑊̂𝑋𝑇 = 𝚲 (62) 

  

𝚲 : diagonal Matrix the elements of the diagonal represent the Eigen Values (𝜆1, 𝜆2, … , 𝜆𝑝) and are for the 

matrix 𝑇́𝑊̂𝑋. Thus, it will be the Maximum Likelihood Estimator to estimate the parameters of the Poisson 

regression model after the transformation, which is shown in the formula (59) as follows: 

 

 𝛼̂𝑀𝐿𝐸 = 𝚲−1𝑍́𝑌∗ (63) 

  

where: 𝛼̂𝑀𝐿𝐸 : vector Maximum Likelihood Estimators for the parameters of the Poisson regression model 

after transformation. As for the ridge regression estimator for the same model, it is as in the following 

formula: 

 

 𝛼̂𝑅𝑅 = (𝚲 + 𝐾𝐼)−1Ź𝑌∗ (64) 

  

 where: 𝛼̂𝑅𝑅 : The parameter vector of the ridge regression method of a Poisson regression model after 

transformation. 𝐼 :Identity Matrix. 𝐾: A diagonal matrix whose diameter elements represent the value of the 

bias parameter (ridge parameter). By substituting the value (Ź𝑌∗)  shown in equation ( 63) with its equal, the 

estimator of the ridge parameter will be as follows: 

 

 𝛼̂𝑅𝑅 = (𝚲 + 𝐾𝐼)−1Λ𝛼̂𝑀𝐿𝐸 (65) 

  

 

By adding and subtracting the product of the two matrices (𝐾𝐼) to the expression (Λ𝛼̂𝑀𝐿𝐸) on the right side of 

equation (65) , the ridge regression estimator for the Poisson regression model becomes: 

 

 𝛼̂𝑅𝑅 = (Λ + 𝐾𝐼)−1(Λ + 𝐾𝐼 − 𝐾𝐼)𝛼̂𝑀𝐿𝐸 

 = (Λ + 𝐾𝐼)−1((Λ + 𝐾𝐼) − 𝐾𝐼)𝛼̂𝑀𝐿𝐸 

 = (Λ + 𝐾𝐼)−1(Λ + 𝐾𝐼)𝛼̂𝑀𝐿𝐸 − ((Λ + 𝐾𝐼)−1𝐾𝐼)𝛼̂𝑀𝐿𝐸 

 = 𝛼̂𝑀𝐼𝐸 − (𝐾𝐼(Λ + 𝐾𝐼)−1)𝛼̂𝑀𝐿𝐸 

 = [𝐼 − 𝐾𝐼(Λ + 𝐾𝐼)−1]𝛼̂𝑀𝐿𝐸 

 ∴ 𝛼̂𝑅𝑅 = [𝐼 − 𝐾𝐼(𝐴−1)]𝛼̂𝑀𝐿𝐸                                                                                       (66) 

 

where: 𝐴−1: a diagonal matrix in which the elements of the diameter represent the sum of the Eigen Value of a 

given explanatory variable with the ridge parameter (𝜆1 + 𝑘, 𝜆2 + 𝑘, … , 𝜆𝑝 + 𝑘). 

As a generalization of the formula ( 66) , the estimation of the common ridge regression of the Poisson model 

after the transformation is as follows: 

 

 𝛼̂𝐺𝑅𝑅 = (𝐼 − 𝐾𝐴−1)𝛼̂𝑀𝐿𝐸 . (67) 
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where: 

𝛼̂𝐺𝑅𝑅: estimated regression of the general ridge Several methods have been proposed stemming from the ridge 

regression estimator method, the most prominent of which is the Jackknifed Ridge Regression Estimator, 

which is in the following formula: 

 

 𝛼̂𝐽𝑅𝑅 = (𝐼 + 𝐾𝐴−1)𝛼̂𝐺𝑅𝑅 

 = (𝐼 + 𝐾𝐴−1)(𝐼 − 𝐾𝐴−1)𝛼̂𝑀𝐿𝐸 

 = (𝐼 − 𝐾2𝐴−2)𝛼̂𝑀𝐿𝐸                                                                                                     (68) 

 

Within the same context of the ridge regression estimator family, (Batah) and other researchers presented a 

modification and improvement to the estimator shown in equation (68), and they named it the Modified 

Jackknifed Ridge Regression Estimator, which is as in the following equation 

 

 𝛼̂𝐽𝑅𝑅 = 𝛼̂𝐺𝑅𝑅𝛼̂𝐽𝑅𝑅 

 = (𝐼 + 𝐾𝐴−1(𝐼 − 𝐾2𝐴−2)𝛼̂𝑀𝐿𝐸                                                                                      (69) 

 

And after all this preface, the proposed estimator will be an improvement of the modified ridge regression 

estimator for Jaknife in the simple linear regression model that was found for the Poisson regression model 

through the transformation as in the previous steps, as the improvement will be for the estimator shown in the 

formula (69) , 

By multiplying the estimator by the amount (
𝐼−𝐾3𝐴−3

𝐼−𝐾2𝐴−2) , and the idea lies in this procedure in order to obtain a 

diagonal matrix with diagonal elements with very small values, which reduces the added value as it is a bias 

parameter, and thus this characteristic will be reflected on the estimation process for the parameters through 

the amount of little bias compared to the previous methods, as it has been the practice of that many 

researchers by multiplying a certain estimator. In general, the formula for the first proposed estimator will be 

as below: 

 

 𝛼̂Sug = (𝐼 − 𝐾𝐴−1)(𝐼 − 𝐾2𝐴−2) (
𝐼−𝐾3𝐴−3

𝐼−𝐾2𝐴−2) 𝛼̂𝑀𝐿𝐸 

 = (𝐼 − 𝐾𝐴−1)(𝐼 − 𝐾3𝐴−3)𝛼̂𝑀𝐿𝐸 

 = (𝐼 − 𝐻𝐴−1)(𝐼 − 𝐻3𝐴−3)𝛼̂𝑀𝐿𝐸 

 = 𝑊𝛼̂𝑀𝐿𝐸                                                                                                                       (70) 

 

H: a diagonal matrix is similar to the matrix (𝐾), but has been substituted to represent the values of the bias 

parameter proposed later and that 

 

 𝑊 = (𝐼 − 𝐻𝐴−1)(𝐼 − 𝐻3𝐴−3) (71) 

 

Note that we will use the usual method of estimation, through which the matrix (𝐻) will be a diagonal matrix 

with equal elements ⋅ (ℎ1 = ℎ2 = ⋯ = ℎ𝑝 = ℎ). 

Thus, the vector of the parameters of the estimated Poisson regression model and proposed by the researcher 

according to the proposed method is as follows: 

 

 𝛽̂Sug = 𝑇𝛼̂Sug (72) 

 

Now the bias for the proposed estimator is found as follows: 

 

 𝐵𝑖𝑎𝑠(𝛼̂Sug) = 𝐸[𝛼̂Sug] − 𝛼 

 = 𝐸[(𝐼 − 𝐻𝐴−1)(𝐼 − 𝐻3𝐴−3)𝛼̂𝑀𝐿𝐸] − 𝛼 

 = (𝐼 − 𝐻𝐴−1)(𝐼 − 𝐻3𝐴−3)𝐸[𝛼̂𝑀𝐿𝐸] − 𝛼 

 = (𝐼 − 𝐻𝐴−1)(𝐼 − 𝐻3𝐴−3)𝛼 − 𝛼 (73) 
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Multiplying the parentheses, we get:  

 𝐵𝑖𝑎𝑠(𝛼̂Sug) = [(𝐼 − 𝐻𝐴−1) − 𝐻3𝐴−3(𝐼 − 𝐻𝐴−1) − 𝐼]𝛼                                                 (74) 

 

By taking out (𝐴−1) and (𝐻) from the right side of equation (74), the bias value of the first proposed 

estimator is as shown below. 

 

 𝐵𝑖𝑎𝑠(𝛼̂Sug) = 𝐻[(𝐻𝐴−1)−1(𝐼 − 𝐻𝐴−1) − (𝐻𝐴−1)−1𝐻3𝐴−3(𝐼 − 𝐻𝐴−1) −

(𝐻𝐴−1)−1𝐼]𝐴−1𝛼 

 = 𝐻[−(𝐻𝐴−1)−1{𝐼 − (𝐼 − 𝐻𝐴−1)} − 𝐻2𝐴−2(𝐼 − 𝐻𝐴−1)]𝐴−1𝛼 

 = −𝐻[(𝐻𝐴−1)−1{𝐼 − (𝐼 − 𝐻𝐴−1)} + 𝐻2𝐴−2(𝐼 − 𝐻𝐴−1)]𝐴−1𝛼 

 = −𝐻𝜃𝐴−1𝛼                                                                                                                      (75) 

 Since:  

 𝜃 = [(𝐻𝐴−1)−1{𝐼 − (𝐼 − 𝐻𝐴−1)} + 𝐻2𝐴−2(𝐼 − 𝐻𝐴−1)] (76) 

 The estimator resulting from the proposed estimation method shown in formula (70) is biased when it 𝐻 > 0 

and the amount of bias is: 

 

 𝐵𝑖𝑎𝑠(𝛼̂Sug) = 𝐸(𝛼̂Sug) − 𝛼 

 = 𝑊𝛼 − 𝛼 

 = (𝑊 − 𝐼)𝛼            (77) 

 The variance and covariance matrix of the proposed estimator according to the proposed method. 

 

 𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛼̂𝑆𝑢𝑔) = 𝑊𝑉𝑎𝑟 − 𝐶𝑜𝑣(𝛼̂𝑀𝐿𝐸)𝑊′ 

 = 𝑊𝜎𝑢
2Λ−1𝑊′       (78) 

 The mean square error (MSE) for the parameters of the Poisson regression model estimated according to the 

proposed estimation method is: 

 

 𝑀𝑆𝐸(𝛼̂Sug) = 𝐸(𝛼̂Sug − 𝛼)
′
(𝛼̂Sug − 𝛼) 

 = 𝐸[(𝛼̂𝑀𝐿𝐸 − 𝛼)′𝑊′𝑊(𝛼̂𝑀𝐿𝐸 − 𝛼)] + (𝑊𝛼 − 𝛼)′(𝑊𝛼 − 𝛼) 

 = 𝑡𝑟[(𝛼̂𝑀𝐿𝐸 − 𝛼)′(𝛼̂𝑀𝐿𝐸 − 𝛼)𝑊′𝑊] + (𝑊𝛼 − 𝛼)′(𝑊𝛼 − 𝛼) 

  

  

 𝑀𝑆𝐸(𝛼̂Sug) = 𝜎𝑢
2 ∑𝑝

𝑗=1

(𝜆𝑗
4+3𝜆𝑗

3ℎ+3𝜆𝑗
2ℎ2)

𝜆𝑗(𝜆𝑗+ℎ)
8 + ∑𝑝

𝑗=1 (
(𝜆𝑗+ℎ)

3
ℎ+𝜆𝑗ℎ3

(𝜆𝑗+ℎ)
4 )

2

𝛼̂𝑗
2 (79) 

 

 

4.1. Proposed estimators for the bias parameter 

 After the proposed method has been shown in estimating the parameters of the Poisson regression model, it 

was noted that method is biased in estimating those parameters, and the bias is due to the presence of the 

diagonal matrix (𝐻) when that matrix contains values (ℎ > 0), so several estimators will be proposed for the 

bias parameter, as the proposal will be based on a combination of from the suggestions of previous researchers 

and new ideas, the following are the suggestions of the bias parameter. We focused in our selection of the 

proposed estimators for the bias parameter (ℎ) by relying on a combination of estimations adopted by 

researchers in previous studies [6, 1, 7, 9], which showed preference in estimating the parameters of different 

regression models because they contain the most important factors affecting the nature of the existence and 

effect of the multilinearity problem such as the Eigen values(𝜆𝑗) o?f the matrix (X`𝑊̂𝑋), the value of the 

estimated random error variance 𝜎̂2 and the value of 𝛼̂𝑗
2. 

    • The first proposal: 

The idea of this proposal is based on finding a correlation between the variance of the random error with the 

largest eigen value of the matrix (X`𝑊̂𝑋), as well as using the max as one of the measures of central tendency. 

The formula for this proposed estimator is as follows: 
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 𝐻1 = {𝑀𝑎𝑥{𝑞𝑗}}                                                                                                       (80) 

 𝑞𝑗 =
𝜆max𝜎̂2

(𝑛−𝑝)𝜎̂2+𝜆max𝛼̂2                                                                                                 (81) 

 

𝜆max:Represents the largest eigen value of the matrix (X`𝑊̂𝑋).  

    • The second proposal: 

The idea in constructing this proposal is to find an estimator that represents the largest value for the product of 

two previous important estimators in estimating the bias parameters, which are (𝑞𝑗) and (𝑠𝑗) with the slight 

difference between them, which is that one of them contains the largest distinct value, while the other includes 

all those distinct values, and the formula for this The proposal is as follows: 

 

 𝐻2 = 𝑀𝑎𝑥 {{𝑞𝑗𝑠𝑗}} (82) 

where: (𝑠𝑗) : As previously defined in formula (30) 

 

    • The third proposal: 

Through the previous proposal, a simple mechanism will be added in calculating the third proposal by 

adopting the mediator in its calculation instead of the largest value for the product of the previous two 

estimators (𝑞𝑗) and (𝑠𝑗), and the formula of this proposed estimator is: 

 

 H3 = {𝑀𝑒𝑑𝑖𝑎𝑛{𝑞𝑖𝑠𝑖}} (83) 

    • The fourth proposal: 

The idea of this proposed estimator is based on finding the mean value for the product of two variables, one of 

which represents the square root transformation principle of the estimator (Horel and Kennard) shown in the 

formula (23), and the other represents the correlation of the mean of the squares of error with the largest 

characteristic value, and the formula of this proposed estimator is as following 

 

 H4 = {𝑀𝑒𝑎𝑛{𝑞𝑖𝑚𝑖}} (84) 

 

5.   The Monte Carlo simulation 

This section consists of a brief description of how the data is generated together with a discussion of our 

findings. 

 

5.1. The design of the experiment 

The dependent variable of the Poisson regression model is generated using pseudo-random numbers from the 

𝑃𝑜(𝜇𝑖) distribution, where 

 

 μi = exp(β0 + β1xi1 + ⋯ + βpxip), i = 1,2, … n, j = 1,2, … p                               (85) 

∑p
j=1 βj

2 = 1                                                                                                                       (86) 

Following [11], the parameter values in equation (85) are chosen so that ∑
𝑝
𝑗=1 𝛽𝑗

2 = 1 and 𝛽1 = ⋯ = 𝛽𝑝. To 

be able to generate data with different degrees of correlation we use the following formula to obtain the 

regressors: 

 

 𝑥𝑖𝑗 = (1 − 𝜌2)(1/2)𝑧𝑖𝑗 + 𝜌𝑧𝑖𝑝, 𝑖 = 1,2, … 𝑛, 𝑗 = 1,2, … 𝑝. 

where 𝑧𝑖𝑗 are pseudo-random numbers generated using the standard normal distribution and 𝜌2 represents the 

degree of correlation [6]. In the design of the experiment three different values of 𝜌2 corresponding to ( 0.90, 

0.95 and 0.99 ) are considered which are shown in Table (1). As for the other factor that will be taken into 

consideration as a variable and influencing factor, it is the sample size, as four sample sizes will be taken, 

which are (20, 50, 100, 150, 200) as in Table (1), in order to study the comparison according to samples of 

different types (small, medium , big). The last factor that will be taken into consideration is the number of 

independent (illustrative) variables in the model as in Table (1), as we will study the effect of having two 
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independent variables and four independent variables in the process of comparison between the different 

estimation methods. 

  

Table  1.  Various factors and their values in a simulation experiment  

    

  factors   values 

 n   (20, 50, 100, 150, 200)  

 𝜌2   0.90,0.95,0.99  

 p   2,4,6  

  

  

In order to make a comparison between the different estimation methods, we will rely on the( Mean Squared 

Error) as a criterion for comparing the average estimation parameters 𝛽𝑗, according to the formula below 

 

 𝑀𝑆𝐸 =
∑𝑅

𝑟=1 𝑆𝐸𝑖

𝑅
=

∑𝑅
𝑟=1 (𝛽̂−𝛽)𝑟

′ (𝛽̂−𝛽)𝑟

𝑅
    𝑟 = 1,2, … ,2000 

 

where: 𝛽̂: The value of the parameter estimated according to the different estimation methods. 𝛽 : Parameter 

value in constraint ( 86) 𝑅 : The number of times the experiment is repeated, which will be taken to be equal 

to (2000) 

 

5.2. Simulation results 

Tables 4-9 show the results of the simulation experiment, which were obtained by Monte Carlo Simulation by 

Using R. To find the mean square error (MSE) for all methods using the equation (7) for the method of 

Maximum Likelihood Estimator (MLE), and through direct substitution of formulas (23), (25), (26), (27), 

(29), (31), (32), (33) in equation (15) for the ridge regression method, and direct substitution for the formulas 

(52), (53),(54), (55), (56) in equation (43) for the Liu estimators method, and formulas (80), (82), (83), (84) 

for the proposed method by substituting into formula (72) The results reflect the mean square error (MSE) 

values for all previous estimation methods and the proposed method. 

After the simulation experiment was conducted and implemented, the results were extracted and interpreted 

according to the change of the influencing research factors, each separately, degree of correlation, number of 

explanatory variables and sample size. The results will be interpreted by taking all the influencing factors into 

consideration, through the simulation result in Tables (4), (5), (6), (7), (8) and (9). We observed that 

increasing the sample size led to a decrease in the mean square error 𝑀𝑆𝐸 values of all the estimators, which 

is one of the unique properties for any statistical estimator. The proposed estimator, consistently possessed the 

minimum 𝑀𝑆𝐸. The proposed method, according to the estimated bias parameter 𝐻1, appears as the best 

method to estimate the parameters of the Poisson regression model in all different conditions. 

The standard presentation for the simulation results is the tables (as in above). However, in many studies the 

tables are not readable, so should be present the results by the graphs. 

Figures 1-3 show the performance of bias parameters for ridge and Liu estimators for sample sizes,different 𝜌 

and different independent variables 𝑃 compared with maximum likelihood estimator method based on the 

𝑀𝑆𝐸 and the relative efficiency [𝑀𝑆𝐸𝛽̂𝑅𝑅/𝑀𝑆𝐸𝛽̂𝑀𝐿] for ridge estimator and [𝑀𝑆𝐸𝛽̂𝐿𝑖𝑢/𝑀𝑆𝐸𝛽̂𝑀𝐿] for Liu 

estimator. From these figures, we have the following notes:  
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Figure  1. MSE and relative efficiency ratios of different estimators vs sample sizes 𝑛  

5.2.1. Interpretation of the results according to the change in the sample size 𝒏 

 

The acurate observation of figure 1 shows the decline in the values of mean squares of error as the sample size 

increases, as this is evident in all estimation methods, especially at the bias parameter𝐾3, 𝐷5 and this reflects 

one of the good characteristics when the value of the estimator approaches the real value of the parameter by 

increasing the sample size. We also note the superiority of all estimation methods, over the method of 

maximum likelihood estimator 𝑀𝐿𝐸. Moreover, it has a minimum value of the relative efficiency, it starts 

increasing all over the range of 𝑛 values. 
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Figure  2. MSE and relative efficiency ratios of different estimators vs different correlation matrix 𝜌 

5.2.2. Interpretation of the results according to the change in the value of the correlation matrix 𝝆 

The simulation results were recorded when all the different factors were proven and the value of the 

correlation coefficient differed with the result obtained in the previous paragraph. Through Figure 2 , we can 

easily notice the superiority of the majority of estimation methods over the method of 𝑀𝐿𝐸. As the value of 

the correlation coefficient increases, the differences between the 𝑀𝑆𝐸 for all methods begin to increase in the 

mean of the correlation coefficient 0.95. Furthermore, the efficiency of estimation methods is decreasing in 

moderate correlation coefficient. 

 
Figure  3. MSE and relative efficiency ratios of different estimators vs different independent variables 𝑃   

5.2.3. Interpretation of the results according to the change in the number of independent variables 

𝑷 

The values of the mean squares error (MSE) for the parameters of the Poisson regression model estimated 

according to all methods were recorded when calculating them for the model that includes four and six 

independent variables as in tables a noticeable increase over their calculated counterparts for the Poisson 
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regression model that includes two independent variables. Also, the relative efficiency is less than 1 , it starts 

decreasing all over the number of independent variables 𝑃 values. 

 
Figure  4. MSE and relative efficiency ratios of proposed method estimator vs different sample sizes 𝑛  

 
Figure  5. MSE and relative efficiency ratios of proposed method estimator vs different correlation matrix 𝜌 

 

 
Figure  6. MSE and relative efficiency ratios of of proposed method estimator vs different independent 

variables 𝑃  

 

In these Figs 4, 5, 6 display the performance of the proposed method for different 𝑛, different 𝜌 and different 

independent variables 𝑃 compared with maximum likelihood estimator method based on the 𝑀𝑆𝐸 and the 

relative efficiency [𝑀𝑆𝐸𝛽̂𝑠𝑢𝑔/𝑀𝑆𝐸𝛽̂𝑀𝐿]. We also note the superiority of the proposed method over the 

method of the 𝑀𝐿𝐸 with the probability of the first estimator for the bias parameter 𝐻1 according to the 

suggested method, whose 𝑀𝑆𝐸 begins to decrease significantly as the sample size increases, 𝜌 and 𝑃. 
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Moreover, the relative efficiency ratio is close to zero in moderate samples. We also observe that as the value 

of the 𝜌 and 𝑃 increases, the relative efficiency ratio is close to zero with a value of 0.1. 

6.  Application  

To illustrate the performance of the estimators, we consider the study data, which is in the form of count data 

in the shape of totals within half monthly terms (collected for every two weeks) for the term from (2006) until 

the end of the year (2012), which pertain to congenital defects of the heart and circulatory system in newborns 

In the capital, Baghdad, from the Central Children’s Teaching Hospital in the Al-Iskan neighborhood, west of 

Baghdad, the distribution of the response variable (heart and circulatory abnormalities) will be studied and the 

presence of the problem of multicollinearity between the explanatory variables in the application will be 

revealed. There are seven explanatory variables: 𝑋1: represents the total weights of affected children within 

each time period. 𝑋2: represents the totals of the parents’ ages of affected children within each time period. 

𝑋3: represents the sums of mothers’ ages of affected children within each time period. 𝑋4: Represents the 

number of infected male children within each time period. 𝑋5: Represents the number of infected female 

children within each time period. 𝑋6: Represents the number of infected children born from consanguineous 

marriages within each time period. 𝑋7: Represents the number of infected children whose mothers were 

exposed to radiation or life influences such as taking certain medications and drugs during pregnancy within 

each time period. The response variable is𝑌: the sum of children with congenital heart and circulatory defects 

within each time period. 

The Poisson regression model was also built as one of the appropriate models to describe the data of that 

study. The formula of the model was as follows: 

 

 𝑌𝑖 = 𝑒
⟨
𝛽1𝑋𝑖1+𝛽2𝑋𝑖2+𝛽3𝑋𝑖3+𝛽4𝑋𝑖4

+𝛽5𝑋𝑖5+𝛽6𝑋𝑖6+𝛽7𝑋𝑖7+𝑢𝑖
⟩
 () 

 

 

6.1. Multilinearity problem and application data 

In order to detect whether there is a duplication or multilinearity between two or more explanatory variables in 

apply, it is noticed through the correlation matrix that there are correlation coefficients with large values and 

direct direction for all explanatory variables, as each of them is associated with all other explanatory variables 

with strong direct linear relationships In addition, find the values of the variance inflation factor 𝑉𝐼𝐹 shown in 

Table (2). 

The results of Table (2) also reflect significant values of the 𝑉𝐼𝐹 scale for all model variables, as the largest of 

them were those of the second, third and fourth explanatory variables, and the 𝑉𝐼𝐹 for the remaining 

explanatory variables exceeded the (10) barrier, which indicates the existence of the problem of multilinearity. 

  

Table  2.  Correlation matrix and 𝑉𝐼𝐹 between explanatory variables in the application  

  𝜌2   𝑋𝑖1   𝑋𝑖2   𝑋𝑖3   𝑋𝑖4   𝑋𝑖5   𝑋𝑖6   𝑋𝑖7  

 𝑋𝑖1   1.000   0.990   0.990   0.963   0.939   0.953   0.844  

 𝑋𝑖2     1.000   0.999   0.984   0.943   0.971   0.873  

 𝑋𝑖3       1.000   0.987   0.932   0.976   0.878  

 𝑋𝑖4         1.000   0.897   0.988   0.923  

 𝑋𝑖5           1.000   0.904   0.849  

 𝑋𝑖6             1.000   0.935  

 𝑋𝑖7               1.000  

𝑉𝐼𝐹   853.2458   115493.9560   65038.1281  18048.0997   4893.6051   1138.7312   3081.5336  

  

Eigenvalues and eigenvectors of the correlation matrix indicate the degree of multicollinearity. An eigenvalue 

that approaches to zero indicates a very strong linear dependency between regressors, while , the elements of 

the associated eigenvector display the weights of the corresponding regressor variables in the 

multicollinearity. 

Furthermore, multicollinearity can be measured in terms of the ratio of the largest and the smallest eigenvalue. 

This quantity is called the condition number of the correlation matrix: 
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 𝐶𝑁 = √
max(eigenvalue)

min(eigenvalue)
= 46748.74 

Large values of condition number CN are an indication of serious multicollinearity, also reflect the values of 

CN especially those related to the sixth and seventh variables. The extent of their direct impact on the 

emergence of the problem of multicollinearity in the studied model. CN of the correlation matrix 𝑋 is between 

(30 − 100) indicates a moderate to strong correlation and a CN greater that 100 suggest severe 

multicollinearity [15]. In addition to that,the number of eigenvalues near zero indicates the number of 

collinearities detected among the regressor variables. 

6.2. Application results 

After the appropriateness of the distribution of the dependent variable was observed according to the Poisson 

distribution as in the test of good fit, and the problem of multilinearity between the independent variables in 

use was revealed through 𝑉𝐼𝐹, the Poisson regression model became the appropriate model to express the 

cases of congenital defects in the heart and circulatory system in children. The proposed method with bias 

parameter (𝐻1) was used to estimate the parameters of the Poisson regression model when there is a near-

perfect multilinearity problem in the application, due to its preference over all other estimation methods, as 

the Monte Carlo simulation program was used to calculate the estimation of the parameters as well as the 

standard deviation of the estimated parameters. and compared with the 𝑀𝐿𝐸 method, as shown in Table 3. 

  

Table  3.  Parameter estimates based on the proposed and 𝑀𝐿𝐸 method of Poisson regression model for 

application data  

    

    Explanatory 

Variable   
 𝛽̂𝑀𝐿   𝑆̂𝛽𝑀𝐿   𝛽̂𝐻1

  𝑆̂𝛽𝐻1
  

 (Intercept)   0.3662397   0.67153867   0.0000017   0.0003247  

 𝑋𝑖1   0.0196046   0.07896312   0.0001601   0.0028194  

 𝑋𝑖2   0.01973763   0.07653075   0.00180   0.0767312  

 𝑋𝑖3   -0.00442303   0.07963316   0.0013144   0.0505632  

 𝑋𝑖4   -0.72999177   1.24776644   0.0000396   0.2496800  

 𝑋𝑖5   -0.64842063   1.81908397   0.0000133   0.0461439  

 𝑋𝑖6   0.330966348   0.99071805   0.000011   0.0001320  

 𝑋𝑖7   0.455675664   1.16882605   0.00001276   1.1543453  

 𝑀𝑆𝐸   NA   7.68306196   NA   1.4054349  

  

  

Thus, the estimated regression equation for the number of children with congenital heart and circulatory 

defects is as follows: 

𝑌̂𝑖 = 𝑒
{
0.0000017+0.0001601𝑋𝑖1+0.00180𝑋𝑖2+0.0013144𝑖3
+0.0000396𝑋𝑖4+0.0000133𝑋𝑖5+0.000011𝑋𝑖6+0.00001276𝑋𝑖7

}
 

The interpretation of these results indicates that the number of children with congenital defects in the heart 

and circulatory system depends on the extent of the increase in all parameters of the model, since all 

parameters are influential, but in varying proportions, in increasing the number of children with these birth 

defects. 

Table  4.  Simulated MSE when p =2 

    
  n   p   MLE   K1   K2    K3    K4    K5    K6    K7    K8  

 20   0.9   0.104188   0.086681   0.08969   0.097311   0.161416   0.088423   0.091679   0.093381   0.093183  

 20   0.95   0.131632   0.081306   0.102622   0.061351   0.093251   0.08118   0.108417   0.113427   0.112518  

 20   0.99   2.016914   0.81284   0.934663   0.453138   0.356054   0.27971   0.144957   0.204992   0.189483  

 30   0.9   0.100205   0.068432   0.084033   0.06837   0.145784   0.071384   0.088757   0.09176   0.091185  

 30   0.95   0.67371   0.343376   0.364123   0.287939   0.315873   0.28694   0.222807   0.257659   0.25207  

 30   0.99   1.940592   0.693801   0.936583   0.349549   0.26357   0.188198   0.158021   0.233261   0.21427  

 50   0.9   0.093507   0.066244   0.078477   0.059939   0.109796   0.069091   0.082904   0.085497   0.085017  
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  n   p   MLE   K1   K2    K3    K4    K5    K6    K7    K8  

 50   0.95   0.243121   0.105665   0.163956   0.086144   0.133863   0.112654   0.182243   0.191431   0.189994  

 50   0.99   1.965247   0.682758   0.933773   0.32776   0.235215   0.157007   0.145002   0.220344   0.201165  

 100   0.9   0.021264   0.018315   0.020398   0.018644   0.068339   0.018578   0.020823   0.02099   0.020957  

 100   0.95   0.050069   0.036374   0.045642   0.028186   0.072568   0.037246   0.047707   0.048564   0.048379  

 100   0.99   0.271994   0.105828   0.171948   0.080962   0.108086   0.105476   0.188556   0.200095   0.198359  

 150   0.9   0.020371   0.018866   0.019676   0.019537   0.046228   0.018981   0.019927   0.020077   0.020051  

 150   0.95   0.035566   0.028184   0.033147   0.023196   0.076326   0.028849   0.034243   0.034791   0.034664  

 150   0.99   0.199672   0.09614   0.142522   0.072388   0.093952   0.101906   0.156985   0.164617   0.163364  

 200   0.9   0.018221   0.016435   0.017608   0.015292   0.054985   0.016557   0.017868   0.018032   0.017992  

 200   0.95   0.029033   0.025274   0.02758   0.021706   0.076162   0.025838   0.02816   0.134768   0.133785  

  

  

Table  5.  Simulated MSE when p =2 

    

  

 

Table  6. Simulated MSE when p =4 

 

  n   p   D1   D2   D3  D4   D5   H1   H2   H3   H4   Best  
 20   0.9   0.091034   0.090606   0.090606   0.091021   0.090567   0.083833   0.084752   0.087671   0.135617   H1 

 20   0.95   0.10318   0.102254   0.102254   0.103079   0.101958   0.039458   0.045943   0.056714   0.105037   H1 

 20   0.99   1.316376   0.497038   0.497038   0.943697   0.303073   0.169099   0.264872   0.525757   0.346063    K6  

 30   0.9   0.084692   0.084168   0.084168   0.084678   0.0841   0.044197   0.050034   0.058391   0.106261   H1  

 30   0.95   0.399252   0.304848   0.304848   0.370425   0.272414   0.237422   0.291233   0.405953   0.298239    K6  

 30   0.99   1.27715   0.521544   0.521544   0.941724   0.289067   0.091735   0.093466   0.250323   0.185637   H1  

 50   0.9   0.079168   0.078929   0.078929   0.079165   0.07891   0.049091   0.054673   0.063528   0.072197  H1  

 50   0.95   0.166475   0.162233   0.162233   0.165896   0.16084   0.069458   0.057799   0.09716   0.077695   H2  

 50   0.99   1.284326   0.507524   0.507524   0.937268   0.262965   0.066568   0.056451   0.185666   0.14475   H2  

100   0.9   0.020426   0.020423   0.020423   0.020426   0.020423   0.015226   0.014938   0.015659   0.050675   H2  

100   0.95   0.045736   0.045714   0.045714   0.045736   0.045714   0.020086   0.022454   0.027266   0.050099   H1 

 100   0.99   0.174554   0.167773   0.167773   0.173166   0.164217   0.059875   0.043138   0.088704   0.056091   H2 

 150   0.9   0.019705   0.019704   0.019704   0.019705   0.019704   0.017599   0.017793   0.018139   0.035439   H1  

 150   0.95   0.033193   0.033179   0.033179   0.033193   0.033179   0.01595   0.019668   0.023485   0.041126   H1  

 150   0.99   0.143663   0.141561  0.141561   0.143372   0.140553   0.058994   0.052256   0.091567   0.048548   H4  

 200   0.9   0.017618   0.017616   0.017616   0.017618   0.017616   0.01125   0.013844  0.01452   0.032823   H1  

 200  0.95   0.027613  0.027602  0.027602  0.027613  0.027602   0.019487  0.022278  0.02423   0.028776   H1 

 200   0.99   0.118092  0.117355  0.117355  0.118028  0.117135   0.05045   0.047857   0.079807  0.038138   H1  

  n   p   MLE   K1   K2    K3    K4    K5    K6    K7    K8  

  20   0.9   1.967746   0.994522   1.029387   0.232643   0.305109   0.412965   0.382274   0.80349   0.648807  

 20   0.95   1.883315   0.995808   1.06254   0.397429   0.460243   0.691287   0.5868   0.956536   0.852852  

 20   0.99   8.276267   3.091269   4.09262   0.37572   0.354419   0.390684   0.365937   0.857596   0.796338  

 30   0.9   0.181323   0.106549   0.151112   0.047125   0.073483   0.107488   0.163766   0.176311   0.174351  

 30   0.95   0.542852   0.170823   0.350097   0.037139   0.047984   0.139823   0.384935   0.479243   0.452611  

 30   0.99   5.183919   1.779902   2.592928   0.188663   0.241152   0.282245   0.339307   1.04654   0.81814  

 50   0.9   0.127841   0.089714   0.112674   0.039879   0.043899   0.090022   0.11915   0.125182   0.1245  

 50   0.95   0.734554   0.354067   0.475734   0.104577   0.125852   0.309644   0.465245   0.597947   0.560323  

 50   0.99   2.239675   0.417165   1.176007   0.039792   0.043774   0.114662   0.5248   1.224439   1.068623  

 100   0.9   0.068535   0.055969   0.065055   0.033314   0.049075   0.056661   0.066828   0.068119   0.068057  

 100   0.95   0.193742   0.089469   0.15455   0.021746   0.02884   0.090341   0.173038   0.188051   0.185168  

 100   0.99   0.749685   0.188202   0.470045   0.032096   0.043113   0.147495   0.527601   0.648415   0.613803  

 150   0.9   0.022602   0.020723   0.022218   0.016761   0.031914   0.020787   0.022432   0.022574   0.022572  

 150   0.95   0.068661   0.049561   0.064069   0.020247   0.03686   0.050319   0.066642   0.068229   0.068129  
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Table  7.  Simulated MSE when p =4 

    
  n   p   D1   D2   D3  D4   D5   H1   H2   H3   H4   Best  

  20   0.9   1.299652   0.521471   0.504378   1.030031   0.502703   0.072194   0.094894   0.507993   0.185425   H1  

 20   0.95   1.190709   0.725939   0.714521   1.072598   0.707311   0.182472   0.521442   1.06211   0.26261   H1  

 20   0.99   6.823778   0.759454   0.673982   4.02928   0.575627   0.077093   0.186295   0.983028   0.16878   H1  

 30   0.9   0.151905   0.151394   0.151394   0.151885   0.151394   0.026012   0.025381   0.035234   0.269279   H2 

 30   0.95   0.359162   0.318053   0.318053   0.351451   0.318053   0.018393   0.019356   0.052594   0.167385   H1 

 30   0.99   3.869278   0.653369   0.519042   2.573597   0.512773   0.026024   0.066335   0.317822   0.081585   H1  

 50   0.9   0.113301   0.113268   0.113268   0.113299   0.113268   0.036869   0.036641   0.038812   0.155092   H2 

 50   0.95   0.488961   0.432416   0.432002   0.478931   0.432002   0.037967   0.113989   0.265184   0.084202   H1 

 50   0.99   1.517106   0.434711   0.434134   1.172363   0.434134   0.006699   0.012819   0.056039   0.072529   H1 

 100   0.9   0.065169   0.065166   0.065166   0.065169   0.065166   0.027886   0.029472   0.035885   0.128092   H1 

 100   0.95   0.155126   0.154543   0.154543   0.155069   0.154543   0.01632   0.017171   0.032634   0.110905   H1 

 100   0.99   0.482121   0.418576   0.418205   0.470572   0.418205   0.005545   0.017506   0.095803   0.04551   H1  

 150   0.9   0.022225   0.022225   0.022225   0.022225   0.022225   0.012723   0.013688   0.01291   0.125138   H1 

 150   0.95   0.064151   0.064146   0.064146   0.064151   0.064146   0.016939   0.018715   0.023305   0.102199   H1  

 150   0.99   0.268702   0.255518   0.255518   0.266932   0.255518   0.005256   0.018716   0.056273   0.0484   H1 

 200   0.9   0.022159   0.022159   0.022159   0.022159   0.022159   0.012303   0.012283   0.01418   0.1030   H1  

 200   0.95   0.03184   0.031839   0.031839   0.03184   0.031839   0.012344   0.012657   0.014593   0.09849  H1 

 200  0.99  0.282229  0.275345  0.275345  0.281326  0.275345  0.004471  0.017903  0.079601  0.034562  H1  

  

7.  Conclusions 

The ridge regression and Liu estimator at a different time were corresponded to the Poisson Regression Model 

to solve multicollinearity. However, in this study, we developed a new estimator, establish its statistical 

properties, carried out theoretical comparisons with the estimators mentioned above. 

The increase in the sample size and the number of independent variables does not constitute any obstacles 

towards the efficiency of the proposed method in estimating the parameters of the Poisson regression model, 

while these factors affect the efficiency of some of the previous estimation methods. the proposed estimation 

method across all bias parameters and especially 𝐻1 represents the optimal solution when the value of the 

correlation coefficient between the independent variables is increased. 

Furthermore, the efficiency of proposed method estimator less than 1 (or the relative efficiency ratio is close 

to zero) under the effect of 𝑛, 𝜌 and 𝑝 indicates that 𝛽̂𝑀𝐿 is not at efficient as 𝛽̂𝑠𝑢𝑔 in estimating the parameter 

value with smaller mean square error. 

In addition to that, we conducted a simulation experiment and analyzed a real-life application to display the 

proposed estimator effectiveness. The simulated and application results display that the proposed method 

estimators based on bias parameters outperform the ridge regression and Liu estimators , while MLE has the 

worst performance. 
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