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In this article we have defined a subclass of Bi-univalent functions using 

symmetric q- derivative operator and estimated the bounds for the coefficients 

using Faber polynomial techniques. We also have obtained the bounds for the 

linear functional which is popularly known as Fekete- Szegὅ problem.  
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1. Introduction  

Let A be the class of all normalized functions of the form 

   
2

n

n

n

f z z a z




    (1) 

Which are analytic in the Unit disk U. 

A function  that is regular (holomorphic) in U is said to be univalent in U if it assumes no value more than 

once in U. Denote by S, the subclass of A, of all univalent functions in U. 

 

For (z)f   and (z)g   analytic in U, we say that (z)f  is subordinate to (z)g  , written, (z) g(z)f , if there 

exists a Schwarz function (z)w  with (z) 0w   and | w(z) | 1   in U such that (z) g(w(z))f   . That is if the 

range of one holomorphic function is contained in that of the second and these functions agree at a single 

point, then a sharp comparison of these two functions can be made. 

 

The problem of finding sharp bounds for the linear functional 
2

3 2| a |a   of any compact family of functions 

is popularly known as the Fekete-Szegὅ problem. This coefficient functional on the normalized analytic 
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functions in the unit disk represents various geometric quantities. For example, for 1  , the functional 

represents Schwarzian derivative, which plays a significant role in the theory of univalent functions, 

conformal mapping and hypergeometric functions. 

 

A function (z) Af    is said to be bi-univalent in U, if (z)f S  and its inverse has an analytic continuation 

to | w | 1 . The class of all bi-univalent functions is denoted by . 

The concept of bi-univalent functions was introduced by Lewin [18] who proved that if (z)f   is bi-univalent, 

then 2| | 1.51a   . Brannan and Clunie [10] improved Lewin's result to 
2| | 2a  . There is a rich literature on 

the estimates of the initial coefficients of bi-univalent functions (see [11, 13, 16, 24, 25, 26]). However not 

much is known about the estimates of higher coefficients. It is well known that every function f S   has an 

inverse
1f 
 , satisfying 

1( ( )) ,( )f f z z z U     and 1

0 0

1
( ( )) , ( ); ( )

4
f f w w w r f r f  

   
 
∣ ∣  , where 

1 2 2 3 3 4

2 2 3 2 2 3 4( ) (2 ) (5 5 )f w w a w a a w a a a a w          (2) 

 

Let K be simply connected, compact set in the Complex plane. Let h be analytic on K. It is possible to 

approximate h by polynomials uniformly on K called Faber polynomials, introduced by Faber [12]. These 

polynomials play an important role in geometric function theory. 

A detailed discussion about Faber polynomial expansion for functions f S  of the form has been carried out 

in [[1], [2], [3]].  

 

Geometric function theory provides a platform to have a multiple dimensional view on the different subclasses 

of analytic functions with help of q- calculus which is an effective tool of investigation. For example, the 

theory of q- calculus is used to describe the extension of the theory of univalent functions. For basic 

definitions, applications, terminologies, geometric properties and approximation one can refer [[5], [8], [9], 

[14], [17], [19], [20], [21]]. Let us suppose 0 1q  throughout this paper. 

 

Definition. 1 

The q-derivative of a function f is defined on a subset of  is given by 

( ) ( )
( )( ) , 0,

(1 )
q

f z f qz
D f z if z

q z


 


 

and ( )(0) (0)qD f f    provided (0)f   exists. 

Note that 

 

1 1

( ) ( )
lim( )( ) lim ( )

(1 )
q

q q

f z f qz
D f z f z

q z  


 


 

if f  is differentiable. From (1), we have  

   1

2

1 [n] .n

q q n

n

D f z a z






   

 

Where the symbol [ ]qn  denotes the number 

1
[ ]

1

n

q

q
n

q





 

Definition. 2 

The symmetric q-derivative qD f  of a function f   given by (1) is defined as follows: 
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1

1

( ) ( )
( )( ) , 0,

( )
q

f qz f q z
D f z if z

q q z






 


 (3) 

and ( )(0) (0)qD f f    provided (0)f    exists. 

From (3), we have the deduction 

1

2

( )( ) 1 [ ] ,n

q q n

n

D f z n a z






                          (4) 

Where the symbol [ ]qn  denotes the number 

1
[ ]

n n

q

q q
n

q q









 

From (2) and (4), we also have 
1

1

2 2 3 3

2 2 3 2 2 3 4

( ) ( )
( )( )

( )

1 [2] [3] (2 ) [4] (5 5 ) .

q

q q q

g qw g q w
D g w

q q w

a w a a w a a a a w










       

(5) 

 

Lemma. 1 [6, 22] 

If the function p P   is defined by 
2 3

1 2 3( ) 1 .p z p z p z p z      

then 

| | 2( {1,2,3, }),np n    

and 
2 2

1 1
2

| |
| | 2 .

2 2

p p
p     

 

Let   be an analytic function with positive real part in U, with (0) 1    and (0) 0   . Also, let ( )U  be 

starlike with respect to 1 and symmetric with respect to the real axis. Then,   has the Taylor series expansion 

2 3

1 2 3 1( ) 1 ( 0).z B z B z B z B        (6) 

 

2. Main Results 

Definition. 3 

Let f A . Then ( , , ), {0}f b q b  R  if f   , 

 
1

1 ( )( ) 1 ( )qRe D f z u
b


 
  

 
 (7) 

and 

 
1

1 ( )( ) 1 ( )qRe D g w v
b


 
  

 
 (8) 

Where
1g f  . 

2.1. COEFFICIENT BOUNDS FOR FUNCTIONS BELONGING TO THE CLASS ( , , )b q R   

Theorem 1 

Let ( , , )f b q R   and
1 ( , , )g f b q 

 R  . If 0ka    for 2 1k n     then 

2
; 3.

[ ]
n

q

b
a n

n
 

∣ ∣
∣ ∣  
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Proof 

Let ( , , )f b q R  andP , then there exists two Schwarz functions 
2

1 2( )u z c z c z     and 

2

1 2( )v w d w d w     such that 

 
1

1 ( )( ) 1 ( ( ))qD f z u z
b

   (9) 

 
1

1 ( )( ) 1 ( ( ))qD g w v w
b

    (10) 

Where 

1 2

1 1

( ( )) 1 ( , , )
n

k n

k n n

n k

u z D c c c z 


 

   (11) 

and 

1 2

1 1

( ( )) 1 ( , , )
n

k n

k n n

n k

v w D d d d w 


 

   (12) 

From (9) and (11) we have 

 

1

1 2

1

[ ]
( , , ), 2.

n
q n k

k n n

k

n a
D c c c n

b






  (13) 

From (10) and (12), we have 

1

1 2

1

[ ]
( , , ), 2.

n
q n k

k n n

k

n b
D d d d n

b






   (14) 

For 0ka   for 2 1k n   , (13) and (14) respectively yield 

1 1

[ ]q n

n

n a
c

b
   

and 

1 1

[ ] [ ]q qn n

n

n b n a
d

b b
     

By definition of
p

nK   we have n nb a  .  

Upon simplification, we obtain 

1 1
[ ]

n n

q

b
a c

n
   (15) 

1 1
[ ]

n n

q

b
a d

n
    (16) 

Taking the absolute values of (15) and (16) and using the facts that 1| | 2   , 1| | 1nc     and 1| | 1nd   , we 

obtain 

2

[ ]
n

q

b
a

n


∣ ∣
∣ ∣  

Remark 1 

If 1q    then the above theorem reduces to the results of Hamidi and Jahangiri [15]. 

 

Remark 2 

If 1b ∣ ∣  then above theorem reduces to the results of Altinkaya and Yalcin [7] (Theorem 7 for p=1). 
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Theorem 2 

 

Let ( , , )f b q R and
1 ( , , )g f b q 

 R . Then 

4 2

2 4 2

2

4 2

4 24 2

2 2 1
,

1 1

(i)

2 2 1
, .

11

q b q q
b

q q q

a

q b q q
b

q qq q

  
 

  


 


  
   

∣ ∣
∣ ∣

∣ ∣

∣ ∣
∣ ∣

 

2 2 2 2 2

2 2 4 2 4 2

3 2 2 2

4 2 4 2

4 2 ( 1)
,

( 1) 1 2( 1)
(ii)

4 ( 1)
, .

1 2( 1)

q b q b q
b

q q q q q
a

q b q
b

q q q q

 
 

    
 

 
    

∣ ∣ ∣ ∣
∣ ∣

∣ ∣
∣ ∣

∣ ∣

 

   
2

2

3 2 4 2

2 3
(iii) , 1, ,2.

1 2

q b
a a

q q


   

 

∣ ∣
∣ ∣  

Proof 

Letting 2n    and 3n   in [13] and [14] respectively, we get 

2

1 1

[2]qa
c

b
   (17) 

  

3 2

1 2 2 1

[3]qa
c c

b
    (18) 

and 

2

1 1

[2]qb
d

b
  (19) 

3 2

1 2 2 1

[3]qb
d d

b
    (20) 

Comparing (5) with (19) and (20) 

2

1 1

[2]qa
d

b



  (21) 

2

2 3 2

1 2 2 1

[3] (2 )q a a
d d

b
 


   (22) 

Using 1 1c d    in either of (17) and (21), we deduce 

2 2

2 | | 2 | |
| |

1[2]q

b q b
a

q
 


 

From (18) and (22), we get 
2

2 2 2

1 2 2 2 1 1

2[3]
( ) ( )

qa
c d c d

b
      

and thus 
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2
4 2

2 | |4 | |
| |

[3] 1q

q bb
a

q q
 

 
 

Now the bounds for 2| |a   are justified since 2
4 2

2 | |4 | |
| |

[3] 1q

q bb
a

q q
 

 
  for 

4 2

4 2

2 1
| | .

1

q q
b

q q

 


 
  

From (18), we get 
2 2

1 2 2 1
3 4 2

| | (| |) 4 | | 4 | |
| |

1[3] [3]q q

b c c b q b
a

q q

 
  

 
 (23) 

On the other hand subtracting (22) from (18). 

2

3 2 1 2 2

2[3]
( ) ( ).

q
a a c d

b
     (24) 

Solving the above equation for 3a   and taking absolute value 

2 2 2

3 2 2 4 2

4 | | 2 | |
| |

( 1) 1

q b q b
a

q q q
 

  
 (25) 

Now, Theorem 2.2 (ii) follows from (23) and (25) upon noticing that 
2 2 2 2 2 2

2 2 4 2 4 2 4 2

4 | | 2 | | 4 | | ( 1)
if | |

( 1) 1 1 2( 1)

q b q b b q q
b

q q q q q q q


  

      
 

For the third part of the theorem, we rewrite (24) as 

2

3 2 1 2 2( ( ))
2[3]q

b
a a c d     (26) 

Taking absolute values, we get 
2

2 1 2 2
3 2 4 2

| || ( ) | 2 | |
| |

12[3]q

b c d b q
a a

q q

 
  

 
 

We rewrite (22) as 

2 2

2 3 1 2 2 12 ( )
[3]q

b
a a d d     (27) 

Taking absolute values, we get 
2 2

2 2

3 2 1 2 2 14 2 4 2

| | 4 | |
| 2 | | |

1 1

b q b q
a a d d

q q q q
    

   
 

Adding (26) and (27) and taking absolute value, 
2

2

2 2 4 2

3 3 | |
| | .

2 1

b q
a a

q q
 

 
 

 

2.2. FEKETE- SZEG O  INEQUALITY FOR FUNCTIONS BELONGING TO THE CLASS 

( , , )b q R  

Theorem 3  

Let f   given by (1) be in the class ( , , )b q R   and   . Then 
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1

2

3 2

1

1
0 ( )

4[3] 4[3]

1
4 ( ) ( ) .

4[3]

q q

q

B b
for h

a a

B h for h





 


 




  

 


∣ ∣
∣ ∣

∣ ∣

∣ ∣ ∣ ∣

 

where 

2

1

2
2

1 1 2

(1 )
( )

4[ [3] [2] ( )]q q

B
h

b B B B







 
  

 

Proof 

Let ( , , )f b q R   and g be the analytic extension of
1f 
 to U then there exists two functions u andv , 

analytic in U with (0) (0) 0u v  , | ( ) | 1,| ( ) | 1u z v w   and ,z w U   such that 

 
1

1 ( )( ) 1 ( ( ))qD f z u z
b

    (28) 

 
1

1 ( )( ) 1 ( ( ))qD g w v w
b

    (29) 

where
1g f  . 

Next, define the functions ,p q P by 

 

2

1 2

1 ( )
( ) 1

1 ( )

u z
p z p z p z

u z


    


 (30) 

2

1 2

1 ( )
( ) 1

1 ( )

v w
q z q w q w

v w


    


 (31) 

From the above definitions, one can derive 

2 2

1 2 1

( ) 1 1 1 1
( )

( ) 1 2 2 2

p z
u z p z p p z

p z

  
     

  
 (32) 

2 2

1 2 1

( ) 1 1 1 1
( )

( ) 1 2 2 2

q w
v w q w q q w

q w

  
     

  
 (33) 

Combining (6), (28), (29), (32) and (33) 

  2 2 2

1 1 2 1 1 2 1

1 1 1 1 1
1 ( )( ) 1 1

2 4 2 2
qD f z B p z B p B p p z

b

  
         

  
 (34) 

  2 2 2

1 1 2 1 1 2 1

1 1 1 1 1
1 ( )( ) 1 1

2 4 2 2
qD g w B q w B q B q q w

b

  
         

  
 (35) 

From (34) and (35), we deduce 

2

1 1

[2] 1

2

qa
B p

b
 (36) 

3 2 2

2 1 1 2 1

[3] 1 1 1

4 2 2

qa
B p B p p

b

 
   

 
(37) 

and 

2

1 1

[2] 1

2

qa
B q

b
   (38) 
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2

2 3 2 2

2 1 1 2 1

[3] (2 ) 1 1 1

4 2 2

q a a
B q B q q

b

  
   

 
 (39) 

From (36) and (38), we get 

1 1p q   (40) 

Subtracting (37) from (39) and applying (40) 

2 1
3 2 2 2( )

4[3]q

bB
a a p q    (41) 

By adding (37) to (39), we get 

2 2

2 1 2 2 1 2 1

2[3] 1 1
( ) ( ).

2 2

q
a B p q p B B

b
     

Using (36) and (38) 
3

2 1 2 2
2 2

2

1 1 2

( )

4 [3] [2] ( )q q

bB p q
a

b B B B




  
  

 (42) 

From (41) and (42), we get 

 

2

3 2 1 2 2

1 1
( ) ( )

4[3] 4[3]q q

a a bB h p h q  
    

        
        

 

Where 
2

1

2
2

1 1 2

(1 )
( )

4[ [3] [2] ( )]qq

B
h

b B B B







 
 

Then, by Lemma 1 and (6) 

1

2

3 2

1

1
0 ( )

4[3] 4[3]

1
4 ( ) ( ) .

4[3]

q q

q

B b
for h

a a

B h for h





 


 


  

 



∣ ∣
∣ ∣

∣ ∣

∣ ∣ ∣ ∣

 

 

Corollary 1 If  ( , , )f b q R  then taking 1   , we get 

2
2 1

3 2 4 2

| |
| | .

4[ 1]

q b B
a a

q q
 

 
 (43) 

 

Corollary 2 Let 

2 21
( ) 1 2 2 ,(0 1).

1

z
z z z

z



   
 

       
 

 

then from (43), we have 

 

2
2

3 2 4 2

| |
| | .

2[ 1]

q b
a a

q q


 

 
  

Corollary 3 Let 

21 (1 2 )
( ) 1 2(1 ) 2(1 ) ,(0 1).

1

z
z z z

z


   

 
        


 

then the inequality (43)  reduces to 
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2
2

3 2 4 2

| | (1 )
| | .

2[ 1]

q b
a a

q q


 

 
 

 

3. Conclusion 

We have estimated the bounds for the coefficients and also the linear functional which is popularly known as 

Fekete- Szeg o  problem, for functions belonging to the class defined in this article. We also have seen our 

results reducing to the results discussed in various other articles. 
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