
ISSN 2303-4521 

Periodicals of Engineering and Natural Sciences  Original Research 

Vol. 10, No. 1, February 2022, pp.431-441 

© The Author 2022. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that 

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's 

authorship and initial publication in this journal.  

 431 

 

 

Optical nonlinear impairment compensation based on Deep Neural 

Network (DNN) for coherent modulation systems 
 

Alaa H. Jarah 1, Dr.  Ibrahim A. Murdas 1  
1 Electrical Engineering Department, Babylon University, Hilla, Babil, Iraq 

ABSTRACT   

One and most important of the intrinsic challenges facing the optical fibers communication systems and main 

restriction to limited the system capacity is the fiber nonlinearity impairments. Classical Nonlinear 

Impairments Compensation (NLC) techniques are widely used and exist on the basis of the approximate 

Nonlinear Schrodinger Equation (NLSE) solution, their use and requires excessive signal resources, and high-

level knowledge accuracy. In addition, their parameterizations can be numerically unstable. Algorithms of 

Artificial Intelligence (AI) are utilized to determine and resolve the deficiencies by learning from the 

receiving information itself. To the best of our knowledge, this novel approach is implemented. Therefore, 

this article proposes a system nonlinearity and single-step compensation algorithm according to a Deep 

Neural Network (DNN) as a new alternative framework for future optical communications. So, we proposed 

to use the DNN to compensation the nonlinearity impairments in optical communication systems. The 

suggested DNN is accessible to higher-order QAM modulations with achieving greater gain in nonlinear 

impairments compensation compare to classical NLC techniques based on Digital Back Propagation (DBP). 

Its performance is evaluated experimentally on coherent 65536-bit sequence length with 25 Gbaud single 

polarization 4-16-64 QAM with 50 and 120 Gb/s back-to-back measurements through using pre-distort 

symbols at the transmitter for showing Q factor development after 5000 km standard single-mode fiber 

transmission link. The DNN's weights are to train data with the intrachannel cross-phase modulation (XPM) 

and self-phase modulation (SPM) that used as input features. 
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1. Introduction 

At the beginning of this decade, the universe has witnessed a rapid increase in the need for high-speed 

communication (millions of minutes of multimedia transit the IP network per second) [1]. Fiber communication 

systems represent the backbone (core) systems for Internet architecture which have evolved in order to meet 

this growing traffic demand. As a result, to fulfill this demand three main points for optical transmissions in 

2020s that  turned in an important area for research development, it illustrated in the triangle show in Fig. 1 (a). 

According to the enhancement of the optical transmission capacity, the main technologies is possibly fulfilled 

by the total use of the next aspects: 

Unfortunately, the optical system is highly impacted by different linear and nonlinear deficiencies illustrated in 

Fig. 2. it has become very necessary to use NLC techniques. Nonlinear impairments have always been a main 

challenge and which are the main effects that limit the system performance according to reliability, capacity, 

synchronization, transmission distance, and time latency. Its due to the nonlinearity of fiber media transfer  
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characteristics as well as, nonlinear impairment from optical and electrical components [2-4]. Hence, as a result, 

the highest system performance cannot be achieved without using effective NLC techniques. 

 

 

 
 

An efficient technique is used to solve the Manakov equation, known as the classical NCL technique. It is based 

on the approximate solution of the Nonlinear Schrodinger Equation (NLSE) through Split-step Fourier Method 

(SSFM) or Digital Back Propagation (DBP) [5, 6]. In general, Maximum-Likelihood Sequence Equalizer 

(MLSE), Volterra Series Transfer Function (VSTF), and Digital backpropagation (DBP) are the most common 

NLC modules. In addition, these techniques have wide disadvantages and difficulties and the moving to use the 

AI techniques have become hot research besides the impressive findings while utilizing AI [7-10]. In 

complicated systems, AI helps optical communication in getting a flexible statistical analysis with no reliance 

on any particular models.  

 

Furthermore, it gives a high potential for improving signal design, traffic control, and nonlinearity compensation 

performance [11-13].  Fig. 3 presents the total AI methods in relation to decision-making and learning methods 

and statistical models used in different aspects of optical systems of transmission. Of these systems, the most 

significant are statistics, analysis, and compensation for nonlinear disabilities for improving the general 

operation of the system. In particular, the contributions are below: 

▪ Orientation overview: First, doing a general overview of the modern trends for ML and then we 

specialize in Deep learning in the optical community. 

▪ Propose a DNN architecture for NLC to further improve performance. 

▪ Multi-label DNN: Verify of our DNN design is scalable to  

▪ High-order QAM & QPSK signals  

▪ OFDM & nQAM signals. 

Results analysis and optimize: finally, analyze and optimize the resulting chart of our DNN  with the 

proposed DNN is: fast time convergence, less complexity and achieving higher throughput. In our proposed 

design, we will not use any of the digital processing techniques and deep learning based on DNN will be 

fully relied upon to compensate for linear and nonlinear impairments. 

Figure 1. key technologies of improvement Optical Transmission system 

(a) Main three key improvement optical tran. sys. 

(b) Five dimensions of achieve enhanced optical trans. 

sys. capacity 

Figure 2. Main optical flows in the fiber link. 
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2. ML algorithms techniques for optical communications 

As a rule, ML is for teaching a black-box to overcome situations by computational theories that are complex 

and intractable.    There are many ML algorithms for optical communications systems (Table 1 [14]), although 

with no enough attention as that of the deep neural network (Fig. 4)  because of the benchmark obtained in DNN 

[7]. 

 
Figure 3. Totally techniques of AI in the systems of fiber optic communications [14] 

 

3. Deep learning for optical nonlinearity compensation 

Several DNN have been implemented for the fiber optic communications in: Transmitters, Optical 

Performance, Monitoring, Nonlinearity Compensation, Modulation Recognition, Fault Detection and OSNR  

 Figure 4. Machine/Deep learning trend in optical communication applications (keyword hits on 

Google Scholar@2020). Fig. after [7] 
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Monitoring [15-20, 3, 21-23]. In addition, the DNN needs huge data to learning and it consumes high 

amount of hardware resources to do the calculations which makes it suitable for future optical communications. 

This paper shows that the proposed DNN architecture demonstrated in Fig. 5 can obtain NLC, achieves low 

complexity than DMP algorithms, and is more robust. 

 

Figure 5. Proposed DNN layers architecture 

 

Table 1.  ML Algorithms and App. For Optical Communications Systems [24] 

Machine Learning Applications 

Density Estimation Trees (DET), Kernel Density 

Estimation (KDE), Gaussian Mixture Model 

(GMM) 

Linear impairment:  PMD, CD  

laser amplitude and phase, carrier phase and 

polarization tracking and estimation 

Independent Component Analysis (ICA, Principal 

Component Analysis (PCA) 

Nonlinearity:  FWM, XPM, XPolM,  SPM, 

OSNR monitoring, Modulation format 

recognition 

Importance Sampling, Markov Chain Monte–

Carlo (MCMC). 

Nonlinear equalization. 

Particle Filter (PF), Unscented Kalman Filter 

(UKF), Extended Kalman Filter (EKF), Hidden 

Polarization Recovery, Carrier 

Synchronization, Sym. Detection. 

Neural Networks Techniques [(CNN), (RNN), 

(ANN), (HNN), (MLP)] 

Classifies and identifies modulation formats, 

Phase recovery- nonlinear regression. 

Support Vector Machine (SVM) Nonlinear analysis, QoT estimator 

Deep Learning (Deep Belief Networks (DBN))   Nonlinear regression,  Phase recovery,  

OSNR monitoring, Modulation design. 
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4. Optical system model design  

The proposed optical communications is shown in Fig. 6. Single-Channel SP-nQAM. optical signals for 40 

Gbps bitrate are sent by fiber media to coherent receiver side to improve after @5000 km (SMF) transmission. 

N-spans of fiber links with 100 km per-span.  The SMF has a nonlinear factor is i = 2 /W/km and dispersion 

parameter of D = 16 ps/nm/km, with an attenuation of 0.2 dB/km.  

 
Figure 6. Proposed optical communications system under consideration 

 

In the front of the receiver side, the noise figure is assumed (4dB), and Erbium-doped fiber amplifiers (EDFA) 

is implemented for compensating the span loss with all ASE noise. EDFA is especially suiteble  for prompting 

performance analysis of amplifiers in a long-haul system. Also, used Optical filter with a Gaussian frequency 

transfer function at receiver side only with 100 dB Depth (maximum attenuation value for the filter) and 3 order 

of the function, For the proposed setup, the considered parameters are given in Table 2. In addition, we will not 

use any of the digital processing techniques such as standard phase recovery, MLSE, linear equalization (LE), 

Equalizer or Decision-Feedback Equalizer and depended on the deep learning based on DNN to compensate the 

nonlinear impairments. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Test of different activation functions 

Table 2. Optical Communications System Simulation Parameters 

Parameter Value 

Modulation QPSK- 4,16, 64 QAM 

Wavelength 1550nm 

Bit rate 50 Gbps 

Samples per bit 16-128 

Link distance 5,000 km 

Sequence length 128 

Nonlinear Factor 2 /W/km 

Line width 0.1 MHz 

Attenuation 0.2 dB/km 
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5. DNNs model design and properties setup  

The proposed DNN layers setup with parameters are explain in Table 3. Input features: DNN algorithm needs 

data for obtaining a working model of the nonlinear deficiency. It is also necessary to provide the DNN with 

nonlinear impairment features for sufficient nonlinearity, thus the launch power P0 must be bigger than the 

optimum channel power, these features are provided to the DNN through the intrachannel four-wave mixing 

(IFWM) and the first calculating of the IXPM and SPM. The dataset is real and imaginary elements before 

entering DNN. The Non- linear activation function is used because it improves performance than linear function 

and the (A Leaky Rectified Linear Unit) ReLU is the optimum activation function [25] as a result and based on 

the study as shown in fig.7, finally, we used Leaky ReLU to maximize the gain of the NLC. Algorithm of Adam 

learning with an initial rate learning 0.001 and max epochs size of b = 1000, mini batch size is 250 for 64QAM 

and 125 for 4-16 QAM and learn rate drop factor is 0.9. 

In ML, the NLE can be treated as a supervised nonlinear problem. A DNNs learns by the training processes on 

the dataset. A single neuron is a unit of the input, weights (W), bias and the Activation Function (AF), which 

applied to find the output required [14, 16]; each neuron contains a number of inputs (associated with a weight) 

and one output. to obtain the neuron output, the neuron calculates the AF parameter by sum the input weight 

and the bias [26]. This output of AF must be identical to the application and is the general dynamic of the target 

signal (differ from the AF in the hidden layers). At the DNN output, the NLC signal is related to the input and 

the nonlinear functions. So, for the evaluation of the performance of the DNNs, the loss function must be 

introduced to find the perfect estimates neurons’ weights (W), here the loss function is cross entropy function 

is used. so that, the outputs are proximate to the target outcomes. In addition, the error between the the required 

values and the DNN output must be described from the error Gaussian distribution with cross entropy function. 

Based on ML principle, we aim to find the perfect estimates neurons’ weights (W) for the DNNs. This done by 

finding the highest result of the Joint Conditional Probability Density Function and the lowest value of the loss 

Function. These values correspond to finding the ideal ML estimates neurons’ weights (W) for the DNNs [27]. 

So, in order to reduce the loss Function and get the best performance of DNNs [21], the Gradient Descent 

Algorithm is applied to find the perfect estimates neurons’ weights. This is the common and efficient method 

which was used, and called Backpropagation Algorithm [28]. 

Table 3. DNN Parameters and Setup 

Layers Type Description Properties & Setup 

Sequence Input The inputs sequence data to a network is the 

sequence input layer. 

 

Size of input =2. (Number of 

Variables (Real and Imaginary 

Parts)) 

LSTM A Long short-term memory (LSTM) layer learns 

over lasting  reliance between sequence data and 

time steps in time series. Additionally, it operates 

additive interactions for improving the gradient flow 

over long sequences in the training. 

o Number of hidden units=100 

o Output Mode=last 

o Activating the functions for 

updating the cell and hidden 

state= tanh. 

Activation function for 

application on the gates= sigmoid. 

ReLU ReLU conducts a threshold operation, in which all 

inputs smaller than zero are fixed scalar multiplied. 

These equals: 

Scalar multiplier for input values 

= range (0.1-0.5) 

Fully connected It multiplies the input by a weight matrix; next, it 

inserts a bias vector. 

o Output size =Num. of Classes 

o Input size= Hidden Size. 

 

SoftMax & 

Classification 

Output 

A SoftMax layer applies a SoftMax function to the 

input. A classification layer determines the cross-

entropy loss in multi-class classification flows with 

mutually exclusive classes. The class number is 

obtained by the layer from the preceding layer output 

size. 

o Output size=Num. of Classes. 

o Loss function=cross-entropy. 
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6. Results and discussions  

If the power is small in an optical fiber, the fiber is dealt with as a linear medium. Yet, if  the power is high, the 

nonlinear effects are to be paied attention to. the intrachannel SPM and XPM impacts signals and cause spectral 

broadening, increasing the dispersion penalties. Since there is a negative correlation between the the fiber loss 

and the signal power, sufficient nonlinearity is required. Thus, the launch power P0 should be larger than the 

optimum channel power and in addition, dispersion is critical in the reduction of the impacts of nonlinearities. 

Yet, dispersion itself may lead to intersymbol interference. It also broaden the optical pulses and chirp them, as 

the frequencies accumulates  a delay or phase shift between them when propagating at various speeds. We will 

provide dispersion compensation and leave some residual in the link after each span by adds ~900 ps/nm total 

residual dispersion to the system through, the transmission link is of 10 spans with (50 Gbps)  bit rate, the 100 

km SMF dispersion  reaches 16 ps/nm-km, and its effective region is 72 square microns.  The DCF is -80 ps/nm-

km dispersion appears with the use of 18 km DCF of 30 square micron effective area. The compensated SMF 

DCF losses   is by EDFA with 25 dB gain. Depending on nonlinear Schrödinger equation the nonlinear parameter 

can be written as: 𝛾 = 2𝜋𝑛2 / 𝜆𝐴𝑒𝑓𝑓, with 𝐴𝑒𝑓𝑓 as the effective area, n2 nonlinear index and 𝜆 the carrier 

wavelength. two quantities can be defined to describe their relative importance they are the dispersion length 

(LD), LD=T2
0 /β2 and nonlinear length (LNL), 𝐿𝑁𝐿 =  

1

𝛾𝑃0
, The relative importance of dispersion and SPM effects 

depends on the value of the parameter N, (N= LD / LNL), If N >> 1, the SPM impacts dominantes while if N < 

< 1, GVD  are dominatant. For example, choose N=1. The nonlinear phase shift φNL rises with fiber length L 

and the effective length Leff for a fiber of length L is {Leff = [1−exp(−αL)]/α} and ff we make the fiber losses, α 

= 0, and Leff = L. The maximum phase shift φmax happens and {φmax = Leff/LNL = γP0Leff, according to [29, 30]. 

The obtained results are shown in Fig.8. the output pulse is effects by SPM and induced chirping and spectral 

broadening with propagation distance.  

 
Figure 8. SPM effect on optical data transmission based on, Eye-Opening Factor (EOF), Bit Error Rate (BER) 

and Quality factor (Q). 
 

The DNN receiver has 10 hidden layers with 32 and 128 hidden nodes. All networks are trained by activating 

functions of sigmoid, SoftMax & Classification Output layer, LSTM layer and ReLU that conduct a threshold 

operation with cross-entropy loss function and the Adam optimization algorithm. The number of samples in the 
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dataset was 262,144. It also performs the transmission system repeat 128 time for the same sequence input to 

learning the network, where 85% of dataset used to training and 15% for testing. The finally results after DNN 

learning are shown in Table.4 with Max. Q Factor equal to 12.04518896 for 4QAM signal. The results shown 

in Fig.10 after training and testing the network proved that the DNNs based on classification output layer is 

capable of classifying the received symbol for the reference target 4,16-QAM and at iteration (2000) the result 

of constellation mapper is very clear but the loss is high (~0.2) with BER is (2.1x10^6), although the network 

classified the symbols correctly, but the bit locations were still incorrect So, with more training of the neural 

network, DNNs losses began to decrease (~0) as shown in Fig.11 and Fig. 12 and the validation accuracy rises 

to nearly 100% @iteration (5000). The final result of the Q-factor for the system at testing is equal to (~12 dB) 

@5000 Km link distance and 50 Gbps bitrate. 

 

Table 4.  Dnn Results Analysis And Optimize For 4QAM 

Value Parameter 

20 Signal Power (dBm) 

1.50E-22 Signal Delay (s) 

1 Signal Delay (samples) 

5.00E+10 Bit Rate (bit/s) 

~12 Max. Q Factor 

 

 
Figure 9. A set of 4QAM constellations at vairous levels of launch power 
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Figure 10. DNN calculating performing of the training and testing stages with different parameters. 

 
Figure 11. M-ary Sequence Visualizer testing after 2000 &5000 iterations 
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Figure 12. finally, DNN calculating performing. @4x {128 hidden nodes, 262,144 samples, 5000 Km link 

distance} 

7. Conclusion 

The the suggested DNN  helps to learn the features of an optical fiber channel model, as complex computing 

and expensive for estimation. A sparse and huge data set enables the network to extract the most significant 

properties and lead to the interference effect; Thus, the network is capable of predicting these feature. 
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