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ABSTRACT

The main aim of this manuscript to present a new weighted distribution named the Double Weighted
Exponential Pareto Distribution (DWEOD). This paper constructed and studied this new distribution.
The quantifiable properties are discussed, including the mean, variance, harmonic mean, coefficient of
variation, reliability function, moments generating function, mode, hazard function, and the reverse hazard
function. Moreover, this work estimated the parameters of this distribution by the maximum likelihood
estimation method and the method of the moment.
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1. Introduction

Recently, researchers discussed various topics in statistics [1, 2] or more precisely in new distribution [3].
The Weighted Distribution Principle offers an approach to model specification and data interpretation issues.
Fisher [4] examined how methods of ascertainment can impact the type of distribution of recorded perception,
and it was introduced and formulated in general terms in (1965) by Rao in connection with modeling statistical
data where it was not found to be appropriate to the normal practice of using the standard distribution for the
purpose [5]. He defined numerous circumstances that relate to instances where it is not possible to treat the
reported outcomes as a random sample from the original distribution, but it could be by weighted distribution
modeling. The literature of the exponential Pareto distribution absorbs in most of the analysts due to its broad
range application [6]. The definition and the concepts of double weighted distribution proposed first time by
Al-Khadim and Hantoosh [7, 8], applies it to the exponential distribution and derives the statistical properties
for the Double Weighted Exponential distribution. The Double weighted Rayleigh distribution properties were
discussed by Nasr [9] and estimation is developed and considered. The statistical features and properties are
discussed and acquired, such as the mean, harmonic mean, mode, variance, coefficient of variation, moment,
coefficient of skewness, coefficient of kurtosis, hazard function, reverse hazard function and reliability function.
Two different estimations methods used to estimate this distribution: the maximum likelihood estimation
method, and the method of the moment. In (2014), Ahmed, apply it to the characterization and estimation of
Double weighted Rayleigh distribution and its properties [10]. The statistical properties of the modified Double
weighted exponential distribution are discovered by Khadim [11]. A better-fitted probability model has been
chosen by using the Kolomogorov — Imirnov test or Beta-Invers [12, 13]. The Weibull-Rayleigh distribution
utilized and demonstrated its application using lifetime data. More recently, Basheer used alpha power inverse
Weibull distribution and receive the p.d.f, c.d.f, reliability, hazard, and revers hazard function [14]. Saghir and
Saleen studied and conversed the statistical properties of the Double weighted Weibull distribution, including
the mean, variance, Reliability function. The MLE estimation method is used to estimate this distribution. By
applying it to real-life data, the utility of the distribution has been demonstrated [15].
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Suppose X is a non-negative random variable with probability density function (pdf) f(x), then the pdf of
the weighted random variable Xw is given by
£ () = WEf(x)
w) = [xf(x)dx
Where W(X)= X be a non-negative weight function.
Depending upon the choice of the weight function W (x), we have different weighted models. Clearly
when W (x) = x, the resulting distribution is called length-biased whose pdf is given by:
f) =2 fx)
‘ E(x)
This paper introduced the Double Weighted distribution (DWD), which takes one form or type of weight
function W (x) = x, and using the Exponential Pareto distribution as original distribution, this work derives
also the pdf and some useful properties of Double weighted Exponential Pareto distribution.

x>0

, x>0

Double Weighted Exponential Pareto Distribution (DWEPD)
The Double Weighted distribution is given by:
W)f(x)F
0,0y = — WOICOF()
fo W()f(x)F(cx)dx
WD=/" W(x)f(x)F(cx) dx
Where w(x) is the first weight and the second is (cx). F(cx) varies with on the original distribution f(x).

Now by considering the first weighted function w(x)=x and probability density function (pdf) of
Exponential Pareto distribution are given by:

x=20,C>0

_3 (%0
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Where € is (1+c®)8""
Then the pdf of Double Weighted Exponential Pareto Distribution (DWEPD) is:

(%,0,0.p,C) % 40 e
g X, 9 ’p’c =
po 0 r(e1)[1-]
1
pret? 0 -x(i)e[ —x("—")e]
_ _ — >
2(x,0,A,p,c) p9+1l"(%+1)[1—é] x"e P |1—e P ,X=>0,c,0,A>0 -..(2)
1
=+1
where K= *
PO+ r(G+1)[1—]
g(x,0,0,p,0)=kx®y (1 — C%) (3
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e

where y=e A6

and its Cumulative distribution function CDF is given by
G(X)= J, g()dx

1
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Let the first integration is:

Let k=

—1
Letu=A()® x—p—ue dx=2—— du
P o AB 0D
And let the second integration is:
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G(x,0,1,p,c)=

2. The Statistical properties of DWEPD

Statistical properties of DWEPD throughout computing the mean, variance, and standard deviation,
coefficient of variation, harmonic mean, and moments presented as follow:

2.1. Moments of DWEPD
The rth moment of DWEPD can be calculated as:

o)

EX") = -f X"g(x,0,p, A C)dx
0

o)

_2(%\6 -5
E(X") = k j Xr x8 e [1 MG ]dx
0
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B = (B2 T [1 - 2] - (5)

1 1
xe (A-2 TEHD Er
Now, the mean can be obtained, as well as variance, standard deviation, coefficient of variation form eq
(5) as follows:
Mean

To find mean put r=1 given by

__(p) 1 F(%“) 1
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Variance
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Moment Generation Function:

The moment generating function of DWEPD is given by

M,(t) = f e g, (x,0,A,p,c)dx
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3. Reliability Analysis
3.1. Reliability function R(x).
The reliability function or, known as survival function R(x) can be derived by using the cumulative
distribution function (c.d.f) as follows
R(x)=1-6,x)
YIG +D.20°1 - 2vIG + D, A0 (1 + ¢%)]|

- r(g+1)[e-1]

_I(Gr)le-11 - [yiG+DAG) -2y (G+DAG)° (1+¢7)]] a1
- 1 oo

r(3+1)e-1]

3.2. Hazard Function H(x)

H (x) denotes the instantaneous rate function or (the Hazard function). Given that the unit has survived
until x, the hazard function of x, provided that the conditional probability density of failure at time x or
interpreted as instantaneous rate. We can define the Hazard function as

Iw(x)
HG) =35

1
618" o 2R [, _ 25"
S R
r(g+1)e le-11 - [eyiG+DACI]-riG+1.AG) 0 + O]

F(%+1)e [€ —1]

H(x) =

~(12)

3.3. Reverse Hazard function @(x)

The best describes to reverse hazard function is that you can determine it by the approximate probability
of disappointment or failure in [x , x + dx]. Considering that the loss occurred or failure in [0, X]. The function
of reverse hazard @(x) is defined to be

00 =G
ZU A |1- e-M—)g]
D(x) = 1”9“ rg+ [ e] :
r (% + 1) e 1] [V[(g + 1),/1(1—9)9] - EV[(§ + 1)’/1(%)9(1 n CQ)]]
025" € X0 e [1-e A(_)G]
B(x) = o s

(11 + .21 - 21+ DAG A+ O]

4. Estimation methods

As we refer above, this work introduced two estimation methods for the four parameters (6 ,p,1,C). The
outcomes of the simulation procedure explained, but after giving some details about the estimators.

4.1. Maximum likelihood method
IF X1, X5, ... ..., X, arear.s.’s from DWEP distribution, then the Likelihood function is:

334



PEN Vol. 10, No. 1, January 2022, pp.330-342

n

1
gAgt? _a1%\6 (%6
Lg(x,6,4,p,¢c) = 1_[ '1(1’) [1—6’ Q) ]

Gl

Lng(x,0,A,p,¢c)

1 1 1
=Ln6+(§+ 1)Ln/1—(9+1)LnP—LnF(§+ 1)—Ln 1-———— | +6LnX
(1+cos*t
- /‘l(%()" +Ln(1 — ey - (14)
_ 71 1 1
r(z+1) 6(z+1)co(1+co%)e
%_%—Lg—w- (f )+ g+1) (1 ) +LnX — 20501
r (5 + 1) 1—(1+4coet? p
/19(—)9 le 7( =)0
..(15)
1—e /1(—)9
P60 Cxy
alng(x) %(f)e 0+ _(_x)g /1( =5)° 16)
dp  Opp p -,1(_)9
1 6,— 6
=41 (—) /1( )
Olng() g+~ _ %o _ . (17)

The numerical solution can be used to determined eq. (17) instantaneously, since this equation can be equal
to zero. Therefore, we obtain 83y, and ppys ANe Chp @s M.L.E. estimators of 0, p, A, C respectively.

4.2. Method of moment

An independent random sample r.s., X1, X5, ... ..., X;, from the DWRD with parameters 6, p, A, and C. The
moment estimation method is obtained by measuring population moments and equating them with sample
moments.
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By solving the four equations (20), (21), (22), and (23) simultaneously (numerical method), get
(Bmom »Pmom 3om » Cmom) @S an estimate of 6, p, ,A and c respectively.

4.3. Percentiles estimation (PE)

Initially, Kao (1959) discovered this technique by graphically approximating the best linear unbiased
estimators. By fitting a straight line to the theoretical points calculated from the distribution function, and the
sample percentile points, the estimators could be found. In the case of a DWEP distribution, because of the
nature of its distribution function, it is likely to use the same idea to evaluate the estimators of 0, p, 4, and C
based on PE. Since G(x) is separated by Al-khadim in (2014). Firstly, determined numerically the value of x
where x= G-1(x, 0, P, &, C), since P; is the estimate of G (X(;),0,P,A) Opg ,Ppg ,Apg ,Cpp can be
determined by minimizing

Z?ﬂ[x(i) - 6 YP,0,P,2,C) ]2 Concerning 0, P, A, C where

E[G(x(] = Pi = — is the most used estimator of G(X(i)).

4.4. Numerical study

The Monte-Carlo simulation study was conducted by using MATLAB to test the ability of the estimation
methods presented in paragraph (5) which is the Maximum Likelihood method, the moment's method, and the
Percentile method. Assumed a variety of theoretical parameters for DWEPD which is 8 = 2.5,3,5 A=
2.5,3P=2.52,1.5 € =2.52,15 ,andsample sizes (25, 50,100,150) and the replication (1000) for each
simulation experiment to obtain the homogeneity of the results. The results were compared by using MSE and
MAPE. The simulation study showed the preference of the Percentiles method over the other methods at all the
size of samples, 50,100, and the method of the Maximum Likelihood method at the size of 150.

Table 1. Results of simulation under all sample sizes and theoretical parameters

0=2.5 A=25 P=25 C=2.5
n Method 0 1 p ¢
Parameter 2.43116 2.72011 1.99819 | 2.299821
ML. MSE 0.033442 0.043528 0.03328 0.023310
MAPE 0.120095 0.334486 0.22555 0.129892
Parameter 2.315585 2.182231 2.097783 2.6445863
25 Mom. MSE 0.025638 0.122396 0.674627 0.014844
MAPE 0.044316 0.230219 0.409433 0.041808
Parameter 2.499765 2.519132 2.497654 2.499981
Prec. MSE 0.004383 0.004733 0.033567 0.003943
MAPE 0.023644 0.022435 0.063439 0.020098
Best Prec. Prec. Prec. Prec.
50 ML. Parameter 2.132167 2.321456 1.567321 2.312222
MSE 0.154042 0.095019 0.065498 0.159717
MAPE 0.116574 0.170389 0.102865 0.137322
Mom. Parameter 2.422089 1.186318 1.843517 2.448652
MSE 0.019395 0.120794 0.666337 0.013555
MAPE 0.038842 0.229056 0.407341 0.040217
Prec. Parameter 2.504587 2.490333 2.550866 2.501567
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MSE 0.003511 0.002911 0.005655 0.001335
MAPE 0.026894 0.032228 0.034321 0.028889
Best Prec. Prec. Prec. Prec.
100 ML. Parameter 2.238777 2.468719 1.901123 2.248716
MSE 0.118367 0.09894 0.053495 0.16713
MAPE 0.118729 0.18177 0.106784 0.242325
Mom. Parameter 2.411089 1.185317 1.843578 2.488652
MSE 0.018678 0.122151 0.670825 0.056282
MAPE 0.036836 0.231208 0.408862 0.03897
Prec. Parameter 2.503439 2.506796 2.501521 2.50167
MSE 0.00345 | 0.003476 0.003487 0.00334
MAPE 0.01943 | 0.034451 0.026689 0.02098
Best Prec. Prec. Prec. Prec.
150 ML. Parameter 2.507781 2.32119 2.290115 2.35671
MSE 0.002156 0.004016 0.004545 0.004455
MAPE 0.019604 0.031698 0.024932 0.019788
Mom. Parameter 2.353477 2.278122 1.998738 2.459919
MSE 0.008964 0.081852 0.576677 0.032507
MAPE 0.022787 0.189866 0.411746 0.057812
Prec. Parameter 2.456565 1.949285 1.453535 2.446147
MSE 0.003758 0.002913 0.003422 0.002743
MAPE 0.021943 0.030976 0.025358 0.01753
Best ML. Prec. Prec. Prec.
Table 2. Results of simulation under all sample sizes and theoretical parameters
0=2.5 A=2.5 P=2 cC=2
n Method 0 2 p ¢
Parameter | 1.989226 1.76112 1.434579 1.630657
ML. MSE 0.155568 0.083361 0.048788 0.164314
MAPE 0.139612 0.179027 0.094444 0.193864
Parameter 2.39042 2.070324 1.878362 1.933908
25 Mom. MSE 0.88506 0.003422 0.013248 2.182283
MAPE 0.376688 0.035058 0.039678 0.75479
Parameter 2.000176 2.145712 1.502755 2.500455
Prec. MSE 0.003323 0.003438 0.016752 0.003351
MAPE 0.019751 0.033887 0.060636 0.021842
Best Prec. Mom Mom. Prec.
50 ML. Parameter 1.966672 1.679849 1.319831 1.545619
MSE 0.125537 0.081299 0.055723 0.158464
MAPE 0.124465 0.166712 0.102588 0.17176
Mom. Parameter 1.774784 1.478322 1.867458 1.623333
MSE 0.0087899 0.129132 0.727143 0.025344
MAPE 0.030166 0.236965 0.426351 0.075425
Prec. Parameter 2.48678 2.399983 2.499432 2.468535
MSE 0.003353 0.003315 0.006853 0.003111
MAPE 0.020124 0.033493 0.033668 0.025431
Best Prec. Prec. Prec. Prec.
100 ML. Parameter 1.689222 1.893357 1.278898 1.61867
MSE 0.132843 0.086648 0.056059 0.16232
MAPE 0.127653 0.169737 0.103478 0.172912
Mom. Parameter 1.884293 1.158242 1.819322 2.563181
MSE 0.008671 0.131741 0.726526 0.025215
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MAPE 0.029974 0.239542 0.425972 0.073373
Prec. Parameter 2.500178 2.402288 1.981532 2.00987
MSE 0.003377 0.00297 | 0.002922 0.003119
MAPE 0.020228 0.02959 | 0.017556 0.022521
Best Prec. Prec. Prec. Prec.
150 ML. Parameter 2.328891 | 2.245921 1.968712 2.198883
MSE 0.002818 | 0.002913 0.003182 0.002891
MAPE 0.068021 | 0.028824 0.025361 0.024973
Mom. Parameter 2.502003 | 1.885341 1.660188 2.515821
MSE 0.000891 0.090837 0.747855 0.036425
MAPE 0.0148681 0.200133 0.432276 0.094165
Prec. Parameter 2.457882 2.493444 1.444914 2.450834
MSE 0.003264 0.003773 0.003057 0.00204
MAPE 0.019688 0.036724 0.02367 | 0.023819
Best Mom. ML. Prec. Prec.
Table 3. Results of simulation under all sample sizes and theoretical parameters
0=3 A=3 P=1.5 C=1.5
n Method 0 y) p ¢
Parameter 2.677578 2.21145 1.13332 1.308991
ML. MSE 0.126176 0.082487 0.054755 0.136227
MAPE 0.123127 0.164677 0.080667 0.156845
Parameter 1.997611 2.195556 2.018333 1.820322
25 Mom. MSE 0.018282 0.260266 1.011292 0.062223
MAPE 0.048435 0.338282 0.301926 0.134415
Parameter 2.95979 3.080061 1.545561 1.49112
Prec. MSE 0.003311 0.003165 0.007789 0.003098
MAPE 0.020167 0.021799 0.03001 | 0.024377
Best Prec. Prec. Prec. Prec.
50 ML. Parameter 2.578911 2.396541 | 1.241333 1.189921
MSE 0.127152 0.072488 | 0.055756 0.137125
MAPE 0.123323 0.164693 | 0.080732 0.156816
Mom. Parameter 2.745666 1.999653 | 1.917333 2.001125
MSE 0.018235 0.260667 |1.011234 0.062221
MAPE 0.048433 0.368831 | 0.411956 0.121153
Prec. Parameter 3.26822 3.003373 | 1.500855 2.499216
MSE 0.003219 0.003255 0.00845 | 0.003161
MAPE 0.020188 0.031765 0.03127 | 0.024245
Best Prec. Prec. Prec. Prec.
100 ML. Parameter 1.677211 2.301118 1.341111 2.145919
MSE 0.118736 0.0880924 | 0.051474 0.150318
MAPE 0.118812 0.16923 0.078055 0.165094
Mom. Parameter 1.760776 1.49383 2.007874 2.62093
MSE 0.018388 0.260308 1.011934 0.060743
MAPE 0.048477 0.338453 0.4012 0.119912
Prec. Parameter 2.967881 3.111176 1.509011 1.49001
MSE 0.003513 0.003441 0.00346 0.003234
MAPE 0.020176 0.032902 0.019842 0.02355
Best Prec. Prec. Prec. Prec.
150 ML. Parameter 1.948334 2.114566 1.551211 2.455901
MSE 0.002642 0.003295 0.003281 0.002799
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MAPE 0.018841 0.032528 0.018668 0.025637
Mom. Parameter 1.713444 1.488052 1.947384 2.532011

MSE 0.007725 0.20098 1.026657 0.082688

MAPE 0.032217 0.298254 0.405172 0.142688
Prec. Parameter 1.945555 2.450336 1.450625 2.448172

MSE 0.004477 0.003077 0.003351 0.00379

MAPE 0.020732 0.029911 0.019865 0.027223

Best
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Figure 1. The Cumulative distribution functionunder§ =25 A =25 P =25 C =25.
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Figure 3. The Cumulative distribution functionunder6 =3 A=3 P=15 C=15

Applied Side:

The data were collected and applied to the best methods used in the research, which represents the period

of survival of the patient until death for patients with breast cancer. Medical in the holy province of Karbala
(100). After each patient took doses of chemotherapy from the chemotherapy unit, the times until death
occurred in months for the period (2016-2018) and the following table shows the real data under investigation:
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Table 4. Real Data sheet

11.7 10. 10.7 10.5 12.4 12.4 11.3 | 11.3 10.3 10.2
115 117.3 11.3 11.3 11.3 11.2 111 111 119 | 10.9
11.9 11.9 11.8 11.8 11.8 11.6 11.6 115 175 | 215
12.4 12.5 12.5 215 12.3 12.1 12 12 119 | 119
13.28 13.25 13.22 13.1 13 13 12.9 12.8 128 | 12.8
13.9 14.9 13.7 13.6 13.6 13.5 13.4 154 113 | 113
14.7 14.6 14.6 155 144 14.4 14.3 14.27 14.26 14
15.6 14.6 16.4 15.3 15.3 15.3 15.13 14.9 148 | 147
17.8 17.7 17.7 17.6 17.5 17.3 16.7 17.6 16.3 | 19.1
23.6 21.15 18.5 18.5 19.2 19.1 18.7 18.6 185 | 17.7

For fitting data on the survival period until death according to DWEPD of the four parameters. A goodness
of fit test was conducted which includes four types of tests to analyze the real data sample in estimating the
parameters by Percentiles method and its application to the real experience data of breast cancer diseases, which
is best estimated through experimental simulation, table (4) shows the parameter estimates for the proposed
distribution (DWEPD) for the goodness of fit(Chi-Squared, Anderson—Darling, Kolmogorov-Smirnov, Cramer
Van Mises) and the result as following:

Table 5. Results of the goodness of fit for real Data

Model Parameter Chi- Ay K.S Wy
0 A p C square
DWEPD | 2.6888 2.322 2.3111 2.517 0.6811 2.0999 0.09554 | 0.0059
Exp-Pareto 2.8451 3.7778 3.3114 432333 7.6755 0.22212 | 0.0151
Pareto 3.6719 3.2187 77.8755 0.65543 | 0.053
Exponential 71814 79.8776 21.433 0.36754 | 0.0755

From table (2) we note that the bias parameter (C) we observe its value (2.517) based on default values on
the simulation side. The values of the calculated parameters were compatible with the default values for the
parameters shown on the simulation side. And to test the hypothesis (H, : X~DWEP against H;: X + DWEP)
the table shows that the results of the H, null hypothesis test show, according to the four criteria, the acceptance
of this hypothesis a significant level of 0.05)), i.e., the real data follow the proposed distribution (DWEP), where
we have been confirmed by comparing the four tests while Chi-square statistic for the distribution of
Exponential- Pareto value and the distribution of Pareto, Exponential, and this indicator of the values of the
three alternative distributions (for the proposed distribution) confirms the rejection of the null hypothesis.
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Figure 4. The cumulative distribution function for real data
This figure showed clear approximate among empirical curve for double-weighted exponential Pareto and
real data curve which it refers to the accuracy of fitting data according to four tests for fitting.
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5. Conclusions

1. The researcher input double parameter of bias (C) for the distribution of (Exponential-Pareto), so the
distribution was called distribution ((Double Weighted Exponential-Pareto) and was proved to be a
weighted probability distribution.

2. Itwas found that the best value of the bias parameter C contributes to the elimination of the bias is when
(C> 2.5) results from the adoption of data of different sizes, and this reflects the importance of weighted
probability distributions rather than probability distributions only if the researcher is studying or
interested in the analysis of data originally from different samples sizes especially in health and life
applications.

3. The best method of estimation of parameters was the Percentiles method at all the size of samples,
50,100 because have less MSE and MAPE.

4. The priority of the Maximum Likelihood method at the size of 150.

When increasing the sample size, then the Percentiles method and maximum Likelihood method is the

best.

i

Recommendations

1- Extend the research to include other weighted vehicle distributions, as this is important in estimating
operating times or failures and in evaluating expensive medical trials.

2- Dependence on other indicators to reduce or reduce uncertainty as well as the Renyi Entropy scale such
as Shannon- Entropy, and others.

3- Addition of other methods of estimation, other than those adopted by the researcher such as Bayesian
methods. The research on the proposed model can be expanded and converted into complex probability
distributions to accommodate double data.
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