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 In every parametric formula of pricing a financial instrument, factors used in 

the calculation generally include the volatility estimate. Volatility measures 

the likely changes of the price for a specific period of time. The accuracy of 

estimated price strongly relies on the accuracy of provided expected changes 

in the market volatility for the period of interest. As opposed to other 

variables, which are assigned values to financial instrument, volatility is the 

only estimated one. For that reason, big focus of researchers was and still is 

on improving the volatility estimate. Initiated are different estimation 

approaches through last few decades. This paper explains few ARCH models, 

symmetric and asymmetric, and compares their estimates of daily volatility 

for the Standard and Poor’s Indexes. 
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1. INTRODUCTION  

Volatility estimation is grouped into two methods of: (i) historical volatility – learning from past 

characteristics of price change, while assuming that they will hold; and (ii) implied volatility – calculating the 

fitting volatility value based on the market assigned price. This paper will compare two historical volatility 

estimates for Standard and Poor’s index, and finally compare them to the realized volatility calculated based 

on intraday prices.  

 

Initiated by [1] the ARCH model was further developed in various directions. A detailed list of such models, 

all originating from the Engle’s ARCH, is provided by [2]. This paper will mention just few of them, 

including GARCH (1,1), ARCH-M, and GJR-GARCH. The symmetric model of GARCH(1,1) and 

asymmetric GJR-GARCH  will be applied and compared using ten years of the daily closing price market data 

of both Standard and Poor’s 100 and Standard and Poor’s 500 Indexes.  

 

Previoulsy done reviews of ARCH-type models include [3], [2], [4], [5], [6] and [7]. There were vast 

comparisons of different volatility forecasts and their performance. Some conclude the preference was based 

on markets as well as on financial instruments (stocks, indexes, bonds, or currency). A detailed review of such 

kind is [8], which shows that 17 out of 39 preceding studies preferred GARCH (1,1) while remaining 22 

studies find the historical volatility (including random walk, historical averages of squared returns, and 

absolute returns) to perform better.  

 

Similarly, as studies cover different markets, different conclusions of preferable methods for estimation were 

obtained. Selected EWMA by [9] for Japan, just as [10] did for Singapore. On the other side, [11] find GJR 

(1,1) to be the choice for Australia where EWMA performed weakly. [12] did a very detailed study, using a 

continuously compounded daily return of fourteen countries for estimating corresponding volatility both 
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within a week and within a month. Comparing eleven different methods, they found the best performance to 

be by a weighted moving average model with weight declining by 10% and looking back for 12 periods.  

 

Reached are different conclusions in selecting when estimating the volatility forecast of currency exchange 

rate. Evaluating the methods on five different currencies, [13] conclude that GARCH(1,1) outperforms others. 

[14] study the forecasting performance also of the currency exchange rate between the American dollar and 

currencies of each of Canada, France, Germany, Japan, and U.K. using the market data from 1973 to 1989. 

While studying the forecast for twelve-weeks and twenty-four-weeks the results were inconclusive, and only a 

one-week prediction gave an advantage to the GARCH model.  

 

2. METHODOLOGY 

 

The paper starts by explaining the model of GARCH (1,1) in details. Starting from its mathematical logic 

related to the already learnt behavior of financial returns, followed by its practical application with use of 

maximum likelihood methods. Similar, but less detailed steps, follow for the GJR-GARCH model.  

 

Knowing that returns do not fit the Gaussian distribution, the GJR model is estimated under assumption of 

both the Gaussian as well as the T distribution.  

 

By considering the closing prices of that financial instrument, at the end of the days t-1 and t, to be      and 

  , respectively. Accordingly, the value of r_t representing the continuous interest rate for that day ‘t’ would 

be calculated as: 

     
  

    
.            (1) 

Based on it all the other calculations will be done. In other words, the information used for calculating the 

volatility estimation formula is its history of daily prices. No other market information is used. Finally, the 

data of daily closing prices of S&P100 and S&P500 indexes daily closing price will be used to show real 

examples of all these models GJR-GARCH and GARCH. 

 

3. ARCH MODELS 

 

Through modifying the idea of Auto-regression (AR) by adding the power of two, [1] introduced the very 

popular ARCH(m) model. Further developed was the initial ARCH to tens of other models. Initially, the 

concept of ARCH (1) will be explained, looking only at the information of a single preceding period. Starting 

with an assumption of return for a period t, represented by   , conditional on preceding returns being normally 

distributed with a constant mean value of   and with a time-varying conditional variance   , is defined as 

 

                                  (2) 

                                    (3) 

The corresponding value of its period t, residual    is calculated by subtracting the mean value of historical 

returns   from the return realized in the period t 

 

                    (4) 

The error of the forecast of the squared residual, here represented by the symbol of   , based on the estimate 

of   , can be rephrased as the difference between the realized squared difference between the mean and the 

conditionally expected squared difference from the mean. It is calculated by using 

 

     
      

                         (5) 

     
    .             (6) 

Replacing the    in the (3), by the corresponding   
     from the formula (6) provides a new shape of the 

ARCH (1) for estimating the difference as 
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    .            (7) 

Satisfaction, for the outcomes achieved through ARCH, has been reported by among others [15], [16], and 

[17]. They have confirmed it is suitable for various financial time-series. 

 

The ARCH was further developed by [18], as they were the first to publish an extension of the ARCH model 

to be multivariate. [17] state a few advantages of the ARCH as the main grounds for its success. According to 

them, while managing the clustered errors as much as its nonlinearities, ARCH models are simple and easy to 

handle. 

3.1 GARCH(1,1) MODEL 

 

GARCH (p, q) was the first further development of ARCH (p), by assigning some weight    to the 

corresponding lagged conditional variance of     . The GARCH (1,1) model was introduced separately by 

[19] and [20]. For a single lag GARCH (1,1) a conditional variance for period t gets calculated as 

                     .          (8) 

For the process to be stationary a constraint for the sum of         to be less than one is added. Considering 

the values of returns to be normally distributed, corresponding standardized residual is calculated by: 

   
    

   
 

  

   
            (9) 

Where, the distribution of   , considering its non-dependence on past returns, would be: 

                     ,            (10) 

Then a GARCH (1,1) under conditional normal distribution, would be defined through: 

          ,            (11) 

               ,             (12) 

                     .          (13) 

Replacing the      part of (8) with the corresponding equivalent based on (6), provides: 

                 
       ,          (14) 

It can be rewritten as: 

           
        .           (15) 

Taking into consideration that            , which implies E[z²] =1, the expected value of the conditional 

variance for the period t is calculated as: 

                    .           (16) 

Given the independence of              , since the calculation of      includes the standardized residual 

value of the preceding period, instead a variable of     , the only remaining precondition is that the 

conditional variance of    has a finite expected value. Taking into consideration the previously stated rule of 

    leaves no other option for (16) to be covariance-stationary except by having       . Such 

conclusion was first proven by (Bollerslev 1986), through taking the process back in time indefinitely.  

 

From the other aspect, formula of (8) for   , having a non-zero value of  , shows its dependence on     . 

Similarly, rewriting the same formula for     , it would be dependent on     , and such relationships can be 

seen all the way down until   dependence on   . This characteristic confirms the dependence of GARCH 

(1,1) value of conditional variance   , on all the previous values of       . Thereby, the covariance 

stationary GARCH (1,1) is comparable to ARCH ( ). 

 

Forming the corresponding formula for     , and substituting it within that of   , provides: 

                                     .       (17) 
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Further step of adding the corresponding equation of     , which itself includes     , provides:  

 
                                                          (18) 

By enduring such steps, going back with the substitution for some m number of periods generates: 

 

          
                    

                  (19) 

 

If assuming that the process goes back indefinitely, replacing the value of m by infinity, will enable 

application of the infinite geometric regression which, knowing that GARCH(1,1) requires that    , allows 

the replacement of its total sum as:  

 

     
 

   

 
               (20) 

Such that 

   
 

   
                 

        .         (21) 

Similarly, knowing that     makes      approach zero, the      part can be excluded from the (21), 

accordingly providing: 

 

   
 

   
                 

   .          (22) 

Stated before is that for GARCH (p, q) both              their sum      , and their power       

turns to be of a negligible value when put to the power of a reasonably big number. The function includes the 

weight given to each term. The measure of weight decreases exponentially according to its time distance from 

the present time. Consequently, the weight that would get assigned to the residual     
   is      . As such, 

GARCH becomes very much comparable to the Estimated Weighted Moving Average (EWMA) method of 

volatility estimation.  

 

On the other hand, every    has its minimum possible value of 
 

   
 that might occur through having either 

       assigned to be zero.  

 

3.1.1 GARCH(1,1) MOMENTS 

 

As already stated,     is considered to be i.i.d. At the same time knowing that    depends on the past values 

of  , the unconditional expected return gets calculated as: 

                                  

Since                 , then        , and        . On the other hand, the corresponding variance, not 

dependent on past returns, known as unconditional variance, gets calculated based on the residual: 

            
            

          
 

Since     
    , it can be concluded, from (16), that: 

        
 

     
.           (23) 

Accordingly, the previous conditional variance formula (6) gets rewritten as:  

 

                             .        (24) 

Consequently, the GARCH(1,1) conditional variance of    can be summarized as a combination of the 

squared residual          , the conditional variance     , from the preceding period (t-1) and respectively 

weighted by        , and the remaining weight of       is assigned to the variance   .  
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3.2 ARCH-M MODELS 

 

ARCH-in-mean is merely any ARCH model that includes the conditional volatility of    in the process of 

estimating the daily expected return  , instead of using a constant   as is the case in ARCH(p) or GARCH(p, 

q). [21] introduced one of the suggested examples of ARCH-M: 

         .            (25) 

Defining   as a risk-free interest rate,   represents a weight of the risk parameter of estimated conditional 

volatility.  

 

Practical use of ARCH-M model, on the interest-rate data, was done by [21], who estimated the time-varying 

risk premium with outcome showing a good data fit. Tests of the ARCH-M model, on returns of different 

indexes, include [22], [23] and [24].  

 

3.3 ASYMMETRIC-GARCH MODEL 

[25] demonstrates that a period with a negative movement of the market price has a higher influence on the 

value of volatility in the next period than equivalent positive change. That difference in weight assigned to 

different residuals, based on their sign, is also known as asymmetry. [26] accordingly responded to the 

realized asymmetry by modifying the GARCH formula as: 

          
            

                (26) 

Where 

    
            
           

            (27) 

In the case of price fall, it provides an additional weight of    to the residual     
 , to cover that difference it 

has on the change in the coming period. This method is known as GJR-GARCH or as GJR (1,1).  In other 

words, the squared residual is given the weight of   in the period following the return above its conditional 

expectation, whereas the weight of      otherwise.  

 

General GJR-GARCH(p,q), would be used to forecast the next period by: 

                 
              (28) 

                                    (29) 

E [   =0.5 is assumed through considering an equal likelihood of preceding residual having positive or 

negative value and accordingly for the value of    to be 0 or 1.  

 

While [27] argue that some other models, with a focus on QGARCH, outperform GJR, [28] and [29] claim 

that GJR-GARCH outperforms other methods when applied on stock indices.  

 

3.3 GJR WITH CONDITIONAL T-DISTRIBUTION 

 

As many researchers confirm that returns are Non-Gaussian, considered were various alternative distributions. 

In that direction, empirical evidence was provided by [30] and [31], contradicting the assumption that returns 

follow a conditional normal distribution. Among the alternatives for N(0,1) [31] suggested the standardized t-

distribution. 

As such, in [31] the calculation was done by using the GARCH(1,1) model. The conditional distribution of the 

model is considered to be of standardized t-distribution, with ν degrees of freedom. The proper value of ν 

would also be determined through the optimization process, as to determine the optimal one. The variable ν is 

not present either in the constraints of the process, nor in any of the calculations of other variables, but in the 
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objective function which is due to be maximized. The objective function used for t-distribution, used for the 

same purpose by [32], is: 

    
 

 
                

   

 
      

  
 

   
         (30) 

Where     , based on the gamma function, is defined as: 

     
  

 

 
      

  
 

 
         

.           (31) 

With gamma function being of integral type: 

                        
 

 
.         (32) 

Those include four American Indexes of Standard & Poors 500, NASDAQ, Dow Jones Industrial, and New 

York Stock Exchange Composite Index (NYA). Added to that list are four European Indexes of British “The 

Financial Times Stock Exchange” FTSE100, French “Cotation Assistée en Continu” CAC40, German DAX, 

and Spanish IBEX35. Moreover, analyzed are three Asian Indexes of Japanese Nikkei, Chinese HANG 

SENG, and Indian BSE30.  

 

4. TEST ON S&P INDEXES 

 

In this part the introduced models of GARCH(1,1), and two models of GJR(1,1) will be tested on a real 

market data of daily closing price of Standard and Poor’s Index, and their outcomes compared.  

 
4.1 GARCH (1,1) TEST ON S&P 100 
 

To apply the GARCH(1,1) used is Standard and Poor’s 100 Index p(t) set of historical daily closing prices, 

from January-2006 until June-2016. The daily return rate is calculated using a continuous percentage change 

formula (1). In the equation of conditional variance   , the first day gets approximated by calculating sample 

standard deviation to the power of two. For the trading days that follow, it gets calculated by using the 

equation (13). Within the process, variables of            get assigned some initial values, which (in addition 

to  ) get modified by reassigning them the proper values through the process of optimization. Calculation 

of    is done by (9) assigning an initial value that would be changed by the optimization process. Finally, the 

process gets optimized through maximizing the objective function of 

 

Log L    
 

 
               

         
  .        (33)  

 

The constraints included in the optimization process are those having       , and having none of the 

variables             negative. The optimization outcome appears in Table 1. 

 

Table shows on the left-hand side some essential statistical characteristics of the analyzed daily returns, while 

the right-hand side shows the outcomes achieved by the already described method of GARCH (1,1). The long-

term volatility measure gets calculated by assigning the optimization process outcomes of             in the 

formula (23). 

 

The calculation provided an outcome of one-day measure for long-term volatility, the value of 0.01131 or 

1.131%. The corresponding annual volatility gets attained by multiplying the daily volatility value by the 

square root of 252 (average number of trading days per year in the US financial markets, after exclusion of 

holidays and weekends) reaching the value of 0.179525 or 17.95%. As for any day t, the conditional variance 

gets estimated by using the outcomes of the preceding trading period and applying it in the GARCH formula 

through the optimization outcomes as: 

 

                                                          (34) 

 

 



Sadi Fadda  PEN Vol. 7, No. 1, 2019, pp. 20 – 35 

26 

Table 1 GARCH (1,1) optimization outcomes for the S&P100 

CHARACTERISTICS OF DAILY RETURNS  r(t) 

Mean 0.00025991 

St.Dev. 0.01254081 

Skewness -0.0361637 

Kurtosis 10.8230376 

Autocorrelation -0.1113227 

Minimum -0.087769 

Maximum 0.1124342 

GARCH (1,1) OUTCOMES 

  0.0006532 

  2.3273E-06 

  0.11554 

  0.866263 

Persistence 0.981813 

LONG TERM VOLATILITY  

Daily Annualized 

0.01131 0.179525 

 

 
Figure 1: Daily volatility by GARCH (1,1) and historical average 

 

The most straightforward comparison of the outcomes would be with the primary historical volatility. It is 

calculated by taking a few returns of preceding periods and calculating their standard deviation. Figure 1 

shows the two outcomes of the variance, the first estimated by the GARCH(1,1), and the second by the 

historical variance using the twenty-five days history of squared residuals. The red graph displays the 

GARCH(1,1) estimation, while the blue one represents the historical average. 

 

Figure 1 displays that the historical-average daily measure of volatility that generally exceeds the equivalent 

GARCH estimation, on both upper and lower sides. That obvious conclusion gets confirmed by the difference 

of standard deviation values of the two estimations. As the calculated daily mean-historical-volatility has the 

standard deviation of .00037, the corresponding GARCH has it of .000277. 

 

Figure 2 displays the annualized GARCH(1,1) calculated daily conditional volatility, and compared to the 

corresponding volatility of “VXO” provided by The Chicago Board Options Exchange for S&P 100.  
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Figure 2: The GARCH estimated Volatility and VXO 

 

In the implied volatility calculation process of both VIX and VXO, CBOE takes into consideration is the time 

to maturity of one month and uses the at-the-money put and call options. Since the GARCH (1, 1) calculation 

is for S&P100, the corresponding volatility estimation provided by the market is VXO. Through simple visual 

analysis of Figure 2, it shows some similarity in the estimated deviation measure, while in general VXO is 

higher than the GARCH forecast. 

 

Observed in Figure 3 are the outcomes of the standardized residual, calculated by dividing the daily residual 

of return by the estimated volatility. In a Gaussian distribution, the value of standardized residual is expected 

to move between the values of -3 and 3. It is evident that the daily standardized residual for S&P100 exceeds 

that range more frequently. As in a normal distribution, it would occur less than three times in a thousand 

trials for z-value to exceed the range of (-3, 3) while once in two thousand trials to exceed the range of (-3.5, 

3.5). 

 

 
Figure 3: The daily standardized residual estimated by GARCH(1,1) 

 

In the 2625 trading days of S&P100, the standardized residual, which gets calculated within the GARCH 

(1,1), occurs to be outside the normal range of (-3, 3) nineteen times. Twice the z value turns out to be higher 

than 3, while the remaining 17 times its value is less than -3. Also, the negative residuals have more extreme 

values, as of the seventeen values of the standardized residual being less than negative three, six are further 

below -3.5. A similar outcome of having the standardized residual results higher than 3.5 occur zero times for 

the positive residuals. 

 

4.2 TEST OF ASYMMETRIC MODEL ON S&P 100 

 

The GJR(1,1)-MA(1)-M model combines the three characteristics, including GJR(1,1), and M for the 

inclusion of conditional variance of    within the formula of mean-return   . The third charachteristic is that 
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of MA (1), represents a moving average that is also a part of ARMA and GARCH but in this case included in 

the formula (37) of daily mean-return as      . (Taylor 2011) 

 

                   
                (35) 

                           (36) 

                         (37) 

 

Accordingly, the GJR (1,1) part of the calculation process is present in the formula for the conditional 

variance    (35). Similarly, in the equation (37), the presence of    adds to it the M part. Finally, presented is 

the MA (1) part of       in the equation (37) for evaluation of the variable of   .  
 

Applying the method through the tools of Microsoft Excel, using the daily closing price of Standard & Poor’s 

100 Index for more than 2600 trading days, shown are the attained optimization results in Table 2. 

 

Table 2 Outcome of GJR (1,1)-MA(1)-M model with conditional normal distributions 

GJR(1,1)-MA(1)-M  OUTCOMES 

  1.0018E-07 

  0.05027265 

  -0.02126269 

  1.4995E-06 

  0.04032983 

α- 0.05846881 

  0.91356802 

Persistence 0.983132 

Long-Term Volatility  

Daily Annual 

0.0094286 0.149675 

 

After placing the outcomes from table 2 instead of their variables of equations (35) and (37), provides the 

corresponding equations (38) and (39). These equations make it simple to estimate both the conditional 

variance and the expected return for the next period. 

 

                                        
                 (38) 

                                            (39) 

 

 
Figure 4: GJR (1,1)-MA(1)-M Volatility estimation and VXO 
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Figure 4 shows the GJR(1,1)-MA(1)-M daily conditional volatility estimation compared to the that of VXO, 

where just as in the previous comparison with the GARCH(1,1) estimation, GJR model generally 

underestimates the daily volatility. 

 

Table 2 GJR (1,1)-MA(1)-M model optimization outcomes 

 

While showing similarity in the estimation of the values of long-term volatilities, both daily and annual, under 

different distributions considered, all the other variables provided by the optimization process have reasonably 

different values. Further analyses, which follow, describe the actual differences between them. 

 

Figure 5 shows the visual form of the GJR (1,1)-MA(1)-M models volatility estimation, with different returns’ 

distribution assumptions, compared to the historical volatility means. Considered under normal conditional 

distribution, the outcomes of GJR(1,1)-MA(1)-M show outcomes very similar to those of GARCH(1,1), with 

values graphically seen to fall within the limits of historical mean. The calculation of GJR(1,1)-MA(1)-M with 

the T-distribution differs more from GARCH(1,1). 

 

Confirmation of the same is possible with the standard deviation values of the daily estimated variances. As 

the standard deviation value of the GJR(1,1)-MA(1)-M with the normal conditional distribution is 0.000267, 

the GJR(1,1)-MA(1)-M with t-distribution has  0.000331. Results, of non-normal distribution, being closer to 

the standard deviation value of 0.000371 calculated by the ten days historical mean volatility estimation. 

 

 
                                            (a) 
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GJR(1,1)-MA(1)-M Normal Dist. T Distribution 

μ  1.0018E-07 0.000145977 

W  0.05027265 0.061944561 

Θ  -0.02126269 -0.06699483 

ω  1.50E-06 2.35785E-06 

α  0.04032983 0.01743715 

α-  0.05846881 0.199096732 

β  0.91356802 0.857732023 

ν  

 

6.257815 

Persistence 0.983132 0.974718 

Long-Term Volatility  Daily Annual Daily Annual 

 

0.009429 0.1497 0.009657 0.1533 
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                                             (b) 

Figure 5: The Difference between the ten-days mean historical volatility and GJR(1,1)-MA(1)-M estimation 

with the conditional distribution assumed to be (a) Gaussian, (b) T-distribution. 

 

As outcomes in table 4 show, α and α- are among the variables with a significant change in value between the 

estimates under the two different distribution assumptions for returns. The change in distribution assumption 

corresponds significantly to the asymmetry ratio A, calculated by A= (α + α-)/ α. While, under the normal 

distribution, the optimization outcomes give the asymmetry ratio of 1.49. The equivalent asymmetry ratio has 

values higher than 10 under the t-distribution.  

 

The daily standardized residual gets calculated by equation (9). As far as the fat tail feature of volatility is 

concerned, the proportion of standardized daily residuals exceeding the range of (-3, 3) did not change 

significantly between the two models. The small change that took place was in the unexpected direction, 

where the number of occurrences outside the range of (-3, 3) increased from 20 under a normal distribution to 

22 under T-distribution.  

 

Table 3: Frequencies of S&P100 standardized daily returns estimated by GJR(1,1)-MA(1)-M 
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GJR with Normal Distribution GJR T-Distribution  

Range observed-normal observed-normal Normal 

0 to 0.25 3.19 2.92 9.87 

-0.25 to 0 2.28 2.62 9.87 

0.25 to 0.50 2.03 1.23 9.28 

-0.50 to -.25 -0.14 -0.06 9.28 

0.50 to 1.00 -0.75 -0.29 14.99 

-1.0 to -.50 -2.54 -1.81 14.99 

1.0 to 1.50 -0.39 -1.49 9.18 

-1.50 to -1.00 -2.94 -2.44 9.18 

1.50 to 2.00 -0.94 -1.51 4.41 

-2.00 to -1.50 -1.09 -0.40 4.41 

2.00 to 3.00 -0.35 -0.54 2.14 

-3.00 to -2.00 1.14 1.21 2.14 

> 3 -0.021 0.017 0.13 

< -3 0.51 0.55 0.13 

Sum(ABS) 18.83 17.12  
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The mean value is among the core characteristics of these outcomes of the daily standardized residual,   , for 

the two different calculations of GJR(1,1)−MA(1)−M models. As in the standard normal distribution, it is 

supposed to be zero; it turns out to be −     ,        respectively for normal and T conditional distributions. 

As these values do not seem to be at a significant distance from the normal distribution, a similar conclusion 

gets confirmed through the corresponding standard deviation values of 0.993469 and 0.99562, which in 

normal distribution would be 1. 

 

As can be expected from the mean values, both are skewed to the left, having very close values of           

and         . As all of these details confirm the distributions distance from the normal distribution, the 

values of their kurtosis are significantly different from the Gaussian distribution value of 3, instead        

and       , respectively. 

 

As the kurtosis value shows a slight shift towards the normal distribution, as being closer to 3, reached is a 

similar conclusion through revising the Table 4. This table shows the occurrence frequencies of the 

standardized residual for 14 different intervals for each of the three tested distributions. Calculated is the 

percentage of occurrence of standardized residual values of the estimated 2625 trading days and their 

belonging within those intervals, and compared to the corresponding proportion under the normal distribution. 

The outcome shows varying differences that can be identified for those ranges, looking at each 14 of them. In 

total, the sum of absolute values of differences of 18.833 and 17.116 for each. 

 

 
(a) 

 
(b) 

Figure 6: Differences between the annualized estimated daily conditional volatility  

(a)                                       ; (b)                                           . 

 

Figure 6 included the difference between the annualized daily conditional volatilities estimated by different 

ARCH methods. Part (a) of the figure shows the difference between the annualized conditional volatility daily 

estimations of GARCH(1,1) and GJR(1,1)-MA(1)-M, both under conditional normal distribution. Looking at 
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(b), the difference between the volatility estimates of GJR(1,1)–MA(1)-M under normal distribution versus 

the corresponding GJR(1,1)–MA(1)-M under T-distribution is significantly greater than its difference versus 

GARCH(1,1). 

 

Is any of them correct? A right choice needs to be selected. Given the availability of intraday data for S&P500 

Index, the same calculations were repeated using the daily closing price of S&P500, with a slight change in 

sample size. To avoid extreme values mostly experienced through the period of global financial crises, the 

sample starts from mid-2009 and includes 1825 daily closing prices. As for the stated S&P500 data, the 

optimization outcome of GARCH (1,1) was: 

 

                                                        (40) 

 

The same data used for GJR(1,1)-MA(1)-M model, with conditional normal distribution, provided the 

outcomes of: 

 

                                         
            ,     (41) 

 

with the corresponding mean return: 

 

                                    . (42) 

 

Similar optimization for GJR(1,1)-MA(1)-M model, with conditional T-distribution, provided the estimates 

of: 

 

                                          
            ,    (43) 

 

in addition to its periodic value of the mean return:  

 

                                             (44) 

 

Those volatility estimation formulas were used to calculate the daily conditional volatility all through the 

studies period. Throughout the in-sample testing period of the 61 trading days at the beginning of 2016 for 

which the daily volatility was calculated using the intraday price of the S&P500 Index. The data included 

prices on the 15-minutes interval and the volume of trade for each of them.  

 

Consequently, each of these intervals is assigned the weight of its trading volume as compared to the total 

daily trade of that asset. Accordingly, calculated are the daily weighted mean and standard deviation. The 

calculated values were further modified by multiplying by the square root of the number of trading days in a 

year, to have the annualized volatility measure. 

 

Part (a) of Figure 10 shows the outcomes of the GJR(1,1)-MA(1)-M models and the realized volatility which 

is visually detachable from the other two. As in the most of the 61 trading days, the realized volatility shows 

to be below all three of the estimates. Also, evaluated by eyesight, the normal distribution seems to 

outperform the T-distribution. 
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(a) 

 
(b) 

Figure 7: Visually displaying the outcomes of realized volatility as compared to (a) GJR(1,1)-MA(1)-M 

models with different distribution assumptions; (b) GARCH(1,1). 

 

Part (b) of Figure 7 shows the difference of the GARCH (1, 1) estimation and the daily realized volatility.  

Through a visual comparison, the GARCH (1, 1) estimations are closer to the calculated realized volatility 

than either of the GJR models shown in part (a). Despite its inclusion of additional parameters, the asymmetric 

model of GJR fails to outperform the simpler GARCH, suggesting that the asymmetry measure identified 

through ten years used in the optimization process did not hold in the testing period. 

 
5 CONCLUDING REMARKS 

 

The parametric methods of ARCH went through lengthy research, and developed are tens and tens of different 

models. From the aspect of practicality, applying either of them is very demanding, they try to implement as 

many of the learned characteristics of the market price in the process. While considering its coverage of the 

confirmed asymmetry characteristics, GJR-GARCH would be a preferable choice among the revised ARCH 

models. 

 

Included in this study is are the two models of GJR(1,1)-MA-M differing in the assumption of its conditional 

distribution that, as opposed to the GARCH(1,1) model applied, do not have a constant daily mean value of 

return. Instead, as explained in the text, the value of μ is calculated for each period separately as μ
 
. Despite 

such flexibility, estimates by GARCH(1,1) with conditional normal distribution are, for the first 30 trading 

days, closer to the realized volatility than either the GJR-MA-M with conditional normal distribution or the 

GJR-MA-M with conditional T-distribution. 
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Used for test and comparison is a sample of three months of daily intraday prices of Standard and Poor’s 500 

Index, and their corresponding daily standard deviation. For each of these days calculated is the corresponding 

conditional variance, using the developed formulas of 40-44. The calculated outcomes, as shown in Figure 7, 

suggest that a simple GARCH(1,1) can outperform a further developed models of GJR(1,1). That could 

suggest a significant change in the asymmetry between first thirty days of the test period and the interval used 

in the optimization process. 

 

At the same time, the sample shows that GJR-MA-M model does not show a significant difference, comparing 

the two estimates under different assumptions of conditional distribution. 
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