
Periodicals of Engineering and Natural Sciences ISSN 2303-4521

Vol.6, No.2, December 2018, pp. 243~264

Available online at: http://pen.ius.edu.ba

DOI: 10.21533/pen.v6i2.270 243

Dynamic Load Balancing in Image Retargeting using Pipeline

Architecture

Ganesh V. Patil
1
, Santosh L. Deshpande

2

1 VTU Belgaum, India.pganeshv@gmail.com1

2 VTU Belgaum, India, sld@vtu.ac.in

Article Info ABSTRACT

Article history:

Received Jun 12
th
, 201x

Revised Aug 20
th
, 201x

Accepted Aug 26
th
, 201x

In today’s smart world demand of efficient multimedia based communication

has increased at a rapid rate. Diversity on display sizes of gadgets used for

multimedia communication confines the quality of images. Image retargeting

is used as the focal solution to this problem which results in images with

appropriate sizes. Enormously mounting demand of image retargeting

expedites the rate of increment in computational load. This research paper

expatiate and experiments a dynamic load balancing based three phase image

retargeting methodology using pipeline architecture. In the first phase of

image retargeting resize operation is performed on input image which results

in multiple sized image copies of the same image. In the second phase resized

images undergo quantization operation. In the final phase lossless

compression is performed to have an expedient image. In the proposed exhibit

think, we have done statistical analysis of results obtained, to confirm an

impartial dynamic load balancing with a better degree of underlying resource

utilization. We extend the approach to achieve significant storage optimization

using three phase image retargeting.

Keyword:

Image Retargeting,

 Image Resizing,

 Image Quantization,

Image Compression,

 Pipeline Architecture.

Corresponding Author:

Santosh L. Deshpand,
VTU Belgaum, India, sld@vtu.ac.in

1. Introduction

In today’s smart generation rate of communication using internet based astute handheld gadgets

increasing explosively. Survey of year 2017 puts a light on a fact that total 1.2 Trillion pictures are caught

using the smart cell phones [30]. As time goes, it turns into a typical prerequisite by every client to have an

advanced cell with fundamental computational capabilities. Presently unstable growth in graphical

correspondence, requests an ever increasing number of computational assets with more web transmission

capability. The worldwide trend of manufacturing astute mobile devices results in each device displays with

varying resolutions. This fact creates challenge to a web administrator, to retain the same quality on different

sized display gadgets. This powerfully changing user interest overburdens the endeavors of web executive. It

makes a thoughtful undertaking for a web administrator to give a proper estimated picture of an individual

device with great picture determination. Process of operational sequence which results a suitable image for a

respective display sized device by preprocessing is called image Retargeting. A lot of processing power as

well as battery backup is utilized to scale a small image into large one as per the display requirement.

mailto:pganeshv@gmail.com1

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

244

To have a suitable optimized image for a respective device we have formulated a three phase Image

Retargeting mechanism. Three phases are as follows:

1. Image Resizing

2. Image Quantization

3. Image Compression.

Distributed system gives the coordinated multimodal operations to give better efficiency and throughput

at large scale. Its potential of Distributed systems to offer a platform for sharing and aggregation of

computational utilities [23]. Distributed system consists of a large number of worker nodes connected to the

interconnection network to have a collaborative execution environment which seems to be a single system. A

distributed computing system is considered as an aggregated system which gives the collective effect of

underlying computing and communication resources. A major challenge in a distributed system is to achieve a

good extent of resource utilization. Resource utilization is a combined effect of resource scheduling and load

balancing. In load balancing good response time is achieved by suitable provisioning of computational

resources.Load balancing is classified in two classes i.e. 1. Static Load Balancing 2. Dynamic Load

Balancing. Static load balancing requires the prior information of underlying resources and based on that

resource scheduling is carried out. In contrast to this Dynamic Load Balancing is based on the dynamic and

instantaneous i.e. Run time information about resources. Dynamic load balancing is used to have a good

response time in highly computationally intensive setups which does run time task scheduling.

In this paper, we are focusing on dynamic load balancing based distributed computing environment

for image retargeting using pipeline architecture. Dynamic load balancing is achieved using two Image

retargeting pipelines. As Resizing, Quantization and compression operation is to be applied sequentially.

In proposed experimental study, we have used pipeline architecture with dynamic load balancing

mechanism. The basic objectives of our experimental work are as follows,

1. To achieve Dynamic load balancing in Image Retargeting using Pipelined architecture.

2. To achieve a better degree of resource utilization.

3. To reduce the communication time in comparison with computational time.

4. To achieve storage optimization along with image retargeting.

The paper is organized in six sections. In section I, Introduction of problem is given and it contains

clear objectives of proposed work. In section II, literature review of Dynamic load balancing and existing

Image retargeting techniques is given. In section III, methodology and architecture of proposed research

work is discussed. Section IV, contains results obtained in 3 phase image retargeting process and its

statistical inference is discussed and attainment of stated objectives is verified. In section V, we conclude

the work with remarkable achievements.

2. Related work

Enormous work is done by the researchers in field of dynamic load balancing in different areas of

computation. Load balancing is becoming unavoidable part of modern computing environments. It is required

to have a system with better resource utilization and better throughput. Static load balancing is based on the

average behavior of the system whereas dynamic load balancing considers rutime state information of the

system [14]. Due to overwhelming demand of multimedia communication, modern era of image processing

includes heavy computational loads. In proposed work we have used adaptive resource based dynamic load

balancing. The load in image retargeting changes rapidly with respect to time. To inculcate computational

efficiency in task of image retargeting and to achieve impartial resource utilization, dynamic load balancing is

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

245

used. Mainly load balancing mechanism concentrates on task to resource mapping and success of this system

depends on proper scheduling mechanism. The main purpose of load balancing is to make suitable and

efficient provisioning of available resources in the system to achieve a good response time [30].According to

Grosu and Chronopoulos [21] load balancing strategies can be classified into three approaches:1. Global

approach 2. Cooperative approach 3. Non-cooperative approach. In global approach, global decision maker is

responsible for taking all the possible decisions related to resource allocation and job mapping over a

distributed set of resources. In cooperative approach, multiple decision makers results in load balancing with

the help of message passing based communication mechanism. In non-cooperative approach, each node acts

as a independent decision maker and works to minimize its own response time.

In dynamic load balancing [1,4,5,9,11,12,24,26,27,28,29], run time decision making is done which results

better resource provisioning whereas in static compile time decision making is done.

According to Watts and Taylor[26] dynamic load balancing can be solved practically using load

evaluation, profitability determination, work transfer vector calculation, task selection and task migration. In

general, a dynamic load-balancing policy consists of three components namely, information rule, transfer rule

and location rule [28]. Dynamic state information is collected using information rule, decision making of load

transfer is done using transfer rule and location rule gives best possible location for execution of job.

Classification of dynamic load balancing strategies was given by Willebeek-LeMair and Reeves [27] as,

1. Sender initiated diffusion (SID)

2. Receiver initiated diffusion (RID)

3. Hierarchical balancing method (HBM)

4. Gradient model (GM)

5. Dimension exchange method (DEM).

SID approach finds a lightly loaded near neighbor and transfers the excessive load to them. In RID

approach, lightly loaded processors demands and pulls load from heavily loaded processors. HBM uses

progressive decision based load balancing applied to a subset of nodes hierarchy. In GM [28] global decision

making is done. Global decision making process takes aggregated local information as a input for decision

making algorithm. DEM is used as dimension wise synchronous and iterative approach of load balancing.

Chow and Kohler [29] have proposed a queuing model based dynamic load balancing in simple heterogeneous

multiple processor systems. Further the dynamic load balancing has classified in deterministic and

nondeterministic approach. Non-deterministic approach uses state independent branching probabilities

whereas deterministic approach uses criteria functions to enhance the performance of computing.

In centralized GA-based mechanism Zomaya and Teh [24] have proposed an approach of dynamic load

balancing using genetic algorithm. Threshold based sliding window technique is used for generating a job

schedule. The research work [28] gives a framework of adaptive dynamic load balancing strategy for 3D

rendering task using Blender software based on dynamic CPU and RAM utilization.

A new dynamic task scheduling algorithm [14] proposed for heterogeneous systems i.e. Clustering Based

HEFT with Duplication (CBHD). The CBHD algorithm combines features of both Heterogeneous Earliest

Finish Time (HEFT) and the Triplet Clustering algorithms. HEFT algorithm does ranking of nodes based on

the computational capabilities and Triplet clustering algorithm is used for clustering of nodes according to

their computational configurations.

Experimental investigation [34] gives experimental test bead on unique load adjusting methodology

(DLBS) calculation, utilized for hypercube organization in multiprocessor framework [21]. Weighted Round

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

246

Robin Load Balancing [3] mechanism works well for cloud systems. Distributed architecture based SALB, a

dynamic and adaptive load balancing algorithm [26] is a threshold based load balancing approach which tries

to minimize the load caused by message exchanges and presents a online load prediction model. Dynamic

load balancing in grid system [23] classifies the existing load balancing algorithms based on task migration

requirements and grid resource topology used. This work considers a grid resource topology as flat and

hierarchical.

An adaptive dynamic load balancing model [12] is a agent based distributed simulations which gives a

distributed approximate optimized scheduling algorithm with partial information (DAOSAPI).This algorithm

is an integration of the distributed mode, approximate optimization and agent set scheduling approach.

We are applying a concept of dynamic load balancing to a Image Retargeting task so it is obligatory task

to review existing image retargeting algorithms and their features. Research domain of image retargeting

expands its scope as user requirements from different domains exceeds in a wide range. Today in every sector

multimedia based formal and informal way of communication is increasing explosively. J. Kim et. al. in [17]

proposed a image and video retargeting based on adaptive scaling function. In this work first importance map

is constructed using gradient, saliency and motion difference. In next step adaptive scaling function is

calculated which gives a scaling factor of each column in source image. Desired image is then constructed

using those scaling factors. The same algorithm is used for video sequence. Bin Zhou et. Al. in [27] proposed

seam carving based Image Retargeting method. This work evaluates the image compressibility using wall

seam model and then assigns a respective number of seams in each direction. This work ensures the content

preserving Image Retargeting as compared with existing Image Retargeting methods.

The experimental work [16] proposes an adaptive image and video retargeting algorithms based on

Fourier analysis. This work utilizes Gradient information of image to divide the image in similar complexity

strips. Fourier transformation is used to formulate the distortion caused by image scaling. This work ensures

that aggregation of sizes, all strips should equal to size of target output. Lagrangian multiplier technique is

used to solve the constrained optimization problem. S. Wang et.al. [18] proposed warping based image

retargeting technique. This research work is based on an adaptive image resizing algorithm. The proposed

experimental work consists of a series of operations i.e. Bilinear interpolation, line detection, joint-bilateral

upsampling. It does computations on the low-resolution layer which claims to be an efficient warping-based

retargeting technique. In research work proposed by J. Sun et.al. [15] concentration is given on thumbnail

retargeting method. This work considers most prominent issues regarding thumbnail retargeting i.e.

thumbnail scales, object completeness and local structure smoothness. To solve these issues Jin Sun et.al. has

proposed Scale and Object Aware Retargeting (SOAR) algorithm. The important components of SOAR are a)

Saliency map b) Objectness c) Cyclic seam carving algorithm d) Thinplate-spline (TPS) retarget warping

algorithm. Retargeting of a pair of stereo images is given in [24] which consider 3D structure of scene. This

research work experiments a extended version of the seam carving algorithm which works on pair of images.

The prominent feature of this work is this research considers visibility relations between pixels in the image

pair.

In [29] improved seam carving based image retargeting is given. Seam carving is a content based image

retargeting algorithm which removes the pixels with less energy value. It is very difficult to maintain the

accuracy of the energy function.This research work proposes a combination of L-1 norm of gradient with 3D

saliency to obtain energy map

In [19] Discrete Cosine Transform is used to evaluate both scaling and shape distortion. The proposed

image resizing algorithm avoids loss of semantic information of images and it claims to be a computationally

efficient as compared with traditional state of art resizing methods. In research work [26] authors investigated

impact of perceptual relevance information on content aware image retargeting. This work integrates fixation

density maps and region-of-interest maps into a contemporary image retargeting algorithm. This experiment

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

247

puts a light on impact of perceptual relevance information, image content, and retargeting ratio on the overall

performance of Image Retargeting process. A saliency detection [10] based adaptive image retargeting is used

in regions of interest extraction with image resizing. In [10] proposed saliency detection model crossed the

limiting boundary of image retargeting by achieving the results in compressed domain of image retargeting.

Many researchers have experimented image processing using pipeline methodology. In [13] authors have

implemented Line Buffer Based Image Reconstruction Pipeline. It’s a software based pipeline framework for

image processing. Image reconstruction pipeline consists of combination of color filter Array interpolation,

noise filtering and several color correction operations. The mobile captured images are given as a raw input to

these pipelines and image reconstruction is done to enhance the quality aspects [35] of the image. The LONI

Pipeline Processing Environment for NeuroImage processing is proposed in [22]. It consists of pipeline of

individual executable programs. In this work NeuroImage processing task is divided into number of subtasks.

Each stage in pipeline performs a subtask and intermediate results are traversed between individual modules

in pipeline. Functional pipeline used in [25] works for stream of data sets which is given as a input to the

functional pipeline and throughput is maximized within the given latency constraints. It considers only two

performance parameters of the functional pipeline i.e. throughput and latency.

3. Methodology of the work

An image is a two-dimensional array of individual colored pixels [31]. Each pixel is represented by a

RBG vector in different color spaces which ranges from monochrome where color ranges from black to white

to full RBG spectrum of colors. The representation format of each image is based on the visual effect

requirement by each image. Today as the innovation in smart display technology goes towards the pick point,

image resolution and clarity requirements also goes on increasing tremendously. Color complexity and storage

requirements of images increasing rapidly as user demand for high resolution images increasing enormously.

Here with the proposed solution we are trying to achieve best optimized three phase image retargeting as

shown in Fig. 1. Resizing gives better resized image with good aspect ratios as per the user demands.

Quantization and compression gives color palletization and lossless compression which reduces the storage

requirements of images in acute handheld gadgets.

Fig. 1. Three phase image retargeting process

3.2 Image Resizing

Various software image resizing tools are available on web. Some of them are open source and others

require licensing. In our experimental work we are using Image Magick’s resizing tool [32].Convert command

is used to resize the image in required dimensions. By using this command we can enlarge the image as well

as can make it smaller. In our experimentation along with convert command we are using Resize option for

resizing. We have fixed the dimensions of target image by using absolute size option in Image Magick.

e.g. convert –resize 320 X 213 input.png output.png.

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

248

Filtering is the process of determining which pixels make it into the new image and what color they are.

Filtering of resized image is required to decide what the new image will look like [32]. In our experimentation

we have used default Lanczos filter of Image Magick.

e.g. convert –resize 320 X 213 –filter lanczos input.png output.png.

3.3 Image Quantization

In a regular 24-bit color image there are 16.7 million color possibilities for every pixel. But a human eye

can distinguish only a small part of it because most of these color possibilities goes unutilized. We can utilize

this aspect by grouping similar colors in a given image by creating a color palette, and then using a number to

represent a color from this color palette. Such palletization of image can vastly improve the amount of storage

required for the image. Lesser the color in the palette, lesser is the storage needed for each pixel. If the palette

size is only 256, then only one byte is sufficient to store the entire pixel instead of three bytes [33]. Color

palletization is a process of grouping similar colors in same palette. The size of resulting image depends on

palette size. If the palette size is small, then the resulting image will also be small so the main aim of color

quantization is to find the best color palette with the least differences between the original image and the

quantized one. We are achieving color quantization of PNG images by using command-line utility pngquant

[36]. Pngquant is a advanced tool which uses modified version of Median Cut quantization algorithm [20]. In

modified version of median cut algorithm splitting boxes are selected to minimize variance from their mean

value. An improved median-cut algorithm which, improves pre-quantization precision, calculates the cutting

position based on variance and searches reversely the color map. It significantly promotes both the speed and

quality of the color quantization [20].

3.1 Image Compression

For image compression we are using Advpng [35] software tool which does lossless compression.

Table 1 shows the list of software tools used in pipelined 3 phase image retargeting process.

Table 1 Software tools used in 3phase image retargeting

Sr. No. Name of Software Use of Software

1 Prometheus 1.5.2 Used as a State Information collector

2 Grafana 4.2.0 [35] Works to visualize computational loads on the slave nodes

3 ImageMagick [32] Used for image resizing

4 Pngquant [36] Used for quantization of PNG images

5 Advpng 1.2.3 [34] Used for lossless compression of PNG images.

4. Architecture of work

The architecture of pipeline image retargeting is as shown in Fig. 2. The proposed architecture is push-pull

type architecture. In this architecture first information is pulled from slave nodes and based on that work is

pushed towards the slave nodes for execution. The basic methodology selected for the execution of

experimental work is Master-Slave architecture. The architecture consists of one master node and two slave

pipelines. Each pipeline consists of three nodes which are performing the task of Resizing, Quantization and

Compression respectively. Each input PNG image undergoes three phase image retargeting operation. The

order of image retargeting is fixed. In first phase image undergoes Resize operation, in second phase the

output of resize phase is given as a input to Quantize phase and in last phase the output of quantization is

given as a input to compression phase.

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

249

Fig. 2. Architecture of Proposed 3phase Image Retargeting

The compression phase returns final output to the master node. The overall working of image retargeting

is carried out using waterfall model of software development paradigm. Q1, Q2 and Q3 represent queues in

each node of Pipeline1 and Pipeline2. Before execution each job checks the availability of resource in each

node and if node is free then job is considered for execution and if not then job has to wait in a node’s waiting

queue.

4.1 Master

1. Master acts as central decision maker. The base of decision making is the dynamic load information

collected from all slave nodes of architecture. Master-slave communication is carried out using HTTP

protocol. Master is started first.

2. We are using single binary file for both master and worker. Role of binary is decided by the run time

parameters passed to the program.

3. Master first starts HTTP server. The registration module in master node starts registration of all slave

nodes. This process collects the basic configuration of each slave node i.e. Maximum CPU and RAM

available at each node.

4. Periodically master collects the run time state information from all slave nodes. Scheduler utilizes this

dynamic state information for dynamic load balancing.

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

250

4.2 Scheduling Algorithm

Table 2 exhibit detail scheduling algorithm used for three phase image retargeting process.

Table 2 Scheduling Algorithm used for 3 phase Image Retargeting

Algorithm 1 Scheduling algorithm

Input: Dynamic state information of Pipeline 1 and 2.

Output: Dynamically balanced load between Pipeline 1 and 2.

Algorithm

1: Start Master

2: Start State Info Collector for periodic collection of state information from all slave nodes.

3: For all i=1 to N

4: Register all nodes with Maximum CPU and RAM available at that node.

5: ConFig. Pipeline1 and pipeline 2 by assigning operational role to each slave node.

6: After every time period t, For all i=1 to N

7: Receive(CPU and RAM utilization)

8: Calculate the average CPU and RAM utilization for each Pipeline P1 and P2.

9: Assign the incoming load to the pipeline which has Minimum CPU and RAM utilization.

10: Receive the results from selected pipeline.

11: END

System used for three phase image retargeting process is a homogeneous system. Table 3 shows the

configuration details of experimental set up used for experimentation of three phase image retargeting. In

experimental exhibition we have used one master node and six slave nodes. Each pipeline consists of three

slave nodes.

Table 3 Configuration details of set up used for experimentation

Sr.

No.
Node Name Configuration Details

1 Master Dell Optiplex 3050, CPU-Intel Core (TM) i3-7100, 3.90 GHz,RAM-4GB, OS-

Windows 7 Professional (64 Bit)

2 Slave Dell Optiplex 3050, CPU-Intel Core (TM) i3-7100, 3.90 GHz,RAM-4GB, OS-

Windows 7 Professional (64 Bit)

3 Network Giga Bit Network

The assumptions made by our system are as follows:

1. Dynamic load balancing used in our system is non-preemptive.

2. The key parameters used for load balancing are each node’s run time values of CPU and RAM.

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

251

3. Computational weightage given to both CPU and RAM is same.

4. Experimental set up contains one master and six slave nodes.

We have implemented the dynamic load balancing using Parallel and distributed pipelined approach.

5. Results and discussion

In this section we present results with statistical analysis to verify the attainment of objectives of proposed

work. We have carried out the dynamic load balancing task for 59 different sample images with variable

dimensions. The Table 4 shows time required for image retargeting including resizing time, quantization time,

compression time, Queuing time and communicational time. Equation 1 represents Total time T as a function

of resizing time , quantization time , compression time , Queuing time .

 (1)

As shown in Fig. 2 every slave node in a pipeline architecture has a queue associated with it. If the node is

busy in doing existing computational work, newly arrived job has to wait in a queue until the node becomes

free. Proposed image retargeting process contains an ordered sequence of Resizing, Quantization and

Compression operation. We have selected pipeline architecture for experimentation because of ordered

execution of operations. Each intermediate node has to wait for a result of previous node. This fact becomes a

bottlenecking problem in pipeline image retargeting. The total actual computational time required by any node

in three phased image retargeting is much less than the waiting time in a queue. If we compare the actual

computational time required with waiting time in a queue, queuing time exceeds over the actual computational

time. This factual analysis reflects in a Table 3 and Fig. 3. Fig. 3 represents the graphical analysis of

Computational time required versus queuing time.

Fig. 3 Comparison of Queuing time, Computational time and Communication time

T
im

e
 i

n
 S

e
c
o

n
d

s

Job Names

Queuing Time In Seconds

Computational Time In Seconds

Communication Time In Seconds

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

252

We assume that total time required for image retargeting is a linear function of Resize time, Quantize time,

Compress time and Queuing time. With this assumption we have done analysis by using multivariate

correlation and regression technique. This analysis technique determines the interrelation between principal

attributes under consideration. We have done analysis of Pipeline 1 and Pipeline 2 separately, and try to

differentiate the processing effects in two different pipelines. In every analysis height and width of incoming

image remains as common attribute. We are analyzing the effect of dimension changes on each phase of

image retargeting.

5.1 Analysis of Resize Time

Resize is the primary operation which is applied to the incoming PNG images. In our three phase image

retargeting, resizing of incoming images is done by the head node of every pipeline as shown in Fig. 2.

Here in this subpart we have analyzed the effect of following factors on total Resize time of Pipeline i.e.

T(Resize):

1. Height of Image (H)

2. Width of Image (W)

3. Time of communication from Master node to Q1(T(M,Q1))

4. Waiting time of job in Q1(W(Q1))

5. Time required for job to travel from Node1 to Queue2 (T(N1,Q2))

6. Waiting time of job in Q2(W(Q2))

7. Time required for job to travel from Node2 to Queue3 (T(N2,Q3))

8. Waiting time of job in Q3(W(Q3))

9. Time required for job to travel from Node3 to Master (T(N3,M))

We apply the regression analysis to the results in Table 3, we get equation 2 and equation 3. These

equations i.e. 2 and 3 gives weighted relation of image retargeting factors to calculate Resize time in Pipeline1

and Pipeline2. Here T(Resizep1) is the resize time of Pipeline1 and T(Resizep2) is the resize time of

pipeline2.

 (2)

 (3)

5.2 Analysis of Qunatize Time

Quantize is the second phase of image retargeting. Our pipeline implementation follows an ordered

execution so performance of every phase depends on the performance of previous phase. We apply the

regression analysis to the results in Table 3, we get equation 4 and equation 5 for determining Quantize time.

Here T(Quantizep1) is the Quantize time of Pipeline1 and T(Quantizep2) is the Quantize time of pipeline2.

 –

 (4)

 –

 (5)

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

253

5.3 Analysis of Compress Time

Here T(Compressp1) is the Compress time of Pipeline1 and T(Compressp2) is the Compress time of

pipeline 2. Equation 6 and 7 gives the multivariate regression using the results of Table 3 to find the

interdependency of attributes while compression in Pipeline1 and Pipeline2.

 – –

 (6)

 –

 (7)

The accuracy of multivariate analysis is measured in terms of R
2
 value which is approximately equals to

1. Expect for Compression in pipeline 2 which is 0.799 in all cases we have achieved maximum accuracy.

Table 5 represents the R
2
 values for above multivariate analysis.

Table 5. R2 values of different multivariate analysis

Operation Name R
2
value for Pipeline1 Analysis R

2
 value for Pipeline2 Analysis

Resize 0.967 0.985

Quantize 0.883 0.997

Compress 0.972 0.799

Actual computational time is very small as compared to queuing time in different queues. Every stage in

pipeline computation carries a queue and before actual processing each job has to wait in a queue. At every

stage of computation when the computational node becomes free job waiting in a queue will be taken for

computation. Results in Table 3 elaborates job properties i.e. its height and width and also by which pipeline it

is executed i.e. either Pipeline1 or Pipeline2.Using the results in Table 3 we have plotted the graph of pipeline

utilization. Fig. 4 and Fig. 5 shows graphical representation of percent the utilization of Pipeline 1 and

Pipeline 2.

Fig. 4. Utilization of pipeline 1

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

254

Fig. 5. Utilization of pipeline 2

Basic objective of Dynamic load balancing in our experimentation is to achieve maximum load balancing

within two pipelines. We are claiming maximum load balancing but it should be proven by results obtained

while experimentation. Using experimental results we can prove the fact by testing hypothesis. There are only

two possibilities i.e. task will be assigned to either Pipeline 1 or 2. Equation 8 gives probabilistic relation of

Pipeline 1 and pipeline 2 as,

 (8)

Where, P(1) = Total Probability=1,

P(P1) = Probability of job executed by Pipeline 1 and

P(P2) = Probability of job executed by Pipeline 2.

Requirement of accurate load balancing P(P1)= P(P2)=0.5. As we are testing the hypothesis for

proportions we will use Hypothesis testing of Proportions using t-Test: Two-Sample Assuming Unequal

Variances.

H0 : µ(P1)= µ(P2)

Ha : µ(P1)≠ µ(P2)

 α=0.05

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

255

Table 6. t-Test: Two-Sample Assuming Unequal Variances

 Pipeline 1 Pipeline 2

Mean 95.29532 102.0272

Variance 670.1098 372.3669

Observations 28 32

Hypothesized Mean Difference 0

 df 49

 t Stat -1.12875

 P(T<=t) one-tail 0.13225

 t Critical one-tail 1.676551

 P(T<=t) two-tail 0.264499

 t Critical two-tail 2.009575

Table 6 shows that the value of t Stat is larger than t Critical two-tail and also P two tail is larger than α

i.e. 0.05 we accept H0 and reject Ha. In this hypothesis, we have tested the load balancing factor in three stage

pipeline architecture. This hypothesis testing concludes that we achieved impartial load balancing in the image

retargeting process.

Fig. 6. Utilization of Pipeline 1-Worker 1 (Resize)

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

256

Fig. 7. Utilization of Pipeline 1-Worker 2 (Quantize)

Fig. 8. Utilization of Pipeline 1-Worker 3 (Compress)

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

257

Fig. 9 Utilization of Pipeline 2-Worker 1 (Resize)

Fig. 10 Utilization of Pipeline 2-Worker 2 (Quantize)

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

258

Fig. 11. Utilization of Pipeline 1-Worker 3 (Compress)

Fig. 6 to Fig. 11 shows the utilization graph of CPU and RAM of each node. As our task consists of

sequence of Resize, Quantize and Compress operation the utilization of each node change with respect to

time. We are achieving maximum utilization i.e. in some time slots 100% utilization of CPU but RAM

utilization is quite less as compared to CPU utilization. The CPU utilization ranges in minimum 20% to

maximum 100%. The RAM utilization ranges in minimum 23% to maximum 66%. In our experimental

studies image retargeting task is experienced as more CPU intensive task than RAM. The Fig. 6 to Fig. 11

shows the achievement of resource utilization objectives which are mentioned in the introduction section.

When we apply regression analysis on results in Table 3, we get a overall regression Equation 11 as,

 (9)

Where, Rt=Resize time, Qt=Quantize time, Ct=Communication Time and WQt=Total Waiting time in Queue.

Communication time has a very negligible influence on total image retargeting so it has not included in

Equation 10. The regression analysis carried out by using equation 11 is obtained at R
2
=0.984, which shows

the accuracy of the relational linear equation for image retargeting operation. The average error calculated

with this equation is 0.009834 which is negligible. Table 5 shows difference between expected values of

Image retargeting time using Equation 9 and actual experimental image retargeting time.

Table 5. Expected values and Actual values of image retargeting obtained by using equation 9

Job 1 2 3 4 5 6 7 8 9 10

Expected

Time
63.0 79.1 69.1 90.3 68.5 77.1 60.7 78.3 69.0 75.5

Actual Time 60 76 69 96 69 77 62 79 71 75

Error 3.08 3.16 0.10 -6.3 -0.5 0.10 -2.3 0.70 -2.0 0.50

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

259

Table 6 shows some sample input image and output images obtained by three phase Image retargeting

process.

One of the objectives of our image retargeting work is to reduce storage required by the images in any

acute multimedia gadget. Limited storage available in handheld communicational devices gives importance to

this storage optimization. The vastly expanding era of multimedia communication requires optimized image

storage. Table 7 shows the amount of storage required by input image and storage required by output images

obtained by three phase image retargeting process.

We assume storage required as a linear function of Height and Width of the image as shown in Equation

10,

 (10)

To trace the relation between the storage required i.e S and height and width of image, we perform

regression analysis of the values of input image attributes in Table 7. The regression analysis gives us a

relational Equation 11.

 (11)

Table 9 represents the difference between the values of actual storage obtained by using image retargeting

operations and the expected storage values obtained by applying equation 11 to the same image.

Table 9 Actual size and Expected size of output image

Output Image No. H W Actual Storage in KB
Expected storage in

KB

1 320 213 40.3 -1348.77

2 320 480 82.2 -918.9

3 320 480 106 -918.9

4 320 480 77.6 -918.9

5 320 480 78.3 -918.9

6 639 426 148 -160.49

7 640 960 330 701.9

8 640 960 383 701.9

9 640 960 267 701.9

10 640 960 280 701.9

11 800 533 234 438.43

12 800 1200 526 1512.3

13 800 1200 579 1512.3

14 800 1200 410 1512.3

15 800 1200 427 1512.3

16 1023 682 379 1269.27

17 1024 1536 881 2646.86

18 1024 1536 912 2646.86

19 1024 1536 682 2646.86

20 1024 1536 691 2646.86

21 1280 853 591 2225.63

22 1280 1920 1370 3943.5

23 1280 1920 1330 3943.5

24 1280 1920 1050 3943.5

25 1280 1920 1040 3943.5

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

260

26 1920 1280 1350 4609.1

27 1920 1280 3070 4609.1

28 1920 1280 2810 4609.1

29 1920 1280 2510 4609.1

30 1920 1280 2350 4609.1

Fig. 12 represents a graph of expected storage versus actual storage. In some cases the storage achieved

by experimentation is greater than the expected storage, but in most of the cases it is less than expected

storage. Hence, overall storage optimization is achieved in our three phase image retargeting process.

Fig. 12. Expected storage Vs Actual storage

6. Conclusion

In this work, we proposed a dynamic load balancing based three phase image retargeting methodology

using pipeline architecture. In the first phase of image retargeting we have resized the input image to attain the

aspect ratio of desired display size device. In this phase we have fixed the dimensions of output images.

Output of first phase is given as input to quantization phase. In quantization phase, color palletization is

achieved to reduce the size of color vector. The output of quantization phase is given as an input to

compression phase. Compression phase outputs images by applying lossless compression.

Experimental work of image retargeting is carried out using central scheduling mechanism. The master

node performed scheduling of jobs using runtime CPU and RAM load information of slave nodes. We have

used two separate pipelines P1 and P2 for dynamic load distribution. Result analysis confirmed the proof of

impartial dynamic load distribution among two pipelines using hypothesis testing. As the operations

performed in proposed three phase image retargeting process are sequentially ordered, we have used pipeline

architecture. But the waiting time in queue is 80% of total time required and only 20% of total processing time

is utilized effectively for actual computations. In proposed work we have achieved CPU utilization in range of

20% to 100% and RAM utilization in range of 23% to 66%. The resource utilization of node performing

compress operation in each pipeline is less. We have given difference between the storage requirement of

input node and output node which confirms the storage optimization. Statistical analysis given in proposed

work expounds the regression analysis. The weighted linear relational equations are useful to understand the

effect of each operational parameter on overall completion time.

S
to

ra
g

e
in

 K
B

Number of observations

Expected

Actual

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

261

References

1. Ganesh Patil,Santosh Deshpande, “Image optimisation using dynamic load balancing”, International

Journal of Knowledge Engineering and Data Mining, Vol. 5, Nos. 1/2, pp.68-89, 2018.

2. Sumai Khan, Babar Nazir, Iftikhar Ahmed Khan, Shahaboddin Shashirband and Anthony T

Chronopoulos, "Load Balancing in Grid Computing: Taxonomy, Trends and Opportunities," Journal of

Network and Computer Applications, Accepted on 20 February 2017.

3. Shang-Liang Chen, Yun-Yao Chen, Suang-Hong Kuo, "CLB: A novel load balancing architecture and

algorithm for cloud services,” Computers and Electrical Engineering, pp. 1-7, Accepted on 12 January,

2016.

4. Bokhari, M.U., Alam, M., Hasan, F.,“Performance Analysis of Dynamic Load Balancing Algorithm for

Multiprocessor Interconnection Network,” Perspectives in Science, pp. 1-5, June 2016.

5. Patil, G. and Deshpande, S.L., “Distributed rendering system for 3D animation with blender,” Presented

at IEEE Sponsored International Conference on Advances in Electronics, Communication and Computer

Technology (ICAECCT 2016), pp.92–98 , December 2016.

6. Bin Zhou , Xuanyin Wang , Songxiao Cao , Ke Xiang , Shuo Zhao, “Optimal bi-directional seam carving

for compressibility-aware image retargeting, ” J. Vis. Commun. Image R., September 2016.

7. YanxiangChen,YifeiPan,MinglongSong, MengWang, “Improved seam carving combining with 3D

saliency for image retargeting,” Neurocomputing 151, pp. 645–653, October 2014.

8. Tali Dekel (Basha),Yael Moses, Shai Avidan, “Stereo Seam Carving a Geometrically Consistent

Approach,” IEEE Transactions on Pattern analysis and machine intelligence , Vol. 35 , No.10 ,pp. 2513-

2525, October 2013.

9. Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, Li Ruan “A dynamic and adaptive load balancing

strategy for parallel file system with large-scale I/O servers,” J. Parallel Distrib. Comput. 72 (2012) pp.

1254–1268, May 2012.

10. Yuming Fang, Zhenzhong Chen, Weisi Lin, Chia-Wen Lin, “Saliency Detection in the Compressed

Domain for Adaptive Image Retargeting,” IEEE Transactions on Image Processing, Vol. 21, No. 9, pp-

3888-3901, September 2012.

11. Doaa M. Abdelkader, Fatma Omara, “Dynamic task scheduling algorithm with load balancing for

heterogeneous computing system,” Egyptian Informatics Journal, pp. 135–145, July 2012.

12. Qingqi Long, Jie Lin, Zhixun Sun, “Agent scheduling model for adaptive dynamic load balancing in

agent-based distributed simulations, ” Simulation Modelling Practice and Theory 19, pp. 1021–1034,

January 2011.

13. Joni-Matti Maatta, Jarno Vanne, Timo D. Hamalainen, and Jarno Nikkanen “Generic Software Framework

for a Line-Buffer-Based Image Processing Pipeline” IEEE Transactions on Consumer Electronics, Vol.

57, No. 3, pp. 1442-1449, August 2011.

14. Satish Penmatsa, Anthony T. Chronopoulos “Game-theoretic static load balancing for distributed

systems,” J. Parallel Distrib. Comput. 71 , pp. 537–555, 2011, December 2010.

15. Jin Sun, Haibin Ling “Scale and Object Aware Image Retargeting for Thumbnail Browsing,”Presented at

IEEE International Conference on Computer Vision, pp.1511-1518, November 2011.

16. Jun-Seong Kim, Jin-Hwan Kim, and Chang-Su Kim“Adaptive Image and Video Retargeting Technique

Based on Fourier Analysis,” Presented at IEEE Conference on Computer Vision and Pattern Recognition,

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5191365

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

262

pp.1730-1737, June 2009.

17. Jin-Hwan Kim, Jun-Seong Kim, and Chang-Su Kim “Image and Video Retargeting using Adaptive

Scaling Function” 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland,

pp.819-823, August 24-28, 2009.

18. Shu-Fan Wang and Shang-Hong Lai “Fast Structure Preserving Image Retargeting ” Presented at

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1049-1052, April

2009.

19. Kang-Sun Choi, Sung-Jea Ko, “Fast Content-Aware Image Resizing Scheme in the Compressed Domain”

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, August 2009.

20. CHEN Wei-dong, DING Wei “An Improved Median-cut Algorithm of Color Image Quantization” IEEE

International Conference on Computer Science and Software Engineering, pp.943-946, December 2008.

21. Grosu, D. and Chronopoulos, A.T., “Algorithmic mechanism design for load balancing in distributed

systems,” IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics,Vol. 34, No. 1, pp.77–84,

February 2004.

22. David E. Rex, Jeffrey Q. Ma, and Arthur W. Toga* “The LONI Pipeline Processing Environment”

NeuroImage 19, pp.1033-1048, 18 March 2003.

23. Danial Grosue,Anthony T. Chronopoulos, Ming-Ying Leung (2002), “Load balancing in distributed

systems: A game theoretic approach”, Presented at IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2002), pp.501-510, April 2002.

24. Zomaya, A.Y. and Teh, Y-H., “Observations on using genetic algorithms for dynamic load-balancing,”

IEEE Trans. on Parallel and Distributed Systems, , Vol. 12, No. 9, pp.899–911, September 2001.

25. Jaspal Subhlok, Gary Vondran, “Optimal Use of Mixed Task and Data Parallelism for Pipelined

Computations ” Journal of Parallel and Distributed Computing Vol. 60, pp.297-319, March 2000.

26. Watts, J. and Taylor, S., “A practical approach to dynamic load balancing,” IEEE Trans. on Parallel and

Distributed Systems, March, Vol. 9, No. 3, pp.235–248, March 1998.

27. Willebeek-LeMair, M.H. and Reeves, A.P., “Strategies for dynamic load balancing on highly parallel

computer,” IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No. 9, pp.979–993 September 1993.

28. Lin, H-C. and Raghavendra, C.S., “A dynamic load-balancing policy with a central job dispatcher (LBC),”

IEEE Trans. on Software Engineering, , Vol. 18, No. 2, pp.148–158, February 1992.

29. Chow, Y-C. and Kohler, W.H. “Models for dynamic load balancing in a heterogeneous multiple processor

system,” IEEE Trans. on Computers, Vol. C-28, No. 5, pp.354–361,May 1979.

30. World Wide Survey, https://mylio.com/true-stories/tech-today/how-many-digital-photos-will-be-taken-

2017-repost accessed on (12th March,2018)

31. Image Processing available at:

http://interactivepython.org/runestone/static/thinkcspy/MoreAboutIteration/2DimensionalIterationImagePr

ocessing.html (accessed on 2nd Nov, 2017)

32. Michael Still “The Definitive Guide to ImageMagick” Apress, 2006.

33. Image Quantization available at https://en.wikipedia.org/wiki/Quantization_(image_processing) (accessed

on 6th Nov,2017)

34. B. Durakovic, "Design of Experiments Application, Concepts, Examples: State of the Art," Periodicals of

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

263

Engineering and Natural Scinces, Vol. 5, No. 3, pp.421‒439, December 2017.

35. B. Duraković, H. Bašić, "Continuous Quality Improvement in Textile Processing by Statistical Process

Control Tools: A Case Study of Medium-Sized Company", Periodicals of Engineering and Natural

Sciences, Vol. 1, No. 1, pp 36‒46, December 2013.

36. Advpng available at http://www.advancemame.it/doc-advpng.html(accessed on 6th Nov,2017)

37. Grafana available at https://grafana.com(accessed on 6th Nov,2017)

38. Pngquant available at https://pngquant.org(accessed on 6th Nov,2017)

Table 6. Sample Input Image and Output ImagesInput Image

 Output Images

3072X2014

8
320X213 639X426 800X533

1023X85

3
1280X853 1920X1280

2048X3072 320 X

213

639 X 426 800 X 533 1023 X

682

1280 X 853 1920 X 1280

Table 7 Storage required by input and output images

Name of Image msp_0404 Result 1 Result2 Result 3 Result 4 Result 5 Result 6

Height 3072 320 639 800 1023 1280 1920

Width 2048 213 426 533 682 853 1280

Storage Required 12048 KB 40.3 KB 148 KB 234 KB 379 KB 591 KB 1.35 MB

Name of Image msp_0507 Result 1 Result2 Result 3 Result 4 Result 5 Result 6

Height 2048 320 640 800 1024 1280 1920

Width 3072 480 960 1200 1536 1920 2880

Storage Required 13072 KB 82.2 KB 330 KB 526 KB 881 KB 1.37 MB 3.07 MB

Name of Image msp_904 Result 1 Result2 Result 3 Result 4 Result 5 Result 6

Height 2912 320 640 800 1024 1280 1920

Width 4368 480 960 1200 1536 1920 2880

Storage Required 14368 KB 106 KB 383 KB 579 KB 912 KB 1.33 MB 2.81 MB

Name of Image msp_1306 Result 1 Result2 Result 3 Result 4 Result 5 Result 6

Height 3840 320 640 800 1024 1280 1920

Width 5760 480 960 1200 1536 1920 2880

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

264

Storage Required 15760 KB 77.6 KB 267 KB 410 KB 682 KB 1.05 MB 2.51 MB

Name of Image msp_1306 Result 1 Result2 Result 3 Result 4 Result 5 Result 6

Height 5760 320 640 800 1024 1280 1920

Width 3840 480 960 1200 1536 1920 2880

Storage Required 13840 KB 78.3 KB 280 KB 427 KB 691 KB 1.04 MB 2.35 MB

Table 3. Results obtained in Image Retargeting using dynamic load balancing

Table 8. Input image attributes

Input

Image
1 2 3 4 5 6 7 8 9 10

Height 3072 2048 2912 3840 3072 4368 2912 5760 3840 3840

Width 2048 3072 4368 5760 2048 2912 4368 3840 5760 5760

Job

No
Height Width

Resize

Time

Quanti

ze

Time

Compr

ess

Time

Pipeli

ne

used

Queui

ng

 Time

Comp

utation

al

Time

Communic

ation

Time

Total

Time

 In

Pixels

In

Pixels

In Sec. In Sec. In Sec. In Sec. In Sec. In Sec. In Sec.

1

252

160

5.585

7.052

6.8

1

45.135

12.705

2.16

60

2 252 160 4.61 19.046 9.7 2 50.341 23.753 1.906 76

3 239 160 6.165 12.573 4.1 1 45.657 18.779 4.564 69

4 238 160 5.176 24.362 8.7 2 56.133 29.625 10.242 96

5 238 160 5.753 12.35 4.4 1 45.55 18.147 5.303 69

6 3072 2048 7.765 14.112 17.2 2 50.216 22.049 4.735 77

7 1023 682 6.113 5.581 5.1 1 43.925 11.745 6.33 62

8 1280 853 5.037 6.211 8.6 2 61.838 11.334 5.828 79

9 1920 1280 5.737 5.109 8.2 1 52.871 10.928 7.201 71

10 320 213 4.014 7.897 8.5 2 58.145 11.996 4.859 75

11 3840 2560 9.33 7.091 8.9 1 59.956 16.51 0.534 77

12 639 426 4.817 7.742 7.2 2 58.102 12.631 4.267 75

13 800 533 5.171 6.432 8.3 1 49.208 11.686 9.106 70

14 3072 2048 6.461 18.222 7.8 2 76.623 24.761 1.616 103

15 1023 682 5.396 9.176 8.4 1 58.186 14.656 5.158 78

16 1280 853 4.529 9.041 8.9 2 67.451 13.659 3.89 85

17 1920 1280 4.931 7.721 8.8 1 60.372 12.74 4.888 78

18 320 213 4.303 11.799 9.5 2 67.511 16.197 1.292 85

19 3840 2560 8.202 9.304 5.8 1 65.716 17.564 2.72 86

20 639 426 4.676 10.303 8.6 2 71.896 15.065 3.039 90

21 800 533 5.317 9.223 7.9 1 60.267 14.619 6.114 81

22 2048 3072 15.814 8.357 8 2 84.863 24.251 1.886 111

23 1024 1536 14.156 5.64 7.7 1 72.23 19.873 3.897 96

24 1280 1920 14.092 7.014 8.1 2 79.876 21.187 5.937 107

25 1920 2880 16.143 4.913 7.6 1 76.724 21.132 0.144 98

Ganesh V. Patil

et al. PEN Vol. 6, No. 2, 2018, pp. 243 – 264

265

Size in KB 12048 13072 14368 15760 12048 12912 14368 13840 15760 15760

