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ABSTRACT   

This study aims to extrapolate the behavior of lightweight (LECA) high strength concrete beams subjected 

to high temperatures. the LECA aggregate was utilized as coarse fraction in the reference mixture. a post 

development process in terms of jacketing the fire damaged beams with SIFCON materials layer was also 

investigated. In addition to the reference samples, various parameters of concrete beams and conditioning 

were conducted, namely, fire duration exposure, concrete cover, and SIFCON layer thickness. In details, two 

concrete cover thickness, half and one-hour fire duration exposure, and two SIFCON layer thicknesses were 

the main parameters in this study. the thermal gradient through the beam cross section was captured through 

installing thermocouples sensors embedded inside at various location. The physical and chemical properties 

were tested for all used materials in this study. Overall, fourteen concrete beam samples were tested for all 

the three phases (normal or reference, fire damaged samples, and post enhancement with SIFCON jacket). 

the level of comparison for the tested samples was focused on several parameters are; maximum shear load 

capacity and corresponded displacement, ductility index, cracking load, initial and secant stiffness, and 

energy absorption. The experimental test results under the scope of this research have shown significant 

improvement for the strengthened beams were observed compared with the damaged samples. Moreover, the 

results have cleared that the strengthened beams, in term of the mentioned indices were recovered as and 

comparable to the undamaged (reference beam), except the absorption energy. Where further studies and 

efforts have to be paid to overcome such issue. 
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1. Introduction 

In many new structures, the need for lightweight concrete is on a rise because of the advantages of the low 

density of load-carrying parts and small cross-sections which resulted in a decrease in the size of the construction 

foundation [1]. The lightweight aggregates are obtained naturally from volcanic cinders, diatomite, etc., or 

artificially from clay, sintered, etc. The mentioned lightweight aggregate is normally used to produce 

lightweight concrete [2]. This concrete has several advantages such as an improved strength/weight ratio, higher 

tensile capacity, and reduced thermal expansion owing to the higher air voids content in the concrete. 

Lightweight concrete production growth has accelerated. Nowadays, this concrete is produced in different 

varieties ranging from low-density concrete such as block manufacturing with densities up to 1200 kg/m3 to 

high-density concrete with densities of up to 2000 kg/m3 that have a compressive strength of up to 100 MPa [3]. 

paper. During fire incidents, the concrete is exposed to a significantly elevated temperature which leads to a 

significant loss in the properties of the concrete like compressive strength and ductility. Besides, a significant 

https://creativecommons.org/licenses/by/4.0/
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increase happens in the internal stress due to the vapor pressure in the pores which generates cracks of various 

sizes and lengths, particularly at high temperatures of more than 550oC. At high temperatures like 550oC, 

Dehydration of calcium hydroxide takes place and aggregates start to weaken. At higher temperatures (700oC 

or above), the binding materials like hydrated cement (C–S–H) start to disintegrate which results in a significant 

loss in the mechanical properties (stiffness and compressive strength) of reinforced concrete (RC). Besides, the 

concrete suffers from losses in the bonds between the aggregate and the cement paste which leads to the 

development of cracking and the concrete starts to dramatic lay deteriorate. As a consequence, the capacities of 

the structural components cannot handle dead and living loads unless they are reinforced. Which is  broadly 

agrees with the opinions of the following researchers [4,5]. The only viable approach for regenerating structural 

capacity would often be to replace heat damaged components. Many aspects should be addressed carefully for 

carrying out repairs for fire-damaged components, including damage size, component shape, repair materials, 

cost, time, and the functions of the component. Although many research studies have already been carried out 

on RC's structural restoration [6,7,8]. The work on the restoration of heat-damaged structures is scarce. For 

example, examined the performance of RC columns that are repaired after exposure to high temperatures. The 

authors exposed eleven columns to high temperatures and used fresh cast-in-place concrete to repair the 

damaged columns. The performance of the reference and restored columns in terms of ultimate strength and 

stiffness were tested using eccentric axial loads. The researchers reported that most restored columns have either 

recovered their original preference or even achieve improved performance in terms of stiffness than reference 

columns [9]. on the other hand, studied the efficiency of special repair techniques that were employed in St. 

Elizabeth Hospital in Holland after an intense fire incident. The authors reported that the consultant team found 

that if suitable repair approaches were followed there is no need for taking down the hospital. Three approaches 

were applied, which included epoxy injection, shotcrete repairs, and stiffening, to restore the performance of 

the structural members of the hospital structure [10]. 

 

Repairing damaged concrete members is often accomplished by constructing outside reinforced 

concrete support or shotcrete concrete jacket, or by bonding metal plates to the damaged component using 

epoxy, etc. [11]. A novel technique involves replacing the steel plates with fiber-reinforced composites materials 

in the form of a laminate, such as carbon and glass fibre reinforced polymer. The use of high-performance fiber-

reinforced cementitious composites in structural repairs and reinforced concrete component restoration has 

increasingly grown in importance. [12,13] The high strength-to-weight, enhanced toughness, superior 

durability, and cost-effectiveness of composite materials offer exceptional properties to replace conventional 

repair materials. Using composites in structure restoration projects may significantly reduce maintenance needs, 

improve safety and extend the service life of the structure [14]. 

 

SIFCON matrix is a flowing cement mortar or slurry of high cementitious content with no coarse aggregates. It 

may have fine/coarse sand, which is very different from the concrete in fiber-reinforced concrete (FRC). So, the 

assembly of SIFCON is different from FRC. The FRC is made by mixing the fiber with the fresh concrete. 

While the SIFCON is produced by replacing the fibers in the molds until it's filled and the cement slurry is then 

added to the fiber in the mold. If required, vibration is applied throughout to make sure the slurry infiltrates the 

fiber network [15,16] 

 

SIFCON is also known as a high-performance fiber-reinforced cementitious composite (HPFRCC). The 

HPFRCC normally contains a fraction of fibers. Higher fibers content leads to multiple cracks in all directions 

in structural members under tension. On the other hand, low fibers content in a structural member under tension 

(Figure1-1, a) leads to the generation of a single crack only. Therefore, A strengthening in the concrete is 

achieved by a greater fiber volume and this is done in a similar way to strain hardening in parallel with the 

cracking process. Lastly, failure is located in one crack process and the concrete is weakened [16]. SIFCON is 

a suitable repair material since it is compatible with reinforced concrete in terms of stiffness and thermal 

deformation. As a result, SIFCON is widely used to repair prestressed concrete parts such as beams [17]. And 

is used in structures made to withstand explosion impact. The SIFCON has high compressive strength, flexural, 

and ductility properties. SIFCON has also showed excellent resistance against impact load on buildings. 
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SIFCON was used to manufacture a wide range of prefabricated components, including slabs, tunnels, and pipe 

sections [18]. 

The slurry can be prepared using minerals and chemical admixtures such as super-plasticizer (SP), fly ash, and 

silica fume to enhance the efficiency of the SIFCON. Vibration is frequently required to achieve effective slurry 

penetration of the fiber bed. [19,20]. 

Based on scientific research, it can be deduced that the SIFCON has very good mechanical properties improved 

tension, enhanced compression and shear strengths, and optimized ductility and energy absorption capabilities 

[21]. These properties are affected by several factors including: 

 i. The strength characteristics of the cement slurry.  

 ii. The fiber of the SIFCON. 

 iii. The installation of the fiber and their alignment. 

 iv. The type and characteristics of the fiber [22]. 

 

This research aims to investigate the effects of applying a U-shaped thin jacket made from SIFCON on the 

behavior of fire-damaged LWRC beams. In light of this, the origin of this research was the needed to conduct 

comprehensive research on the development and applications of SIFCON thin jackets to strengthen or repaired 

damaged regions after burning. This includes investigating the contribution of several parameters like concrete 

cover, the thickness of the SIFCON jacket, and fire duration on the performance of the repaired LWRC beams. 

2. Experimental work 

In brief, the experimental program is divided into two sections. The first stage involves the selection, 

preparation, and testing of the physical and chemical properties of raw materials applied in this research. As 

part of the overall structural LWC program, high strength concrete grade of LWAC have been produced. The 

target compressive strength was (67 MPa) designated as high strength lightweight concrete respectively. The 

manufactured lightweight aggregate, ‘LECA’ was used for lightweight concretes of normal and higher 

strengths. Currently, adequate criteria for LWAC mix proportioning are very limited, and those that exist are 

also not clearly specified. As a consequence, experimental mixes are required to achieve the required strength 

and work-ability when using any type of lightweight aggregate, therefore many trial mixes were done in this 

study. To achieve the desired workability, superplasticizers and mineral admixtures were utilized in all 

formulations. The chosen ingredients are next blended using the optimal mix proportions and an appropriate 

mixing technique. Then, the beam specimens were casted in the prepared wood molds After 24 hours, the beam 

specimens were taken out of the casting molds. finally, the casted samples and beam specimens were cured for 

the appropriate ages. After achieving the specified age (56 days), the LWC beam specimens and samples are 

burned for two durations of fire exposure (30 and 60 minutes). While the third stage, after the burning process 

is finished, this stage deals with the repaired and strengthened post-fired beams by using U-shaped SIFCON 

jacket, then preparing and testing of the exposed (with and without repaired) and unexposed concrete samples 

and LWC beams. The following subsection shall describe the experimental work in detail. 

 

2.1 Material properties 

Concrete is a composite material consisting of components such as cement, coarse aggregate, fine aggregate, 

water, and admixtures, thus it is important to test the properties of the ingredient of it. 

The cement type utilized in current investigation was ordinary Portland cement. It was made in Iraq. and 

commercially known as (Karasta), supplied from local markets.  

 

Natural sand from local resource, which was supplied from Kerbala, has been utilized as a fine aggregate in the 

main concrete mixture. The size of the sand used in SIFCON slurry very important; it must be small enough to 

guarantee thorough penetration into the thick steel fiber without causing clogging. In the preparation of SIFCON 

slurry, only the fine sand which was sieved through (1.18 mm sieve) to filter the coarser particles can used 

during the experimental work for all SIFCON mixtures. Table (3-3) shows the sieve analysis of the sand used. 

It conforms to the limits of Iraq specification No. 45/1984 Zone (2). Figure (1) shows the grading curve of the 

natural sand in accordance with (IQS No. 45/1984), and the physical and chemical properties of natural sand 

are illustrated in Table (3-4). 
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Figure 2. Grading curves for fine aggregate compared in accordance with (IQS NO.45/1984, Zone 2) 

 

Expanded clay aggregate (LECA) was used with regular sizes of between 0.475 cm and 1 cm, which was 

brought from north of Tehran City, Iran. This type of lightweight aggregate is characterized by porous ceramic 

materials with uniform, small, closed-cell pores, as well as tightly sintered and strong exterior surfaces. LECA 

made from raw materials of clay minerals which are burned in rotary kilns at a temperature ranging between 

1100 and 1200° C, which resulted in swelling of the volume of the particles significantly. Table (1) clarifies the 

physical and chemical properties of LECA. 

silica fume, which is commonly branded as Mega Add MS (D) produced by CONMIX, was used in this 

investigation as a replacement material by roughly 10% by weight of cement to generate both High strength 

lightweight concrete and SIFCON mixes. Silica fume enhances the microstructure of cement paste, making it 

more resistant to external influences. The chemical analysis of the silica fume used is tabulated in Tables (2, 

and 3). 

Potable water has been utilized in all concrete mixes (high strength mixture and SIFCON) and in the samples 

curing which was free of salts, turbidity and, organic matter content. Moreover, The high-performance water-

reducer admixture employed in this investigation is a third-generation super-plasticizer for concrete and 

SIFCON mortar marketed commercially as (Hyperplast PC200). The percentage of 3.7% was used to produce 

appropriate slurry for SIFCON.  

Table 1. Physical and chemical properties of LECA 
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Specific Gravity 1.2 

Absorption 12% 

Bulk density Kg/m3 700 

Chemical Properties 

Chemical Composition Percentage by Weight% 

CaO 3.78 

SiO2 61.58 

Al2O3 16.99 

Fe2O3 7.62 

MgO 2.56 

SO3 0.19 

TiO2 0.80 

MnO2 0.10 

Na2o 1.03 

K2 o 2.34 

Loss on Ignition (L.O.I.) 0.2 
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Table 2. Silica Fume chemical analysis 

Oxide composition Oxide content % ASTM C1240-05 limitations 

SiO2 89.41 Min. 85% 

Al2O3 0.63 - 

Fe2O3 0.45 - 

CaO 0.82 < 1 

SO3 0.87 < 2 

K2O+Na2O 1.35 - 

L.O.I. 4.10 Max. 6% 

CI 0.18 - 

CaO (free) 2.15 - 

 

Table 3. Physical properties of silica fume 

 
Physical properties 

Result ASTM C1240- 05 

Strength activity index 130% ≥ 105 

Percent retained on 45 µm (No.325) sieve, max, % 1.7 ≤ 10 

Specific surface, min, (m2/g) 23 ≥ 15 

 
Moreover, hooked steel fiber, which was supplied from ATLAS company, was incorporated to prepare SIFCON 

jacket, as shown in Figure (1). The type of fiber was hooked end, with length of 30 mm, diameter of 0.5 mm, 

aspect ratio of 60, and tensile strength of 1100 MPa.  

 

 
 

Figure 1. Geometrical configuration of hook end steel fiber steel fiber used before and after magnification 

 

The mechanical properties of the used reinforcement steel bars were presented in Table (4). 

 

Table 4. Specifications and test results of steel reinforcing bars 

Nominal Bar 

Diameter (mm) 

Actual bar 

Diameter (mm) 

Yield Stress 

Fy (MPa) 
Ultimate strength Fu (MPa) 

8 7.95 550 678 

10 10 581 724 

12 11.96 663 828 

 

2.3 Specimens manufacture and testing setup 

For all of the study stages of lightweight HS reinforced concrete beams, the adopted dimensions are; 120 mm 

width, 200 mm depth, and 2000 mm length. In addition, two deformed steel bars of 10 mm diameter in the top, 

and three deformed steel bars of 12 mm diameter in the bottom, were used as longitudinal reinforcement. for 

stirrups reinforcement, 8 mm steel bars were used each 200 mm, as shown in Figure (2). Figure (3) illustrates 

steel bars reinforcement configuration before concrete pouring. Moreover, two different concrete covers were 
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investigated are, 20mm and 30 mm. The final mix design, after several comprehensive trails for HSC and 

SIFCON mixtures were illustrated in Figures (4) and (5), respectively. for simplification process, each beam’s 

configuration and exposure conditions was designated in this study, as shown in Table (5). 

 

Figure 2. Main section geometry and typical LWC beam cross-section (dimensions are in mm). 

 

 

 

 

  

Figure 3. casting of HSC beam specimens 

 

Figure 4. Materials proportion used in HSCLWC mixture (% of total mix weight) 
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Figure 5.  Materials proportion used in SIFCON mixture (% of total mix weight) 

 

Table 5. samples’ designation of various concrete beams comigration and exposure conditions 

 

2.4 Fire loading protocols 

To expose the prepared concrete beams to high fire temperature, a brick furnace was manufactured locally, and 

supplied with thermocouples sensors and portable data acquisition to capture the thermal variance with time, as 

shown in Figure (6) . After 56 days of LWC beams’ age, specimens were exposed to fire in the furnace. The 

LWC beam specimens were burning in the furnace according to the standard fire of ISO-834. The furnace was 

designed to attain a maximum temperature of 1200 ºC. The temperature in the furnace was regulated so as to 

follow ISO curve. However, it should be noted that the rate of heating used is considerably lower than ISO-834 

regulation. The durations of the fire loading were 0.5 and 1 hours in every case, since it was enough to raise the 

reinforced LWC beams to the target temperature.  

Every 5 minutes, observations were conducted through the view ports in the furnace to document any notable 

changes in the specimen, including the development of fire-induced spalling. Following the conclusion of the 

fire exposure test and complete cooling of beam specimen to ambient temperature (about 35 °C), thorough 

assessments on cracks and spalling intensity were taken. The Matlab program was used to program the real 

time-temperature curve, which connected the thermocouple within the furnace to the computer, allowing the 

temperature readings to be recorded immediately with the time. The records of heats and timings are then saved 

on the computer with the final form of the time-temperature curve at the ending of the burning process. The 

underside, as well as the two lateral faces of beam specimen, were all subjected to fire. The test was conducted 

at an environment temperature of 35 °C. These three sides of the LWC beam specimens were exposed to 

different duration of fire loading. Readings were recorded every ten seconds at various points of the beam 

specimen. Next the fire exposure period, the beam was cooled after being removed out of the furnace. 

The specimens were instantly extinguished with a foam spray fire extinguisher when the time of burning was 

completed. This cooling procedure was used in this experiment to simulate the issue under real life situations. 
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Figure 6. Graphical and on-site Burning furnace configurations 

 

2.4 Repairing methodology 

After burning process, the strengthening methodology was applied to the damaged LWC beams. The jacket was 

prepared using especially designed wooden mold. The molds with same shape and larger dimensions have been 

used to cast the three-faces SIFCON jacket. That mold has spaced between its surface and the specimen to allow 

casting of (20 and 30) mm jackets thickness and applying at the underside and two lateral sides (U-shaped 

jackets), as illustrated in Figure (7). After burning, before additional strengthening, the fire-damaged beams 

specimens that had cracked and collapsed were removed. The damaged part was removed and repaired 

with (SIFCON) slurry-infiltrated fiber reinforced concrete. In a word, molds were full of hooked end steel fibers 

in multilayers to reach the specified volume fraction. Each layer was penetrated with the slurry SIFCON mix, 

which was designed as previously stated. A significant amount of care was taken to ensure that the fibers were 

uniformly distributed and that no clogged occurred throughout the infiltration process. This was accomplished 

by employing a specific rubber strip as a sealant agent at the contact of the wooden parts. Figures (8) and (9) 

illustrates the process pf repairing and casting SIFCON jacket layer. 

 

 

Figure 7. Process of strengthening the fire damaged LWC beam specimens 
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Figure 8. Repairing and strengthening technique process of LWC beams by using three-faces SIFCON jacket 

 

Figure 9. Process of strengthening the fire damaged LWC beam specimens 

1

•The surfaces of fire-damaged LWC beams should not contain microcracks. The badly 
affected portions of LWC beams  removed, which are roughly thickness of 10 to 15 mm.

2

•The surface of specimen was cleaned thoroughly by water and then by compressed air to 
ensure no dust

3

•To increase the binding between the LWC beams and the SIFCON jacket, the faces of the 
fire-damaged LWC beams were roughened with a special tool.

4

•To achieve perfect bond strength, the beam surfaces were coated with SBR bonding 
agent layer.

5
•The mold was lubricated before laying of steel fiber of the underside layer of jacket.

6

•Postioning of the beam inside mold above the underside layer and pouring the lateral 
side of jacket.

7

•After 24 hours of casting, the strengthened beam been taken out the mold, and then 
cured for 28 days with wet burlap. This was achieved by putting the beams upside-down 
in order to prevent curing of the original concrete.

8 •Prepare the strengthed beams for loading test
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2.5 Mechanical loading protocol 

The beam specimen surface was usually cleaned and coated with white emulation before testing to clarify 

cracks propagation and make cracks observation easier. The beam specimen was then positioned in its testing 

position, and the LVDT were set in their locations. A steel beam was used to apply and divide the load at two 

locations, dividing the tested LWC beam into three parts to create a nearly equal load applied to the LWC beam. 

The distance between two-point load was 800 mm. bearing plates were made from hardened steel with 

dimension of (210×75×20) mm to sustain the applied load avoiding crushing in the contact point of specimen 

body that may influencing the test, the supports were designed to function as a hinge support from one end and 

a roller support from the other. The load was applied to all beams using a hydraulic testing machine with a 

capacity of 600kN.  Beams were subjected to monotonic increasing load tests until they failed. five LVDT were 

set to measure the displacement in different location along the beam specimen, the first LVDT placed at the 

bottom surface of the beam's middle point and two LVDT placed under the two-point loading. The mid-span 

curvature obtained from other two LVDTs placed along the top and bottom fibers and measuring displacement 

changes over a distance of 20 cm. Figure (10) illustrates the mechanical loading configurations and sensors 

locations.  

 

 

Figure 10. Arrangement of LVDTs and Load Cell within the test device 

3.  Results and discussions  

This section presents and illustrates the resulted data of the experimental laboratory programs in details. The 

effect of fire exposure duration, concrete cover thickness, and effect of strengthening with various SIFCON 

jacket layer thickness shall be compared using several indices are, the load carrying capacity, the cracking load, 

midspan displacement corresponded to the maximum load carrying capacity, initial and secant stiffness, 

absorption energy, and ductility index. 

3.1. Temperature variations with time 

The furnace temperature closely matched the ISO 834 fire curve with fewer than 10% variance till reach the 

target temperature (600°C). After this point, it is noticed that the values of curves diverge. Because the highest 

temperature of the specimen bottom surface was 605°C, the strength of the specimen bottom concrete expected 

to reduce by amount more than deeper parts of beam specimen. Because of the low thermal conductivity of 

concrete, the observed temperature of the beam bottom TC1 was much higher than that of TC4, which is 

positioned 100 mm from the bottom surface. Temperatures TC3 and TC4 at the middle depth of the beam were 

kept around 100 °C for 25 minutes exposure period due to evaporation of water in the concrete and subsequent 

heat loss. Temperatures declined as one progressed up the depth of the beam from bottom to top, indicating a 

significant gradient. The highest temperatures of TC1 and TC2, which were higher than TC3, were 605 °C and 
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382 °C, respectively, and the concrete strength close to TC3 and TC4 reduced slightly compared to normal 

concrete temperature, as can be seen in Figure (11). Table (6) shows the position and nomenclature of the 

thermocouples. In a nutshell, the temperatures of the fire-exposed areas exceeded 600°C, and the heat dropped 

sharply from the out surface to the concrete interior core. The concrete core temperature was between 200 and 

240 degrees Celsius. As a result, the fire exposed concrete layer was significantly affected and it must remove, 

while the interior concrete core still usable. 

 
Figure 11. Experimental and ISO-834 Standard recommended temperature-time curves 

 

Table 6. The position and naming of the thermocouples 

Thermocouple  Type 
Distance from exposed 

surface (mm) 

Highest recorded 

temperature °C 

TC1 K 0 604 

TC2 K 25 382 

TC3 K 50 241 

TC4 K 100 202 

 

3.2. Burned beam specimen appearance and color change 

The beams specimens after they have been exposed to fire. The color of the surfaces exposed to fire was light 

gray with some light reddish areas. On the exposed surfaces, tiny reticular cracks occurred., as shown in Figure 

(12). Random tiny cracks line of varying widths (0.04–0.18) mm were seen on surfaces after exposure to high 

temperatures up to 600 C for 1 hr. The most significant cracks were found near the primary and transverse 

reinforcing points on the concrete surface. These cracks could be caused by the RC element expanding, causing 

large tensile strains in the concrete, particularly at the reinforcing contact, and the cement matrix and aggregate 

responding differently to high temperatures. 

Furthermore, concrete spalling occurred on the beam's corner without exposing any steel, with a maximum 

spalling depth of nearly 15 mm. However, no apparent beam curvature was detected.  

 
Figure 12. Speckle pattern of tested beam, A- Specimen surface enlarged image, B- Partial enlarge 
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3.3. Behavior of load-displacement curves and cracks patterns  

The specimen beams without strengthening appeared an initial flexural crack at the midspan of the specimen., 

the first crack appear in the bending zone about 10 cm. from the left of load applying point. As the applied load 

was increased gradually a number of cracks appeared in the left of first crack heading vertically, later diagonal 

cracks formed and propagated along the distance between the supporting and load applying points. Figure (13) 

shows that the inclination angle of diagonal cracks becomes bigger after burning, the cracks extension shorter, 

and number of cracks was less after burning. a/d ratios greater than 2.5, in which case the failure is induced by 

a diagonal crack beginning located at the top of the flexural crack next to the support. the shear tension was the 

failure mode. in the case of (HC2-02) specimen beam, where the crack resulting in loss of bonding, while it 

seems to be shear compression failure in the case of (HC1-00) specimen beam as a result of crushing of concrete 

at the loading point. 

 

 
 Figure 13. Cracks pattern of HSC LWC beams before and after burning  

To extrapolate effect of heating duration, results have cleared that a reduction of about 15% and 11% for 20 mm 

and 30 mm concrete cover, respectively when fire exposure duration increased about ½ hr. 

To investigate the effect of concrete beam’s cover on the load carrying capacity (LCC), the undamaged beams 

have shown that beams with 20 mm cover have higher LCC than beam with cover 30 mm by about 12%. This 

is simply because of the higher effective depth of 20 mm concrete over beam.  

For the second stage, after fire exposure, specimen with 20 mm cover have LCC of about 7% and 1.6% higher 

than the 30 mm concrete cover beam after ½ and 1 hr. fire duration, respectively. it can be clearly shown that 

increasing fire duration resulted in reducing the effect of concrete cover on the beam performance. For the 

strengthening stage, results have shown that the concrete cover has very slight effect on the strengthened 

specimens, for all fire exposure durations.  

By comparing the level of enhancement of the strengthened specimens with the non-strengthened (fire damaged) 

specimens, tests results have shown that strengthening specimens with 20 mm and 30 mm SIFCON jacket layer 

improved the performance by a range of 1.67-1.78 times and 2-2.2 times, respectively after a half of an hour 

exposure duration. On the other hand, for the same level of comparison, strengthening specimens with 20 mm 

and 30 mm SIFCON jacket layer improved the performance by a about 1.8 times and 2.3 times, respectively 

after one-hour exposure duration. Figures (14) illustrates the load displacement curves relation for beams 

subjected to various conditions and strengthening, while Figure (15) compares the LCC values in a bar chart 

illustration 

  
 
Figure 14. Load versus deflection curve at mid-span of HSC beam specimen with CC of 20mm (left) and 30mm 

(right) before and after exposure to fire 
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Figure 15. Cracking load capacity values at various locations for all beam phases 

The serviceability load capacity (SLC) of various beams’ conditions were also captured, as presented in 

Figure (16). Before fire exposure, the effect of concrete cover on SLC, the undamaged (reference) beams 

have shown that beams with 20 mm cover have higher SLC than beam’s with cover 30 mm by about 47.7%. 

For the second stage, after fire exposure, specimen with 20 mm cover have SLC of about 4% lower and 15% 

higher than the 30 mm concrete cover beam after ½ and 1 hr fire duration, respectively.  this may back to 

the thermal conductivity of the concrete. Moreover, before strengthening, when comparing the fire damaged 

beams with the reference beams, increasing cover thickness resulted in reducing the SLC reduction values, 

which estimated by about 23% and 9% for ½ hr. and 1 hr., respectively. which means that increasing fire 

exposure duration resulted in reducing the effect of concrete cover. Figure (17) presents the cracks pattern 

of beams failure before strengthening. Results have shown that, after ½ hour fire exposure duration, and for 

each beam covers, increasing SIFCON jacket layer thickness from 20 mm to 30 mm resulted in the same 

level of improvement of SLC values, which estimated by about 1.35, when compared with the damaged 

beams. On the other hand, after 1 hour exposure to fire, no observable level of enhancement was noticed 

when changing SIFCON thickness, for beams with cover 20 mm. while an observable level of enhancement 

were noticed after changing SIFCON thickness for beams with 30 mm cover, which was estimated by about 

1.78 times, when compared with the damaged beams. For the third stage (after strengthening), for beams 

with cover 20 mm, increasing SICFCON later thickness has no observable effect of SLC values, after 1 hr. 

exposure to fire. On the other hand, for beams with cover 30 mm, increasing SICON layer thickness resulted 

in increasing beams level of improvement from 6.7 times to 11.94 times. 

 

 
Figure 16. Maximum load carrying capacity values for all beams’ phases 
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Figure 17. Failure of beam without strengthening of SIFCON jacket 

 

For the maximum mid-span deflection (MMSD) corresponded to the maximum LCC, as presented in Figure 

(18), applying 1 hr. fire exposure duration resulted in reducing MMSD value by about 18.5%, for both of the 

used covers. After strengthening, beams with 20 and 30 mm SIFCON layer thickness reflected lower MMSD 

value by about 40% and 32%, respectively. which means, increasing SIFCON layer thickness by 10 mm 

resulted in reducing MMSD value by about 8%. Table (7) shows beam’s deflections at different locations 

and for various conditions. 

 

 
Figure 18. Mid-span displacement corresponded to the maximum load carrying values 

Table 7. Load carrying capacity, cracking load, and displacement values at various beam locations 
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3.4. Initial and secant stiffness 

The stiffness of a beam is defined as the load necessary to cause a unit deflection of the beam. As shown in 

Figure (19), the secant and initial stiffness after burning at various exposure durations decreased dramatically 

with increasing fire temperature level, and the drop in stiffness is accompanied by a reduction in load carrying 

capacity. The secant stiffness dropped from 100% at room temperature to approximately (71 and 75%) after 

burning (1 hr.) at 600°C, with concrete cover (20 and 30 mm) respectively. After repairing with SIFCON jacket, 

the specimens with 30mm jacket shows stiffness value higher than cover 20mm. Also, the repairing specimens 

got stiffness value higher than control specimens in all cases as shown in the table (8). Also, Figure (20) 

illustrates the secant stiffness results of specimens under various conditions. 

 

 
 

Figure 19. Initial stiffness results of beams before and after fire exposure and strengthening 

 

 
Figure 20. Secant stiffness results of beams before and after fire exposure and strengthening 

 

 

Table 8. Secant and initial stiffness test results of HSC LWC beam specimens 
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HC1-31 190.6 12.93 14.74 190.6 6.5 29.32  

HC1-32 178.4 13.84 12.89 178.4 7.6 23.47  

HC2-00 124.08 24.73 5.01 124.08 13.1 9.47  

HC2-01 89.7 28.04 3.19 89.7 14.8 6.06  

HC2-02 79.88 21.04 3.79 79.88 11.4 7.01  

HC2-21 159.9 14.63 10.92 159.9 7.7 20.77  

HC2-22 146.5 12.83 11.41 146.5 6.2 23.63  

HC2-31 197.2 14.07 14.01 197.2 7.3 27.01  

HC2-32 186 13.59 13.68 186 6.4 29.06  

 

3.5. Absorption energy 

The concrete beam's energy absorption capacity can be defined as the area under the load-displacement curve 

until the maximum load is attained, which shows the energy absorption of the concrete beam that might be 

sustained before exhibiting a significant decline in load carrying capacity. Previous research found that energy 

absorption capacity is the most appropriate indicator of concrete structures not only for its structural response 

against earthquake motion, but also for concrete structures that must withstand fires and impact loads produced 

by events or terrorist attacks 

Figure (21) shows the results of the energy absorption of beams before and after fire exposure, and after 

strengthening. It is also demonstrated that HSC severely affected after 1 hr burning at 600 ºC. According to the 

results, the absorption energy of damaged concrete beams, after 1-hour duration exposure to fire, was reduced 

by about 54% and 56%, respectively for beams with cover 20mm and 30 mm, when compared with the 

undamaged beam. on the other hand, strengthening of damaged beams with 20 mm and 30 mm SFICON jacket 

thickness resulted in an improvement of the energy absorption by about 17.9% and 38.4% for concrete cover of 

20 mm, and by about 40% and 54% for 30 mm concrete cover, respectively compared with the damaged beams. 

Table (9). The results of energy absorption capacity HSC lightweight concrete beams before firing, after fire 

exposure, and after strengthening the damaged samples. 

 

 
Figure 21. Energy absorption results of beams before and after fire exposure and strengthening 

 

Table 9. Absorption energy result of various beam specimens before and after fire 
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Specimen 

Identification 

 

Energy Absorption 

Capacity (kN.mm) 

HC1-32 1486.5 

HC2-00 2251.1 

HC2-01 1751.06 

HC2-02 980.50 

HC2-21 1417.60 

HC2-22 1369.70 

HC2-31 1628.60 

HC2-32 1509.70 

 

3.6. Ductility index 

The results of beams show that the ductility index not effected by burning. On the contrary, a slight increase 

was observed. Where for beams that exposed to (0.5 hr.) with concrete cover (20 and 30 mm) shows increase 

in ductility index of (1.8% and 0.37%) and increase (1.6%) for cover 20mm and decrease of (2.17%) after 

exposed to (1.0 hr.). The results of ductility index were between 1.717 and 2.284 for the tested beam specimens 

before and after burning. The experimental results have cleared that a 1 hour fire damage has a negligible effect 

on the ductility index, for both concrete covers. While strengthening of damaged beam resulted in improving 

the ductility index by about 5% and 14% for beam with 20 mm and 30 mm concrete cover, respectively 

compared with the unstrengthen members. On the other hand, the ductility index was enhanced by about 14% 

and 11% for 20 and 30 mm concrete cover, respectively when comparing the strengthened beams with the 

undamaged (reference) beam, as can be seen in Figure (22). 

In general, a high ductility index indicates that a structural member can withstand considerable deformations 

before failing. For beams with ductility indexes ranging from 3 to 5, appropriate ductility is deemed essential, 

particularly in the fields of seismic design and moment redistribution.  

Overall , The Experimental results have cleared that a 1 hour fire damage has a negligible effect on the ductility 

index, for both concrete covers. While strengthening of damaged beam resulted in improving the ductility index 

by about 5% and 14% for beam with 20 mm and 30 mm concrete cover, respectively compared with the 

unstrengthen members. On the other hand, the ductility index was enhanced by about 14% and 11% for 20 and 

30 mm concrete cover, respectively when comparing the strengthened beams with the undamaged (reference) 

beam. Table (10) presents the results of yield deflection, ultimate deflection, and the ductility index values of 

specimens under various conditions. 

 

 
Figure 22. Initial stiffness results of beams before and after fire exposure and strengthening 

Table 10. Ductility Index of HSC LWC beam specimens before and after exposed to fire flame 
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𝝁 =
𝚫𝐮

𝜟𝒚
 

HC1-00 13.8 24.87 1.802 

HC1-01 10.4 19.09 1.835 

HC1-02 11.1 20.31 1.830 

HC1-21 7.1 13.69 1.928 

HC1-22 6.4 12.19 1.905 

HC1-31 6.5 12.93 1.989 

HC1-32 7.6 13.84 1.941 

HC2-00 13.1 24.73 1.888 

HC2-01 14.8 28.04 1.895 

HC2-02 11.4 21.04 1.847 

HC2-21 7.7 14.63 1.900 

HC2-22 6.2 12.83 2.069 

HC2-31 7.3 14.07 1.927 

HC2-32 6.4 13.59 2.123 

4. Conclusions 

This study investigates the level of enhancement of fire damaged LECA light weight high strength concrete 

beams using three sided SIFCON jacketing layer. Fire duration exposure concrete cover, in addition to the 

SIFCON layer thickness were the main parameters of this study. accordingly, the following conclusions were 

drawn: 

1- It has observed that the temperature was varied slightly between the mid and the quarter distances of 

beam cross section, which was about 16%. While the temperature reduction between the concrete mid 

core and the steel bar location was about 89%. Overall, temperature gradient reduction between the 

outer beam surface and the mid core was about 66%. 

2- Results have shown that subjecting the concrete beams to a 1-hour firing, resulted in reducing cracking 

load (service loading) by a range of 57%-65%, when compared with the reference beam. On the other 

side, strengthening of fire damaged beams with SIFCON jacket layer resulted in a superior improvement 

ranged between 3.16-3.27 times the reference beam for 20 mm jacket thickness, and 2.86-5.12 times 

for 30 mm jacket thickness. 

3- In terms of shear load capacity, the one-hour fire damaged beams compared with the undamaged beam, 

have reflected a noticeable reduction of about 41.5% and 35%, respectively for beams with 20 mm and 

30 mm concrete cover.  

4- Beams’ strengthening with SIFCON jacket layer of thickness 20 mm and 30 mm resulted in an 

improvement in shear load capacity of about 80% and 119% for 20 mm concrete cover, and 83% and 

133% for 30 mm concrete cover, respectively compared with the fire damaged beams. It is worth 

mentioning that the strengthened beams reflected comparable shear load capacity values to the 

undamaged beam (reference) value, which were found to be 5.3% and 28.3% for jacket layer 

thicknesses of 20 mm and 30 mm respectively for 20 mm concrete cover. while for the same degree of 

comparison, the level of enhancement was about 18% and 50% for jacket layer thicknesses of 20 mm 

and 30 mm, respectively for 30 mm concrete cover. 

5- The experimental results have cleared that a 1 hour fire damage has a negligible effect on the ductility 

index, for both concrete covers. While strengthening of damaged beam resulted in improving the 

ductility index by about 5% and 14% for beam with 20 mm and 30 mm concrete cover, respectively 

compared with the unstrengthen members. On the other hand, the ductility index was enhanced by about 

14% and 11% for 20 and 30 mm concrete cover, respectively when comparing the strengthened beams 

with the undamaged (reference) beam. 

6- The absorption energy of damaged concrete beams, after 1-hour duration exposure to fire, was reduced 

by about 54% and 56%, respectively for beams with cover 20mm and 30 mm, when compared with the 

undamaged beam. on the other hand, strengthening of damaged beams with 20 mm and 30 mm SFICON 

jacket thickness resulted in an improvement of the energy absorption by about 17.9% and 38.4% for 
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concrete cover of 20 mm, and by about 40% and 54% for 30 mm concrete cover, respectively compared 

with the damaged beams. 

7- Tests results have cleared that when firing samples to 1 hour, the initial stiffness values have reduced 

by about 26% for both 20 mm and 30 mm cover thickness. On the other hand, the strengthened members 

have reflected a superior stiffness estimated approximately by about 3 times and 3.5 times the initial 

stiffness of the damaged members, and about 2.25 and times the undamaged (reference beam) value, 

respectively for 20 mm and 30 mm concrete cover. 
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