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Biometric acquired and processed data quality is the prime 

influences, which will affect the performance of the whole 

biometric system. Hence, aforementioned is essential to 

control the quality of acquired data to devise a suitable 

biometric system. This paper presents a robust multimodal 

biometric system using quality dependent expert fusion 

system. We Presents work, on a novel quality assessment 

metrics for Fingerprint, Palmprint, and Iris. The originality 

of this work contributing with blind image quality measures.  

The projected quality metrics associates with two type of 

quality measure a) Image-based quality as well as b) 

pattern-based. We have explore and comprehend the 

associated various quality assessment in the biometrics. 

Benefits of the proposed quality matric have been illustrates 

on six benchmark database. The performance of the 

proposed quality measures demonstrates on multimodal 

biometric system is evaluated on a public dataset and 

demonstrating its recognition accuracy with respect to EER. 

Result shows the efficiency of detecting the kind of 

alterations. Kolmogorov-Smirnov (KS) test statistics shows 

0.84 to 0.94 outperformed as compared to NFIQ. 
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1 Introduction 

Technique of confirming an individuality privilege using individual’s physical as well as behavioural appearances is the 

confirmation of the biometrics. Performance of biometric recognition system deeply effects due to major problem in the 

deployment of the various errors characterized by biometric raw data during the verification. The sources of errors are 

such as variations in human characteristics, environmental factors and cross device matching One important way of 

addressing errors is the make use of quality measures, which we define as information that helps to review the possibility 

of truthfulness of  biometric verification decision. 

A current study shows that the performance of the biometrics system decreases due to the unfavourable effects of the 

corrupting features from the above stated errors in a biometrics system. Study shows that to avoid the effect of these 

errors there is need to explore the multimodal biometrics (MB). In MB system that the noise will disturbing individual 

modality will not having any influence on the other biometrics modalities. 
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Overall Performance of the system depends on the quality of the acquired data, Fingerprint Verification Competition 

(FVC) series shows the impact of quality on performance of the system (R Cappelli et al., 2006). There result shows that 

for the best matching algorithm equal error rate (EER) increased for 0.97 in FVC2000 and FVC2002 to 2.116 in 

FVC2004 and FVC2006 database. Specifically database used FVC2004 and FVC2006 are further challenging as the 

uncertainties are purposely introduced. Therefore it is essential to control quality of the selected biometric data in 

enrolment as well as in verification steps by removing the poor quality samples. 

There are two major components are worthwhile to accomplish for capturing various corrupting factors: 

 Useful information  of quality measures and 

 A useful fusion method able to capture quality trials and match scores as input in class to build a most 

favorable of agree to take/throw away choice. This technique of fusion is acknowledged as quality-

dependent fusion. 

In the proposed work, we aim to intend a most favourable best quality focussed fusion technique using image based 

and pattern based quality measures using scale invariant future transformation (SIFT) keypoint. Which will work 

efficiently on a given quality set. Advantage of the presented metric can be used for multimodal system. 

We have reviewed various quality assessment and quality-dependent fusion techniques which is found in different 

works has been informed. Outline of the paper is given as, Section 2 Associated work on quality assessment. Section 3 

Design of Quality Assessment metrics, Section 4 investigational outcomes performed on benchmark database for 

Fingerprint, Palmprint and Iris, Section 5 comparison with NFIQ metric of fingerprint. The proposed work ends with 

section 7 conclusion, followed by references. 

 

2.  Associated work in Quality Assessment and proposed work 

Detail work carried out so far in the area of image quality assessment for multimodal biometric field with existing image 

based quality metrics and the proposed work for quality assessment in multimodal biometrics is stated here.  

 

 
Figure 1. Biometric data quality assessment 

 

2.1  Associated work in quality assessment metrics 

ISO/IES 29794-1(2009) presents the quality assessment of raw biometrics with different facets, where three significant 

aspects of quality are acknowledged, these are illustrated in Figure 1. 

 Character: Sample in which quality attributes to the physical aspects of the basis since the biometric test 

being obtained. E.g., a scratched finger has a deprived character. 

 Fidelity: Test model in which quality will reviews the relationship among the biometric test with its input. 

E.g., a device having low resolution outcomes in a lesser fidelity trial. 
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 Utility: Expected influence of each specific trial with complete performance of the whole biometric system 

and which has been reliant equally with character and the fidelity of the sample.  

Shen L., Kot A., Koo W. (2001), used Gabor filters to recognize good quality slabs of ridges and valley pattern and 

this method mainly used to estimate the quality of fingerprint image precisely. Lim et al. (2002), Chen et al. (2005), 

Alonso-Fernandez et al. (2007) presents quality metrics for fingerprint that are mainly classifies local features, global 

features of the image. They presented the efficiency of predicting the quality of fingerprint. But these procedures are 

dependent on modality and cannot be used for other kind of modalities. National Institute of standard Technology (NIST) 

Fingerprint Image Quality metric (NFIQ) presented example using these quality metrics and these are only dedicated for 

fingerprint quality evaluation. 

Krichen et al. (2007), Presents Gaussian Mixture Model (GMM) based statistical quality measures, and compared 

quality measures with standard methods based on Fourier Transforms and wavelets. They verified the performance of the 

system decreases due to two types of variations used such as occlusions and blurring. Experimental results shows 

significant improvement in performance of the system using GMM. Chaskar et al. (2012) estimation procedure for nine 

quality aspects of iris images. Various papers have presented the methods for quality measures. However, these methods 

are used only for Iris image. 

Q He et al. (2008) developed method which is categorized in three computation levels for biometric sample quality 

i.e. levels are  database quality, quality of class, and quality of image. This method is based on matching score 

distribution of genuine as well as impostor. The drawback of this developed method i.e. it cannot be used for single 

capture of the modality directly.  

Guerrache F. et al. (2016) propose innovative method for computing palmprint captured image quality with respect to 

illumination, it will discard the palmprint having poor illumination by integrating to the system and to make new session 

of acquisition. 

To achieve better accuracy in biometric system confirmation of the quality of biometric images captures from the 

sources are essential. From the rigorous survey we found that most of present quality metrics are dependent on modality 

and matching methods as well as all research activities are towards performance side. In order to get achieve genuine 

score distribution data it will have need of a large number of trials of the same modality. Therefore the contribution of 

this paper is to define quality vector which is self-determining and which can be independent on referred matching 

process to improve the overall performance of the system.  

2.2  General scheme of proposed work  

Figure 2 demonstrates two type of information one image based criteria and another pattern based criteria are used for 

maintaining quality information. For predicting the quality of the target biometric information SVM multi-class support 

classification learner process is performed. 

3.  Development of quality assessment metric 

Development of quality assessment metric is designed using image quality based biometrics data.  

The projected image quality based assessment (IQA) metrics is defined as: 

   
 

 
   

 

   

                                                                                                                                     

Where number of the retained criteria is N for Ci; i = 1: N. Where A is normalisation constant, and i represents the 

weights we used for optimization. 
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Figure 2. Proposed quality metrics structure  

 

3.1  Image quality with No-reference 

 Quality assessment of the image (IQA) is broadly used to confirm the process applied for digital captured images. 

IQA separated with three classes: 1) Full-Reference (FR-IAQ), in which output is matched by original image having 

perfect quality; 2) Reduced –Reference (RR-IAQ); and 3) No-Reference (NR-IAQ). NR-IQA having three approaches: a) 

Distortion-specific, b) Training-based and c) Natural scene statistics (NSS). We have consider BLIINDS-II (BLind 

Image Integrity Notator using DCT Statistics) by Saad et al. (2011), represents non-distortion method and extracted 

features from the DCT-domain. These typical parameters transforms into features. To predict the quality score we have 

used Multi-class SVM. 

 

Four features are defined from the BLIINDS-II index which is based on DCT (2011).  

 Contrast feature (υ1) 

      
 

 
 

   
 

   

 

   

                                                                                                           

 

N: patch size,     is the DC coefficient and  

Set     
          are representing AC coefficients.  

 

Contrast value    is the averaging of all the contrast score on the global image given as: 

   
 

 
      

 

   

                                                                                                               

 

M: number of local patches. 

 Structural  features (υ2) 

On k patches local DCT frequency coefficients are computed to derive structural features, it is based on DCT 

histogram of statistical traits where the DC coefficients are ignored. To measure this statistical traits its kurtosis is 

computed. 

        
        

 

  
                                                                                                 

 

Mean and standard deviation of     are combined together and average of all are used to compute kurtosis value    

on the global image. 

 Anisotropy orientation (υ3 and υ4) 
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Renyi entropy is the anisotropy measure is computed on DCT along with four diverse directions θ = 0
0
, 45

0
, 90

0
, 

135
0
 on image patches. Each patch of DCT is then normalized with the form: 

 

         
        

 

        
  

   

                                                                                                  

 
Figure 3.  Samples of palmprint database on BLIINDS index. 

 

 

Where size of orientation of k
th 

patch is represented as N. 

Renyi entropy   
  is computed as: 

 

  
   

 

   
                 

 

 

   

                                                                                

Where β > 1. 

Lastly, anisotropy measures υ3 and υ4 are defined as: 

           
     

           
                                                                                                         

 

Final global score is computed as: 

 

           
  
 

 

   

  
  
 

  
  
 

  
  
 

                                                                                       

 

Figure 3 represents the predicted quality score using BLIIND index. As the image degraded stronger quality index is 

decreases.  

3.2  Image Quality with Pattern-Based 

We have apply this method since the main features defined by this is steady way where in region of image having 

important information. Statistical measures of keypoint features are used which is generated by using Pattern-based 

quality criteria. This is extensively used method for biometric and object recognition issues. 

Several methods are exist in the literatures, like scale-invariant feature transform (SIFT), and speed up robust features 

(SURF). From the survey, shows that SIFT algorithm outperformed as compared to other methods as given by 

Mikolajczyk et. al (2005). SIFT algorithm also effectively apply in biometric recognition for various modalities like 

fingerprint, iris, palmprint and face.  

Four major stages in SIFT algorithm that are: scalespace extrema detection, keypoint localization, orientation 

assignment, and keypoint descriptor. Examples of detected SIFT keypoints are shown in Figure 4.  
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Figure 4. An example of SIFT keypoint detected 

 

3.3  SVM-based classification 

Support Vector Machine (SVM) used for prediction of sample quality for two methods proposed that are image 

quality and pattern-based quality. SVM-based techniques have been used due to the high classification rates and high 

realization and high generalization. 

4. Experimental results 

Proposed six synthetic alteration methods in designed quality metric is to perceive realistic accuracy which is affected 

in matching systems. Figure 5 illustrates the prediction method using alteration of the input image. Matching module 

verifies the proposed images as good, fair, poor or else very poor class.  

4.1  Database and Alteration Procedure 

 Six standard databases are used and introducing three types of alterations for each database (Gaussian Blurring, 

Motion and Gaussian Noise) and for each type three alteration levels are used. 

4.1.1 Standard databases 

 FVC2002 having three different databases DB1, DB2, and DB3 it is composed of 100 individuals and 8 

samples per subject (2006) sample images are shown in figure 6.  

 IITD Iris Image Database version 1.0, it composed of 224 subjects, having five iris images from left and 

five iris images from right comprising of 16 males and 48 females (2010) sample images are shown in 

figure 7.  

 Polytechnic University Cross-Spectral Iris Images Database, this database consists of total 12,540 iris 

images, which are acquired with 15 instances from 209 different subjects acquired under simultaneous 

bi-spectral imaging for both left and right eyes (2017) figure 8,  

 And one palmprint database from IITD touchless version 1.0 (2008). Comprised of 235 users and seven 

samples from each users. Sample images are shown in figure 9. 
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Figure 5. Illustration of presented system 

 

 

 
Figure 6. Sample image from each database FVC2002 a) DB1, b) DB2 and c) DB3: 

 

 

Figure 7. Sample image of iris from IITD database (2010) 

 

 
Figure 8. Sample image of iris polytechnic university iris images database (2017) 
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Figure 9. Sample image of touchless palmprint IITD database (2017) 

 

4.1.2  Alteration procedure for database and classes defined 

 We have used two methods for artificial alteration introduced by Muhammad El-Abed et al. (2015) and we introduce 

one synthetic motion based alteration. So there are three planes of alterations. We have used MATLAB tool for alteration 

process. 

The offered alteration methods are like correct for the period of the attainment with biometric raw information, which 

will extremely affect the performance of the whole systems. At last, from the various alteration methods we have 

generated sixty databases: 6 are standard databases and 54 are reformed databases. 

Following are the alteration methods are used: 

 Gaussian blurring : fspecial('gaussian',hsize,sigma)  

 Motion : fspecial ('motion', len, theta)  

 Gaussian noise : imnoise(Im, 'gaussian', n, u) 

 

Table 1 presents alteration methods using MATLAB for various parameters. These are the input vectors to 

SVM which will retained quality criteria’s i.e. one criteria for image based and four criteria for pattern-based 

quality and the respective outputs are with ten dissimilar categories specified in Table 2. Figure 10 shows the 

alterations used for FVC2002 database. 

 Original image represents by Class- 1. 

 Alterations levels are represented by Class – 2 to Class -10. 

 

Table 1. Alteration methods using MATLAB for various parameters 

Nature Technique  use for alteration 

Level Number of 

Images used 

from each 

modality 

1 2 3 

Gaussian  

blurring 
Fspecial ('gaussian',hsize,sigma) σ =1  σ =2 σ =3 50 

Motion  

blurring 

fspecial   

('motion',len,theta) 
Ѳ = 30 Ѳ = 45 Ѳ = 50 50 

Gaussian  

noise 

Imnoise  

(Im,'gaussian',0.01,u) 
u=0.004 u=0.02 u=0.019 50 

 

Table 2. SVM class description 

Classes Alteration method used Levels of Alteration 

1 Original image x 

2, 3 and 4 Gaussian blurring  1, 2 and 3  

5, 6, and 7 Motion blurring  1, 2 and 3  

8, 9 and 10 Gaussian noise  1, 2 and 3  
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Figure 10. Reference image from FVC2002 DB1 for alteration. From left side, reference and modification stages 1, 2, 

and 3. (a)Gaussian Blurring, (b) Motion blurring, and (c) Gaussian noise alteration. 

 

4.1.3 Matching algorithm for Biometric 

To validate the proposed quality metrics of biometrics matching algorithms are used. Algorithm is used for biometric 

matching is based on SIFT (2004). The confirmation among two images im1 and im2 agrees to the likeness of sets of two 

features X (im1) as well as X (im2). Matching method we are using improved form of a decision criterion which is 

suggested by Lowe (2004). Specified two key-points x ∈ X (im1) and y ∈ X (im2), assume that x is related to y if: 

 

             ∈                                                                        

 

C represents subjective threshold,  

Euclidean distance represented by d (·, ·) among the SIFT based descriptors and y signifies point of X (im2) for which 

distance for x is marginal but larger than d(x, y): 

 

              ∈                                                                                                    

 

 

 

4.2  Validation process 

Performance of the system should be predicted by the biometric quality metric, Patrick Grother, Elham Tabassi (2007). 

From biometric raw information we have created quality metrics and generated a class related to error rates related with 

the overall biometric performance (2009). As EER will be lower system will be considered as more accurate. For 

confirming the validation of the projected quality metric, we carry on as follows: 

 Alteration and performance of quality criteria: Validation process is the first step to check the 

robustness of the behavior of the five quality criteria detecting by using various alteration methods: 

Gaussian blurring alteration. Motion blurring and Gaussian noise. 
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 Multi-class SVM learning: Three multi-class SVM types we learn for fingerprint databases, we have 

used images from the three standard databases for fingerprint. For the iris database two multi-class 

SVM, and for palmprint database we learn one SVM model. 

 EER values for quality set: EER values are calculated using our predicted labels metric. The 

performance of this system is evaluate to check how fine this quality information and used to 

calculate performance of the system by the using respective quality set. As further images are 

degraded performance of the complete arrangement will be decreases. 

 

 

4.3  Results  

 Pearson’s correlation coefficient criteria has been used to check the robustness of the measures in perceiving 

alterations in the captured modalities. Equation 9 and 10 shows Pearson’s coefficient among two different variables. 

Covariance is given as: 

        
 

   
  

               

  
 

 

   

 
     
  

                                                                                   

       
        

    
                                                                                                             

 

Computing the correlation of the three types of alteration for variable p the defined criteria are: 

 

                   

For original database Ap1 is a group with values for criterion p, and for reformed database (Ap2, Ap3, 

Ap4) represents groups with values for criterion p representing levels I, II, and III. 

 Modification levels are denoted by B (1: is for standard databases; 2, 3 and 4: represents modified 

databases stages I, II, and III). More precisely, 

     

                         

                                                       

                                                       

                                                } 

    

Reference database size represented by N. 

 

Table 3 shows five dimensional vector V, predictor for quality of the sample image. 

 

Figure 11 shows five dimensional vector for image based and pattern based criteria relevant in perceiving the following 

types of alterations: (a) Gaussian alteration, (b) Motion blurring alteration, and (c) Gaussian noise alteration. BLIINDS 

shows to be competent correlation coefficient more than 0.7 in detecting Gaussian noise as well as blurring alterations.  

 

Table 3. The vector V predictor for biometric quality 

Criterion 
Image-based 

quality criteria 

Pattern-based quality criteria 

Vector V BLIINDS Keypoints DC coefficient 
Mean (μ) of 

scales 

Standard 

deviation (σ) 

of scales 
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Figure 11. Correlation for the projected criteria and the alterations for three fingerprint databases. 

 

4.4 Model - Multi-class SVM  

Eight multiclass SVM models are learned: four for fingerprint, three for iris and one for palmprint database. Table 4 

presents the accuracy and the efficiency of the projected quality metric in predicting the artificial modifications of data, 

with a valuable 4-class and 10-class classification accuracy using multiclass SVM model (going from 82.9% to 99.3%). 

 

Table 4. Ten-class classification Accuracy (%) by Multiclass SVM for SVMeach and SVMall 

DATABASE 
SVM Accuracy in % 

SVMeach (4-CLASS) SVMall (10-CLASS) 

FVC2002 DB1 99.1 82.9 

FVC2002 DB2 99.3 93.9 

FVC2002 DB3 98.8 94.4 

IITD IRIS 96.3 94.5 

PolyU IRIS 97.5 93.5 

IITD Palmprint 97.5 90 

 

 

 

Table 5. Category of quality for 10 class 

Set of Quality 
10 Quality class  

(Predicted by SVM) 
Report 

I 1 GOOD 

II 2, 5 and 8 FAIR 

III 3, 6 and 9 POOR 

IV 4, 7 and 10 VERY POOR 
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4.4.1  Definitions of Quality sets 

Robustness of the proposed quality metrics is to quantify for predicting the system performance we have to define the 

quality sets. Robustness of the system has been tested against the three alterations levels. The EER values calculated 

using the first enrolled image as a reference and the rest altered images for the test. Figure 13 shows that all the 

introduced alterations have an impact on overall performance of the used authentication matching algorithm. Table 5 

defines the quality sets for used matching algorithm.  

 

Figure 12 shows EER values of each quality set for the used three fingerprint dataset computed using three multiclass 

SVM i.e.one multiclass SVM per database. According to Patrick Grother, Elham Tabassi (2007) we have calculated EER 

value for each quality set which was predicted by multiclass SVM model. The propose metrics has shown the efficiency 

for predicting the matched algorithm among the datasets. It shows that the more EER is increased as more the images are 

altered. 

 

 

 
 

 
 

Figure 12. Impact of alteration levels on performance of overall system among the 

three fingerprint dataset 
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Figure 13. EER in % of each quality set for biometric databases fingerprint, iris and palmprint. 

 

 

 
Figure 14. Comparison study of proposed metric with NFIQ and Quality metrics proposed by El-Abed using 

Kolmogorov-Smirnov (KS) test statistic. 

 

5. Comparison study with standard metrics defined by NFIQ 

In this section we have presents a comparison study to show the efficiency of the proposed quality metrics with NFIQ 

metrics proposed by NIST and the quality metrics defined by El-Abed (2015). For the fingerprint NIST is the most cited 

work. Five quality levels are provided by NFIQ i.e. NFIQ=1 shows superior quality sample and NFIQ=5 indicated 

deprived or poor quality samples. As we have proposed quality set with four levels, so we have to considered the fourth 

and fifth levels of NFIQ as very poor quality set. Kolmogorov-Smirnov (KS) test (1990) is used to match the projected 

metrics with NFIQ, this method has been proposed by Grother and Tabassi (2007). KS test should be expected large for 

better quality samples. 

Figure 14 shows the KS test statistic values compared with quality metrics NFIQ, quality metrics by El-Abed and the 

proposed quality metric for three quality sets i.e. poor, fair and good. Figure 14 illustrates that for the proposed metrics 

KS statistics ranges from 0.84 to 0.94 outperformed as compared to NFIQ (0.641 to 0.82) metric and quality metrics by 

EI-Abed (0.79 to 0.88). 

6. Conclusion 

In biometrics system quality assessment of raw data is the important factor during the enrollment step. This information 

may be used to improve the performance of the system. Few papers have presented the comparison on the performance. 

We proposed image-based quality assessment metrics of raw biometric information using image and pattern based 

quality. This metrics is used to several kind of modalities and independent on used matching system. We have used six 
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publically available biometrics database (Fingerprint, iris and Palmprint). Result shows the efficiency of detecting the 

three kind of synthetic alterations such as Gaussian blurring, Motion blurring and Gaussian noise. We have also 

compared the proposed metrics with NFIQ using biometric matching algorithm proposed by NIST as well as with the 

quality metrics of El-Abed. 
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