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ABSTRACT 

In this research, two multiclass models have been developed and implemented, namely, a standard long-short-

term memory (LSTM) model and a Convolutional neural network (CNN) combined with LSTM (CNN-LSTM) 

model. Both models operate on raw acceleration data stored in the Sisfall public dataset. These models have 

been trained using the TensorFlow framework to classify and recognize among ten different events: five separate 

falls and five activities of daily livings (ADLs). An accuracy of more than 96% has been reached in the first 200 

epochs of the training process. Furthermore, a real-time prototype for recognizing falls and ADLs has been 

implemented and developed using the TensorFlow lite framework and Raspberry PI, which resulted in an 

acceptable performance.  
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1.     Introduction 

It is a known fact that the proportion of older adults living alone happens to be grown globally wide. Annually, 

nearly 28% to 35% of elderly individuals aged 65 years and above fall two to four times, increasing with age 

[1]. Falls are prominent among other causes of unintentional injury. Fall events influence the physical and 

psychological health of an older adult. Older adults have a weak and vulnerable body, and injuries resulting 

from falls include physical damage and bone fractures. It may lead to death or prolonged lie inability to recover 

[2]. Many researchers have studied falls and activities of daily livings (ADLs) using different methodologies, 

including threshold and machine learning. A threshold-based detection algorithm [3] is broadly used in wearable 

devices. A fixed threshold will determine other acceleration motions associated with the human body, according 

to some particular combination of actions, to determine whether a fall or non-fall event has occurred. The 

primary aims of fall and ADL recognition are to immediately detect the occurring of a fall in real-time and result 

in a rapid alert that can reduce outcomes with medical help response time. Researches about this interest are 

broadly categorized into wearable-based devices and vision-based devices. Vision-based devices generally have 

some constraints; vision-based have come up as an approach to hold the strengths of camera-based systems, as 

such technology is rich with relevant information about the surrounding place. Wearable-based devices tend to 

be a more practical approach that can ensure privacy and individual convenience; furthermore, portability and 

low cost are the most salient features of these devices. This research aims to build a solution to recognize and 

predict falls and ADLs by using the Sisfall public dataset [4]. Sisfall dataset is the wealthiest dataset with 

variants of falls and ADLs, carried out by more than 30 participants, one of them an elderly individual who 

performed all fall events.  Using various methods, machine learning and deep learning can be performed on this 

dataset. 
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The application of deep learning models for falls and ADLs recognition using wearable-based sensors has been 

an area of recent focus, with new methods being introduced constantly. Schalk [5] conducted the LSTM model 

using the WISDM public dataset to recognize the activities of daily livings using an accelerometer sensor. Six 

activities were identified, and the results showed more than 94% accuracy. Wayan [6] used a UMA public 

dataset [7] composed of falls and ADLs using accelerometer and gyroscope sensors. Their experiments on the 

LSTM model showed that the best accuracy resulted from the accelerometer sensor. They set a binary 

classification model to differentiate ADL from falls. Each accelerometer axis is separated and then fed into the 

neural network to be trained; the final results showed that using x-axis accelerometer data only leads to high 

classification performance. Musci [8] implemented real-time online fall detection based on the LSTM model. 

Sisfall public dataset was used with three classes to be detected in real-time: fall, alert, and non-fall; the result 

of the experiment was compared to the obtained results from the Sisfall authors, and they showed high precision 

on fall detection. In [9], the authors combined different machine learning and deep learning models, including 

the LSTM, to enhance the classification of falls and ADLs. Twelve healthy subjects performed a collection of 

accelerometer and gyroscope sensor data. The multiclassification experiment showed that 99.81% average 

accuracy resulted from the LSTM model. Also, their research showed high accuracy in traditional machine 

learning models, while the Support vector machine (SVM) model showed 98.26% average accuracy. Hybrid 

models also have been used in related work; in [10], the authors combined Convolutional Neural Networks 

(CNN) with the LSTM model. Hence, the CNN feature extraction ability and LSTM ability for processing time-

series sequences were utilized; their results showed that the CNN-LSTM model has higher detection accuracy 

than the SVM even with small volume datasets.  This research proposes two variants of LSTM architectures for 

classifying different types of falls and ADLs using data gathered from the accelerometer sensor only. Also, we 

compiled the trained CNN-LSTM model using TensorFlow Lite for real-time hardware implementation on the 

Raspberry Pi platform. 

 

2.    Dataset 

In this section, we present the details of the main flow of this research used for fall and ADLs recognition. This 

approach has been applied primarily to the Sisfall dataset [4]. Figure.1 shows the flowchart for the steps 

performed in this research to predict the falls and ADLs events from accelerometer sensor data. For 

convenience, we will discuss it in terms of three significant steps. 

 
Figure 1. Flowchart for the proposed model in this research 
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To develop the algorithms for the proposed model, Sisfall public dataset was being used. Sisfall dataset contains 

15 falls and 19 ADLs performed by 38 subjects with a sensor fixed on their waist. Among other public domain 

datasets, Sisfall is distinct since it has older people who performed falls and activities of daily living (ADLs). 

The Sisfall dataset was collected using three different sensors, two of them are accelerometer sensors, and the 

third is a gyroscope sensor. The dataset is given in bits and can be easily converted into gravitational acceleration 

(GA). The ADL activities in the Sisfall dataset include walking, sitting, jogging, standing..., etc. Whereas fall 

activities are 15 activities, i.e., falling forward, falling backward, falling while walking…etc. The dataset is in 

CSV file format. It is stored in folders and sorted by subjects and activities, where each file name represents an 

activity and the subject code and the trials that an issue is performed for an activity. We summarized the 

significant characteristics of the Sisfall dataset in table.1. 

 

Table 1. The key characteristics of the Sisfall dataset [4] 

Characteristics Sisfall dataset 

Sampling frequency 200 Hz 

Number of subjects 38 subjects 

Number of ADLs 19 

Number of falls 15 

Subjects age 19-75 

Sensors used Triaxial accelerometer and gyroscope 

Position of sensor Waist 

 

We decided to choose the accelerometer data only since previous studies showed high accuracy when using 

accelerometer data only [5]. Figure.2 shows the 3-axis acceleration curve for some falls and ADLs recorded in 

the Sisfall dataset. 

 
Figure 2. Acceleration curves of fall and ADL: (a) the acceleration curve of strolling, (b) the acceleration 

curve of jogging, (c) the acceleration curve of fall forward while walking caused by a slip, and (d) the 

acceleration curve of fall backward while walking caused by a slip 
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Since deep learning is computationally costly in the training stage or even at the prediction stage, we selected 

distinct classes from Sisfall to evaluate the LSTM and CNN-LSTM models. Table.2 shows the selected 

categories. 

                                                                                               

Table 2. Selected falls and ADLs from the Sisfall public dataset 

Code Activity Trials Duration 

D01 Walking Slowly 1 100s 

D02 Walking quickly 1 100s 

D03 Jogging slowly 1 100s 

D04 Jogging quickly 1 100s 

D05 Walking upstairs and downstairs slowly 5 25s 

F01 Fall forward by a slip 5 15s 

F02 Fall backward by a trip 5 15s 

F03 Lateral fall while walking caused by a slip 5 15s 

F04 Walking and Fall forward by a trip 5 15s 

F05 Jogging and fall forward by a trip 5 15s 

 

 

3.    Proposed model 

This research uses pure long-short-term memory (LSTM), and convolutional neural networks (CNN) combined 

with LSTM. 

 

3.1.  Long-Short-Term Memory (LSTM) Architecture  

In this part of the research, we used the LSTM model to classify falls and ADLs activities; the design of LSTM 

is a part of recurrent neural networks (RNNs). LSTM consists of six layers: three LSTM layers, a dropout layer, 

a dense layer, and a Softmax layer.  Figure. 3 shows the LSTM architecture and the used layers. 

 
Figure 3. LSTM architecture and its layers 

 

LSTM can process a single sequence (sample) at each time step for different motions and can process an entire 

sequence of data (samples). It learns future dependencies between time steps associated with the input data. 

LSTM layer accepted the data to be three-dimensional shape; these three dimensions are samples, time-steps, 

and features. 
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3.2.  CNN-LSTM architecture  

Convolutional neural networks (CNN) combined with long-short term memory (LSTM) architecture have been 

used. Which we think is more suitable for fall and ADLs recognition than LSTM alone. CNN-LSTM hybrid 

models inspired from [14], [15].  CNN was designed to process images and classify them by a 2D filter. 

However, the acceleration data from the Sisfall dataset is time-series data with samples and time steps (in 

seconds). For that reason, we need a filter of one dimension instead of two dimensions. 1D-CNN model is used 

to extract useful features from time-series data and used for time series forecasting. 1D CNN can process data 

and extract discriminative features with a fixed sliding window from a dataset. The sliding window for our 

dataset has a fixed window length of 200 samples. The CNN architecture has four convolutional layers with 

ReLU activation, followed by a Batch-Normalization layer and Max-Pooling layer, as shown in the figure. 4, 

the output data from the previous CNN layer is passed through a flattened layer and then passed through three 

LSTM layers, a dense layer, and a Softmax layer, which is the output. Figure. 4 shows the CNN-LSTM 

architecture. 

 

 

We used TensorFlow [11], supported by Python programming language, a deep learning framework, to build 

the CNN-LSTM model. The LSTM layer learns future dependencies between time steps associated with the 

input data. To have many batches of data close at hand, it is necessary to preprocess and split each class in this 

dataset into a fixed set of samples and store them into segments. This approach is applicable for CNN and LSTM 

layers. Hence, we chose a sliding window of 200 pieces with a step size of 40 works to be about 5 seconds 

worth of data at a time. These segments can be fed into the CNN layer for the feature extraction phase, and the 

LSTM layer will learn what features belong to what class. 1D CNN layer processes data in one dimensional and 

the data must shaped as input_shape (time-steps, parts for the time-steps). Figure.5 illustrates 1D CNN with its 

time-steps and features; CNN has the kernel size, which is the filter size that can move along the axis of time. 

 

 

Figure 4. CNN-LSTM architecture 
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Figure 5. Illustration of the input shape for the 1D CNN layer 

 

There are three features at the first layer: the three-axis acceleration raw data. We scaled the raw data to a fixed 

range between -1 and 1 through Min-Max scaling. These scaling factors restrain the effect of outliers, 

observations, or null values in the acceleration values. Equation (1) describes the Min-Max scaling that is 

usually done in deep learning models:   

 

                                                              xscaled =
x - xmin

xmax- xmin
                                                                (1)   

 

We divide the dataset into training, validation, and testing sets of 60:20:20 of the entire dataset. Figure.5 shows 

an illustration of these proportions. We then sampled randomly from the random state with 40 different random 

states. The reason to have validation data is to evaluate the quality of the model and avoid under- and overfitting 

during the training process. 

 

 

 

 

 

 

 

 

To alleviate the overfitting on the training data, which results in a low accuracy on the validation dataset and 

testing dataset, a dropout layer is used with a scalar value of (0.3 ~ 0.5). 

 

3.3.  Implementation of real-time fall and ADL recognition system 

 

3.3.1.  TensorFlow Lite 

TensorFlow Lite is an open-source deep learning framework from Google Company [12]. It’s a flexible platform 

that allows the deployment of pre-trained neural network models for on-device inference with high reaction 

time and small file size that applies for embedded and IoT devices. TensorFlow Lite supports many languages 

such as Python, JavaScript, R, and Swift. Figure.7 shows the proposed real-time prototype for the fall and ADL 

recognition system. 

 

3.3.2.  Hardware implementation 

Raspberry Pi, a minicomputer, was used in this system as the primary hardware. Raspberry Pi carries a Linux 

operation system and can be used as a developer platform using its pins or as a computer. We have used it as a 

developer board to evaluate our model in our work. ADXL345 accelerometer sensor has been used to collect 

tri-axial acceleration data from the outside world. The hardware devices used in the proposed real-time 

recognition system are shown in Figure.8. Moreover, TensorFlow lite models can work with different devices 

like an app on a mobile phone or with Microcontroller units (MCUs). 

60% 20% 20% 

Test set Validation set Train set 

Figure 6. Uniform datasets splitting to training set, validation, testing sets 
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(a) (b) 

Figure 8. Hardware (a) Raspberry Pi 3 Model B+, (b) ADXL345 sensor 

 

 

3.3.3. Software implementation 

Python was used as the primary programming language to implement this system; the code is straightforward 

to be implemented. It starts with importing the TensorFlow Lite file into the Python script and then resizing or 

manipulating the input tensor shape to the corresponding inputs from the ADXL345 sensor. For real-time 

recognition systems, inference latency should be minimized, and this could be achieved by sampling the 

ADXL345 sensor readings with a fixed sample set.  

 

4.    Results and discussion 

This section presents the results of training our LSTM and CNN-LSTM models to classify falls and  activities 

of daily living (ADLs). Experimental results showed an accuracy of 93.11% using the pure LSTM model. 

Figures 9 and 10 show the training and validation loss and confusion matrix of the LSTM model, respectively.  

 
Figure 9. Training and validation loss of LSTM model 

 

Figure 7. The proposed real-time recognition system 
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Figure 10.  Confusion Matrix using LSTM 

 

We used the CNN-LSTM hybrid model to classify falls and ADLs events in the second experiment. After many 

tests with different epochs and batch sizes, we decided to use an epoch of 300 and a batch size of 128. The 

experiment was conducted with other optimizers such as RMSprop [16], Adam [17], and stochastic gradient 

descent (SGD). We decided to choose an Adam optimizer with a learning rate of 0.001. Choosing the learning 

rate value could be frustrating; a low learning rate value could take a very long time to train or fail at training; 

in contrast, a high learning rate value can lead to difficulties in converging loss. This is the trade-off we should 

consider when picking the learning rate value. The same applied to the dropout rate but with a different scenario. 

A high dropout value could cancel out many weights and biases at training time and result in undesirable 

performance. It is worth noting that the training time is a linear function of the hyper-parameter. It is observed 

from the results that there is a trade-off between training time and the hyper-parameters used during the training 

process. The validation accuracy must be stable to prevent the model from overfitting towards the training data. 

The training process needs a computer with a high-performance graphics card; because of this limitation, the 

model was trained online on Kaggle website with a GPU accelerator and implemented using Python 3.7 

environment, several experiments (average training time of ~ 8 hours) were performed. Experimental results 

showed an accuracy of 98.18%. Figures 11 and 12 show the training and validation loss and confusion matrix 

of our CNN-LSTM model, respectively. 

 
Figure 11. Training and validation loss of CNN-LSTM model 
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Figure 12.  Confusion matrix using CNN-LSTM 

 

4.1.  Classification performance  

The classification performance for both LSTM and CNN-LSTM models is represented by different metrics, 

including sensitivity, specificity, and accuracy; these metrics can be calculated by equations 1, 2, and 3, 

respectively  

                        Sensitivity =
TP

TP + FN
                                                                 (1)                        

 

 Specificity = 
TN

FP + TN
                                                                (2) 

 

 Accuracy =
TP + TN

 TP + FP + TN + FN
                                              (3) 

  

Where true positive (TP), a fall has occurred, and the model correctly predicts that. False-positive (FP), the 

model predicts normal ADL action as a fall. True negative (TN), a fall occurred, but the model predicts it as 

ADL. False-negative (FN) fall occurred, but the model does not predict it. Sensitivity measures the model's 

ability to predict all actual falls; specificity measures the ADL prediction rate; accuracy, which is the proportion 

of accurate prediction results in this model. Table 3 summarizes the classification performance. 

 

Table 3. Classification results of LSTM and CNN-LSTM model 

 LSTM CNN-LSTM 

Sensitivity (%) 89.65% 97.11% 

Specificity (%) 99.25% 99.78% 

Accuracy (%) 93.11% 98.18% 
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We also compared our results with several other algorithms evaluated on Sisfall public dataset, it should be 

noted that some of the algorithms are binary classification method, comparison of the performance is given in 

Table.3 below.  

 

Table 3. Similar work on falls and ADLs recognition 

Research Dataset Model Classification accuracy 

Liu et al 2018 [18]. Sisfall SVM 97.6% 

Musci et al 2018 [8]. Sisfall RNN-LSTM 97.16% 

Ours Sisfall CNN-LSTM 98.18% 

 

From the compression table above, our proposed model shows the higher accuracy using CNN-LSTM model 

and raw acceleration data. Traditional machine ;learning like SVM and KNN needs a lot of feature engineering 

related to time-domain and frequency-domain nature of acceleration data, dealing with traditional machine 

learning is obsolete in most cases these days. CNN model make it is easier by its ability for automatic feature 

extraction using convolution filters.  

 

4.2.  Results of real-time CNN-LSTM fall and activities of daily living (ADL) recognition  

The implementation of the real-time falls and ADLs recognition will be presented here. The prototype is tested 

on an individual of 30 years old for three classes, each class for 15 seconds. The real-time device setup for the 

participant and the results are shown in figures 13 and 14, respectively. 

 
Figure 13. The setup of the real-time prototype 

 

 
 

(a) 
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(b) 

 
(c) 

Figure 14. Results of the real-time falls and ADLs recognition prototype, 

(a) the individual performs “standing,” and the model predicted that class correctly, 

(b) the individual performs “strolling,” the model predicted as “walking upstairs and downstairs,” 

(c) the individual performs falling forward, and the model predicts this class correctly 

 

After running the Python script responsible for the real-time recognition process, an array comprising ten 

elements is shown as the printed output. The array holds ten classes that we trained our model on. Figure.10 (a) 

and (c) both show that the recognition process for the real-time process is done correctly. Unfortunately, the 

model misclassified “walking slowly” as “walking upstairs and downstairs.” This misclassification occurs in 

real-time and is based on the several experiments we have done for this. Hence, it is worth saying: first, the 

accelerometer sensor should be positioned in a fixed place to result in inappropriate readings. Secondly, further 

calibration of the accelerometer sensor should be done, and the real-time model is susceptible to variations in 

acceleration values. Besides these observations, the sampling rate of the collected data and  the scaling process 

applied during training must be met during the real-time process. This means that the captured data from the 

accelerometer sensor should be sampled at 200 Hz, and Min-Max scaling should be applied too. 

 

5.    Conclusion 

First, a multiclass LSTM model has been developed to discriminate various types of falls and ADLs. The LSTM 

model has achieved an overall accuracy of 93% at the testing phase. It has been observed that the LSTM has a 

slightly degraded performance on resolving various types of falls caused by a slip as opposed to falls caused by 

a trip. A combined CNN-LSTM model has been proposed and implemented to improve classifier efficiency. 

The proposed model has a superior performance over the LSTM network. We have reached an overall accuracy 

of 98.74% in the testing phase. On the hardware side, we have converted the trained CNN-LSTM model to 

TensorFlow Lite for implementation in Raspberry PI for on-device inference. The model has been tested against 

data collected using the ADXL345 accelerometer sensor, and we have successfully shown that the model 

provides acceptable results for real-time recognition. 
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