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ABSTRACT   

Environmental air pollution has become one of the major threats to human lives nowadays in developed and 

developing countries. Due to its importance, there exist various air pollution forecasting models, however, 

machine learning models proved one of the most efficient methods for prediction. In this paper, we assessed 

the ability of machine learning techniques to forecast NO2, SO2, and PM10 in Amman, Jordan. We compared 

multiple machine learning methods like artificial neural networks, support vector regression, decision tree 

regression, and extreme gradient boosting. We also investigated the effect of the pollution station and the 

meteorological station distance on the prediction result as well as explored the most relevant seasonal 

variables and the most important minimal set of features required for prediction to improve the prediction 

time. The experiments showed promising results for predicting air pollution in Amman with artificial neural 

network outperforming the other algorithms and scoring RMSE of 0.949 ppb, 0.451 ppb, and 5.570 µg/m3 

for NO2, SO2, and PM10 respectively. Our results indicated that when the meteorological variables were 

obtained from the same pollution station the results were better. We were also able to reduce the time by 

reducing the set of variables required for prediction from 11 down to 3 and achieved major time improvement 

by about 80% for NO2, 92% for SO2, and 90% for PM10. The most important variables required for predicting 

NO2 were the previous day values of NO2, humidity and wind direction. While for SO2 they were the previous 

day values of SO2, temperature, and wind direction values of the previous day. Finally, for PM10 they were 

the previous day values of PM10, humidity, and day of the year. 
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1. Introduction 

Due to the increased population on earth, urbanization increased, and with it all sorts of industrialization and 

transportation. Air pollution refers to the existence of contaminating pollutants in the atmosphere that damages 

the health of humans [1]. Our atmosphere contains many pollutants from a plethora of areas such as the new 

chemicals being developed, the combustion of fossil fuels, the heavy usage of transportation systems, heating 

systems, and much more. This all leads to adverse health effects and increased mortality rates in humans as well 

as affecting the various species living on earth [2]. The most significant pollutants are ozone (O3), suspended 

particle matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), pesticides and other 

pollutants that are harmful to human’s health [3]. In this research, we focused on NO2, SO2, and PM10. 

Suspended particulate matters refer to suspended fine particles in the atmosphere. They may be the result of 

dust, wind, forest fires or human-made pollution such as industrial processes, car emissions, etc. and can be 

inhaled and affect the lungs deeply. They are distinguished based on their size with the two main types being 

PM10 and PM2.5. PM10 are particles with a diameter that is <= 10µm and at the same time > 2.5µm. PM2.5 are 

particles that have a diameter that is <= 2.5 µm [4, 5]. NO2 is caused when nitrogen oxide is released into the 

atmosphere. It is caused by natural sources as well as anthropogenic sources such as fossil fuel combustion 
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resulting from heating systems, power generation, and motors engine emissions [6]. SO2 pollutant is also caused 

by natural and man-made sources such as emissions from transportation systems, industry, domestic emissions, 

power generation emissions, and fuel combustion processes [7-9]. These pollutants are not only harmful to 

humans but also for the whole ecosystem. Some chemicals that result from human activities cause crops to 

wither and some emissions have damaged the ozone layer that protects the Earth, this causes more solar radiation 

to get into the planet’s surface which leads to vital skin diseases [10].  The severity of the impact of air pollution 

led countries to develop indices that are used to assess the quality of the air, whether it’s safe for individuals or 

not [11]. Scientists have been working on forecasting future air pollution levels through the use of statistical 

models, mathematical simulations such as dispersion models, and chemical and physical equations such as 

photochemical models. Such models do not use artificial intelligence techniques and instead use pure 

mathematical and statistical approaches. Since these models have their limitations when it comes to dealing 

with large datasets, scientists recently started using machine learning techniques for predicting air quality [12-

14]. The use of monitoring sensors enabled machine learning scientists to enter the field of air quality forecasting 

since these sensors are being used to measure air pollutant concentrations and store them in databases. These 

readings are immensely helpful for machine learning scientists to use them to forecast future levels of air 

pollution [15]. Machine learning is used in many areas of our lives nowadays and it started being used in the 

environmental science field in the 1990s. It is used in various environmental areas such as weather forecasting, 

air quality prediction, ecological modeling, snow, ice and forests monitoring, etc. [16]. Despite their wide 

application range, machine learning adoption in the environmental science has not been as fast as it is in other 

areas. Perhaps this is due to the lack of education of machine learning in natural sciences, the absence of 

communication between machine learning and natural science scientists, or the unavailability of natural data. 

However, since more data is being collected in the natural world nowadays, the focus on machine learning in 

the environmental field is growing and is showing promising results as compared to classical statistical methods, 

because machine learning has better ability to model complex and non-linear relationship between data that 

exists in the natural world [17]. Multiple machine learning techniques have been used to forecast air pollutants 

and the results vary from one research to another depending on the dataset at hand, the country of study as well 

as the pollutant being forecasted [18]. This research focused on forecasting NO2, SO2, and PM10 in Amman, 

Jordan, and specifically, in the area of King Al-Hussein Public Parks for one day ahead. The final regression 

model predicted the numerical concentrations of the four pollutants mentioned earlier. We conducted a 

comparison between multiple machine learning models which are multi-layer perceptron neural networks 

(MLP), support vector regression (SVR), extreme gradient boosting (XGB), and decision tree regression (DTR). 

Then we explored the effect of seasonal variables and which seasonal variables could be used instead of multiple 

ones to reduce the number of features. A further reduction in features was made in the feature selection step for 

each of the pollutants mentioned above to reduce the time and cost needed to predict them. We also 

experimented with different dataset combinations to find the dataset that yielded the best results. This paper has 

the following structure. The section titled related work provided background information about The use of 

machine learning techniques to predict air quality alongside researches done in this field that produced 

promising results. The materials and methods section illustrated several aspects of our research including the 

dataset, the dataset preprocessing, the feature engineering, the noise removal, the feature selection alongside 

what performance evaluation metrics were used in this paper. The experimental results and discussion section 

showed the main results and findings of this research paper, each result was discussed properly and thoroughly. 

Finally, the conclusion and future work section contained a summary of this research and provided further ideas 

for researchers who are interested in this field. 

2. Related work 

Air quality prediction is usually treated as a supervised learning problem when the machine learning algorithm 

trains on an existing historical dataset containing the input and the desired output to be able to predict future 

levels of air pollution [19]. Some researchers treated it as a regression problem when they forecasted the 

numerical concentration of pollutants while others treated it as a classification problem that involves predicting 

categorical variables, such as high-risk/low-risk, low/medium/high, etc. [20]. Various machine learning 

algorithms were used in the topic of air quality prediction and many showed great performance as compared to 

chemical and physical models. Most researches used ANN which is a machine learning algorithm that mimics 

how neurons in the brain work [21]. This algorithm showed outstanding performance most of the time and was 

preferred by many researchers as it has many variations and types.  A study was conducted to forecast ozone, 

NO2, and PM2.5 in six Canadian cities in [12]. The author compared multiple variations of ANN and concluded 

that Online-Sequential Extreme Learning Machine (OS-ELM) outperformed the other methods. In another study 
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in [22], the authors applied an optimized ANN to predict PM10 concentration. The main finding of the study is 

using stochastic variables analysis to reduce the number of required variables needed for PM10 forecasting. 

Another type of ANN called Cyclic Reservoir with Jumps (CRJ) was used in [23] to predict ozone levels in 

Croatia in two cities which are Osijek and Kopački. The CRJ was compared to Radial Basis Function (RBF), 

MLP, Multiple Linear Regression (MLR), and linear regression (LR) and outperformed them all and scoring 

the lowest errors in Osijek with 91.86 for Mean Square Error (MSE) and 7.134 for Mean Absolute Error (MAE). 

PM10 and PM2.5 were predicted in Tehran, Iran in [1] using a mixture of meteorological and seasonal variables. 

The study compared SVR, Geographically Weighted Regression (GWR), ANN, and Non-linear Autoregressive 

Exogenous Neural Network (NARX). The study also highlighted the improvement achieved by using a noise 

eliminating filter named Savitzky-Golay filter. The final results showed that NARX was superior to the other 

methods used, also the time required for prediction was 14s for PM10 and 17s for PM2.5. A study in [24] proposed 

a model to predict total suspended particles (TSP) and PM10 in Salt, Jordan using ANN. The ANN type used in 

the research was ANNAREX in Matlab and the results showed an MSE of 219.7853 and 1010.7 for PM10 and 

TSP respectively. In [25] long short-term memory neural network extended (LSTME) model was developed to 

predict hourly PM2.5 in Beijing, China. The authors compared spatiotemporal deep learning (STDL), 

autoregressive moving average (ARMA), the time delay neural network (TDNN), SVR, LSTM, and LSTME. 

The results indicated the superiority of the developed LSTME with Root Mean Square Error (RMSE) and MAE 

of 12.60, and 5.46 respectively. SVR is a nonlinear generalization algorithm that generalizes well to new data, 

it focuses on increasing the margin between boundary points of classes which are also called support vectors 

and creating a hyperplane that separates them [26]. SVR also showed great results and was preferable to ANN 

sometimes because it requires fewer parameters for optimization. SVR was implemented in [27] to forecast 

SO2, NOx, nitrogen monoxide (NO), NO2, CO and respirable suspended particles (RSP) in Hong Kong, China. 

The SVR was compared to RBF and the result showed that SVR had higher performance. In another study in 

[28] also in Hong Kong, China, SVR was used to predict CO, NO2, NO, NOx, SO2, O3, and RSP. The comparison 

was done between online SVR in which data was fed sequentially into the model and normal SVR in which data 

was provided in batch mode. The online SVR showed better results than normal SVR. Another research 

predicted air quality index in Beijing, Tianjin, and Shijiazhuang, China using SVR and employing 

meteorological variables alongside the AQI of the previous day in [29]. The best-developed model for Tianjin 

displayed 42.78, 6.54, and 4.90 for MSE, RMSE, and MAE respectively. A tree or a decision tree (DT) is a 

graphical upside-down structure starting at the root and ending with the leaves. A tree is constructed during the 

training stage and it tries to capture the behaviors of the data through splitting into binary branches, also called 

binary recursive partitioning. When the decision tree is used for regression purpose it is called regression tree 

or decision tree regression (DTR) [30]. XGBoost is a tree boosting algorithm that is based on the gradient 

boosting method. This method is also widely used for a range of applications, such as classification and 

regression problems. Boosting involves combining multiple models to increase the performance. Gradient 

boosting is one type of boosting in which the gradient boosting method is used to enhance the tree. XGBoost is 

being used in many machine learning areas due to using fewer resources and producing good results [31]. These 

two algorithms are used less than ANN and SVR. XGBoost was used in Tianjin, China to predict PM2.5 in [32]. 

The hourly dataset included features like PM10, O3, NO2, SO2, and CO. It covered the period from December 1, 

2016, to December  30, 2016. They compared multiple regression models, namely: XGBoost, Random Forest, 

MLR, DTR, and SVR. The results showed that the model that outperformed the other models was XGBoost 

with R2 of 0.9520, RMSE of 17.298, and MAE of 11.774. In [33] the authors predicted PM2.5 alongside studying 

feature importance. The dataset in the study contained daily PM2.5 concentrations, climate variables, as well as 

satellite variables like Aerosol optical depth (AOD), measured at 3 km and 10 km. The researchers implemented 

Random forest, XGBoost, and deep learning. The results showed that XGBoost produced the best results 

without AOD at 3 km with R2 of 0.8 and MAE of 10.0 and RMSE of 13.62. The feature importance study 

showed that PM2.5 lag1 (meaning PM2.5 value of the previous day) was the most important in the prediction 

process. Since choosing the best algorithm highly depends on the dataset and other factors in the prediction 

process, we compared the algorithms that showed promising results in the previously mentioned papers, namely: 

ANN, SVR, XGBoost and we also wanted to evaluate the performance of DTR since it was rarely used and 

since XGBoost is a form of trees. 

3. Materials and methods 

3.1. The datasets 

The location of this study is Amman, which is the capital of Jordan. It is an increasingly expanding city with 

heavy usage of transportation systems, especially cars and buses [34]. The location of Jordan can be seen in 
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Figure 1. We obtained the data that we worked on from two sources. The air pollution data, as well as some 

meteorological data, were obtained from the Jordanian Ministry of Environment from a station located in King 

Al-Hussein Public Parks (KHP). But since this station has only four meteorological variables, we looked for the 

closest weather station to obtain more meteorological variables that could be of use. The closest station found 

was located in the Applied Science Private University (ASU) which is only 9km away from KHP station. 

Figure 2  shows these two stations as seen in Google Maps and the distance between them. The red pin shows 

the location of KHP and the yellow pin is the location of the ASU. The blue line is the distance measured in 

Google Maps. The King Al-Hussein Public Parks dataset included the daily average concentration of NO2 (ppb), 

SO2 (ppb), and PM10 (µg/m3) alongside 4 meteorological variables which are temperature (°C), wind speed 

(km/h), wind direction (°), and relative humidity (%) [35]. The ASU climate dataset contained meteorological 

variables, namely, air pressure (hpa), wind direction (°), wind speed (km/h), humidity (%), temperature (°C), 

soil surface temperature (°C), subsoil temperature (°C), precipitation (mm), direct radiation (W/m²) and dew 

point temperature (°C) [36]. 

 

 
 

Figure 1. Location of Jordan [37] 

 

 
Figure 2. The distance between the KHP station and the ASU station. 

We aggregated three combinations of these datasets. The first, which we will call dataset 1, contained the 

features from KHP station only. The second, called dataset 2, contained ASU station’s meteorological data 

combined with KHP station’s pollution data only. The third, called dataset 3, consisted of KHP station’s 

pollution and meteorological data combined with the remaining meteorological data from ASU station. The 

reason for these dataset combinations is to find the combination that can achieve the highest performance for 

air quality prediction. We wanted to check if the additional meteorological variables from the ASU station 
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would enhance the prediction results or not. Moreover, we wanted to find the effect of taking the meteorological 

variables from a station far from the pollution station.  Table 1 illustrates the datasets, the stations, the sources 

and the features in each dataset combination. 

 

Table 1. Datasets descriptions 

 Source Total Features Total Time Records 

1 
KHP 

dataset 1 

O3, PM10, NO2, SO2, Date, 

Temperature, Humidity, Wind 

Speed, Wind Direction. 

9 

01-05-2014 

to 04-06-

2019 

1886 

2 

KHP (pollutants) 

+ ASU 

(meteorological) 

dataset 2 

O3, PM10, NO2, SO2, Date, 

Temperature, Wind Speed, Wind 

Direction, Humidity, Soil 

Surface, Subsoil Temperature, 

Temperature, Precipitation, Dew 

point, Air Pressure, Direct 

Radiation. 

16 

14-05-2015 

to 18-02-

2019 

1376 

3 

KHP (pollutants 

and 

meteorological) + 

ASU (remaining 

meteorological) 

dataset 3 

O3, PM10, NO2, SO2, Date, 

Temperature (KHP), Humidity 

(KHP), Wind Speed (KHP), 

Wind Direction (KHP), Subsoil 

Temperature (ASU), Soil Surface 

Temperature (ASU), 

Precipitation (ASU), Dew point 

(ASU), Air Pressure (ASU), 

Direct Radiation (ASU). 

16 

14-05-2015 

to 18-02-

2019 

1376 

 

3.2. Data preprocessing 

Our datasets contain a total of 161, 323, 289 missing values for dataset 1, 2 and 3 respectively. So dataset 1 has 

the least amount of missing values. Since our dataset is a time-series dataset, we cannot remove the missing 

values because we cannot simply remove days from the dataset time-line. There are many methods for filling 

out missing values. We used the interpolation method to treat the values that are missing in our time-series 

dataset which is using a mathematical function to substitute the missing values in the dataset. Since the 

interpolation method cannot fill the missing data that appears at the beginning of the dataset accurately, we 

removed the first month of dataset 1 since it has a lot of missing values at the beginning. At this point, dataset 

1 interval changed to cover the period from June 4, 2014, to June 4, 2019, with 1826 records which is 5 years 

of daily data. 

3.3. Feature engineering 

This step is crucial in the case of time-series data. It means adding more meaningful features to our dataset 

which may help in the prediction process. These additional features will be added to each of the 3 datasets we 

have. Since the machine learning algorithm cannot deal with a “Date” field, so in our case, we extracted the 

important features from the “Date” field and stored them in multiple features. The date variables, also called 

seasonal variables, that we extracted are the day of the week, the day of the month, the day of the year, the 

month, the special day (whether a day is a holiday or a weekend or not), and the season (winter, spring, summer, 

and autumn). Seasonal variables can influence the behavior of pollutants, hence the importance of adding them. 

Table 2 shows the seasonal features added for each of the three datasets. 

 

Table 2. Added seasonal variables 

Features Values 

Month 1: January to 12: December 

Day of the week 0: Monday to 6: Sunday 

Day of the month 1 to 31 

Day of the year 1 to 365 

Season 1: Winter, 2: Spring, 3: Summer, 4: Autumn 

Special Day 1: special day, 0: not a special day 
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3.4. Noise removal 

Time-series data tend to contain a lot of noise which makes it harder for the machine learning algorithms to 

learn from them and make accurate predictions. The noise removal stage in time-series is one of the most 

important stages since it can prepare the dataset properly for the machine learning algorithm and eliminate the 

noise without losing important information in the data. The importance of using the noise removal filter was 

highlighted in [1] where the authors discovered an immense improvement after using the filter. The importance 

of using smoothing filters was also mentioned in several studies concerning time-series smoothing [38, 39]. 

There are various denoising filters that could be used, one of the most powerful filters is the Savitzky-Golay 

filter. We tried different values for the parameters of the filter and arrived at the best combination which was a 

window length of 25 and a polynomial of 4. This configuration made the data smoother while preserving the 

peaks and the important information, thus no data loss was encountered. The filter was applied to all the 

numerical features in the dataset. Figures 3, 4, and 5 illustrate the effect of applying the filter to the data of NO2, 

SO2, and PM10 respectively. The lighter line indicates the original unfiltered data while the darker line is the 

filtered data. The smoothing filter also removed the outliers which are the extreme values in the dataset and 

smoothed them. After applying the noise removal filter, the method used to normalize the data was the MinMax 

scaler which transformed the values into a unified range between 0 and 1 so that they have the same weight 

when the machine learning algorithms train on them. 

 
Figure 3. NO2 data before and after filtering 

 
Figure 4. SO2 data before and after filtering 

 
Figure 5. PM10 data before and after filtering 
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3.5. Feature selection 

The feature selection step is crucial while building a predictive model in machine learning because it can greatly 

decrease the computational power and time taken for prediction, as well as improve the accuracy. This step 

focuses on selecting only a subset of the features used as input for the model, it chooses the most important 

features for the prediction model and gets rid of the irrelevant ones. The main techniques of feature selection 

are the filter and the wrapper methods [40]. The filter method uses a filtering algorithm in order to find the most 

effective features corresponding to the output that we want to predict. For example, the Pearson correlation-

based filter depends on using the correlation between each input feature and the output of the model, it’s a 

measure of how related these variables are. The wrapper method, unlike the filter approach that is generic and 

doesn’t depend on any model, the wrapper is rather model dependent. It works by finding the best subset of 

features that scores the best result using a specific model that is specified by the researcher. There are many 

types of wrappers that differ on the basis of how they find the best subset of features. For example, the forward 

wrapper starts adding features to an empty set one by one. In each phase, the feature subset that yields the best 

result when used in the model is kept and the others are discarded. This approach is more comprehensive and 

may outperforms the filter since it is concerned with subsets of features rather than individual features 

relationships with the output, yet it can be computationally expensive especially for large datasets [41]. In our 

work, we used the forward wrapper method to perform the feature selection stage.  The most significant features 

that influence the prediction of each pollutant differ and depend on the dataset used and its location. In a study 

conducted to reveal the most influential variables on ground-level ozone in Eastern Texas, USA [42], it was 

found that NO2 alongside wind speed, and wind direction had the greatest influence, while temperature did not 

play a vital role in increasing ozone. However, in other studies, it was shown that temperature and humidity 

highly influenced ozone concentrations [43]. An EPA environmental report also indicated the importance of 

temperature, humidity and wind speed on ozone levels [44]. In [45] it was found that most pollutants decrease 

with the increase of humidity in Dhaka, Bangladesh. Temperature, humidity and precipitation were found 

dominant for PM10 concentration in Andean, Colombia [46], while wind gust was the most important factor in 

Switzerland as well as precipitation and seasonal variables [47]. For NO2, some experiments showed the 

importance of wind speed on its production in [48]. On the other hand, in another study, the wind direction was 

found to have the highest impact on NO2 concentration while wind speed was found of little importance in 

Gothenburg, in south-west Sweden [49]. This shows how complex is the problem of uncovering the most 

important variables affecting a certain pollutant. This variation could be due to a plethora of aspects such as the 

location of the station of the dataset, its elevation from sea-level, the distance of the dataset from crowded streets 

or factories, the time period of the dataset, the seasons it covered, the climate of the country of the dataset and 

more [50]. 

3.6. Performance evaluation metrics 

In order to measure the performance and compare the results of the different models used in our experiments, 

we used the Coefficient of Determination (R2), the Root Mean Square Error (RMSE), and the Mean Absolute 

Error (MAE) as the performance evaluation metrics which are specifically used for regression models. In all the 

following equations, N stands for the number of samples, P is the predicted value, and A is the actual value [1, 

12]. 

𝑅2 = [
1

𝑁

∑ [(𝑃𝑖− 𝑃̅)(𝐴𝑖− 𝐴̅]𝑁
𝑖=1

𝜎𝑃𝜎𝐴
]

2

    (1) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑃𝑖 −  𝐴𝑖)2𝑁

𝑖=1     (2) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑃𝑖 −  𝐴𝑖|𝑁

𝑖=1     (3) 

4. Experimental results and discussion 

The experiments in this research were done using python 3. The experiments were carried out using HP laptop 

with Windows 8.1 64-bit, a Core-i5 2.2 GHz processor and 4GB RAM.  

4.1. Model and dataset selection 

The first step in the experiments is applying the four algorithms we are comparing to all three datasets with the 

three pollutants. For each pollutant prediction model, the input to the model is the pollutant itself from the 

previous day alongside the previous day seasonal variables and meteorological variables. The output is the 

pollutant concentration of the next day. The model and the dataset that will score the highest will be selected 
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for the next step which involves reducing the number of features.  Table 3 illustrates the results obtained for all 

the NO2 models. Dataset 1 achieved the highest overall results with a small difference from the other datasets. 

The neural network gave the maximum values for each dataset, with the top result being 96.160%, 1.005 ppb 

and 0.757 ppb for R2, RMSE, and MAE respectively. As seen in Table 4, the SO2 results are fairly close to the 

NO2 results. Not only the best model is the neural network and the best dataset is dataset 1, but also the 

experimental values are similar to the ones produced by NO2. The top result showed R2 of 96.095%, RMSE of 

0.498 ppb, and the MAE was 0.338 ppb. As for the final pollutant, PM10, Table 5 describes the outputs. The 

highest result achieved was 91.281%, 6.759 µg/m3, and 4.783 µg/m3 for R2, RMSE, and MAE respectively. The 

best model that provided these results was the neural network of dataset 1.  

 Table 3. NO2 results 

Dataset Model R2 (%) RMSE (ppb) MAE (ppb) 

Dataset 1 

MLP 96.160 1.005 0.757 

SVR 91.911 1.459 1.194 

XGBoost 92.200 1.437 1.191 

DTR 86.551 1.881 1.472 

Dataset 2 

MLP 95.163 1.190 0.931 

SVR 90.456 1.671 1.287 

XGBoost 91.791 1.550 1.160 

DTR 78.928 2.483 1.752 

Dataset 3 

MLP 95.619 1.132 0.873 

SVR 91.082 1.616 1.185 

XGBoost 91.805 1.549 1.155 

DTR 83.960 2.167 1.631 

  
Table 4. SO2 results 

Dataset Model R2 (%) RMSE (ppb) MAE (ppb) 

Dataset 1 

MLP 96.095 0.498 0.338 

SVR 93.805 0.627 0.464 

XGBoost 93.842 0.625 0.489 

DTR 86.321 0.931 0.531 

Dataset 2 

MLP 94.550 0.580 0.378 

SVR 92.657 0.674 0.468 

XGBoost 92.681 0.673 0.509 

DTR 84.382 0.983 0.640 

Dataset 3 

MLP 94.898 0.562 0.398 

SVR 92.889 0.663 0.468 

XGBoost 92.908 0.662 0.498 

DTR 85.101 0.960 0.683 

 

 Table 5. PM10 results 

Dataset Model R2 (%) RMSE (µg/m3) MAE (µg/m3) 

Dataset 1 

MLP 91.281 6.759 4.783 

SVR 90.570 7.029 4.686 

XGBoost 89.033 7.580 5.302 

DTR 70.322 12.469 8.267 

Dataset 2 

MLP 89.816 8.064 6.211 

SVR 86.080 9.428 6.849 

XGBoost 83.824 10.163 8.353 

DTR 65.185 14.910 10.204 
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Dataset Model R2 (%) RMSE (µg/m3) MAE (µg/m3) 

Dataset 3 

MLP 90.834 7.650 5.516 

SVR 87.886 8.795 6.437 

XGBoost 84.716 9.879 6.473 

DTR 67.341 14.441 9.321 

 

From the above Tables, we can see that MLP, SVR, and XGBoost results were fairly similar with MLP being 

in the lead with a small difference and SVR and XGBoost performing very similarly to each other. This shows 

that all of the three mentioned algorithms performed well in our datasets and were able to detect the patterns 

and predict the pollution concentration with great performance. Although it’s fast, yet DTR, on the other hand, 

had the worst performance and it was always the lowest for all the pollutants. The large difference between 

results of different datasets using DTR for the same pollutant is due to its instability, meaning the result differs 

a lot when a small change in the dataset occurs. Dataset 1 proved to be the most reliable for all pollutants. Its 

results were the best. However, the results of the other datasets were close as well, especially for MLP. Dataset 

3 showed better results than dataset 2, this could be because dataset 2 has the meteorological variables taken 

from KHP, which is the same station for the pollutant variables. This shows that the results are the best when 

the meteorological variables are taken from the same station that measures pollutants. Yet, if there was no 

meteorological station at the same place, then the results would not worsen so much if the two stations were not 

too far away from each other. In our case, there was a difference of only 9km between the two stations, and this 

was reflected in a slight decrease in the performance of the models. Another remark on the datasets is that the 

additional meteorological variables from the ASU weather station were irrelevant and did not improve the 

prediction results. Predicting NO2 and SO2 scored higher results than PM10. Their results were fairly close since 

both pollutants are produced by similar conditions and we can even notice that they have similar patterns. PM10 

had the lowest prediction result compared to the other two since this pollutant is affected by unpredictable 

weather conditions like dust storms as well as other factors. Yet its results are still quite good and promising. 

Overall all the experiments showed promising results and low error rates. The final result of this step is choosing 

dataset 1 and MLP ANN as the best model and it will be used to work with the next steps. 

4.2. Seasonal variables feature importance 

This step involves studying the most relevant seasonal variables and discarding the rest. Since we already have 

the day of the year variable, the algorithm may already be able to conclude the month, season, the day of the 

month, and the day of the week variables from the day of the year. For this reason, we performed two 

experiments to help understand the importance of the day of year feature, one experiment was conducted with 

all the seasonal variables except the day of the year, and another experiment was performed with only the day 

of the year alongside the special day feature, since this one cannot be concluded from the day of the year and it 

varies depending on the holidays that may change from year to year. The features included in the experiment 

which yielded the best result were chosen for this step. Tables 6,7, and 8 show the results for NO2, SO2, and 

PM10 respectively.  As shown in the tables, there is no vast difference between the results, but using the day of 

the year without the other seasonal variables always yielded the top result. Most results contained a difference 

of nearly 0.1% except for PM10 that has a difference of about 2%. Yet the major difference lies in time, there is 

a visible improvement in time when using the day of the year alone without the other variables, clearly because 

the number of features has been reduced. This clearly shows that the month, the day of the week, the day of the 

month, and the season do not contribute to the prediction system and they are unnecessary. Since using the day 

of the year with the special day features instead of the remaining seasonal variables showed an improvement in 

time and performance, then the output from this step is neglecting the remaining seasonal variables that proved 

irrelevant. 

Table 6. NO2 seasonal variables comparison 

Input Features R2 (%) RMSE (ppb) MAE (ppb) Time (ms) 

Previous day values of 

NO2, meteorological 

variables, day of the year, 

and special day 

96.437 0.968 0.716 226 

Previous day values of 

NO2, meteorological 
96.103 1.013 0.758 655 
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Input Features R2 (%) RMSE (ppb) MAE (ppb) Time (ms) 

variables, day of the week, 

day of the month, month, 

season, and special day 

 Table 7. SO2 seasonal variables comparison 

Input Features R2 (%) RMSE (ppb) MAE (ppb) Time (ms) 

Previous day values of 

SO2, meteorological 

variables, day of the year, 

and special day 

96.191 0.491 0.330 301 

Previous day values of 

SO2, meteorological 

variables, month, season, 

day of the week, day of the 

month, and special day 

96.008 0.503 0.351 503 

 

 Table 8. PM10 seasonal variables comparison 

Input Features R2 (%) RMSE (µg/m3) MAE (µg/m3) Time (ms) 

Previous day values of 

PM10, meteorological 

variables, day of the year, 

and special day 

92.152 6.412 4.432 552 

Previous day values of 

PM10, meteorological 

variables, day of the week, 

day of the month, month, 

season, and special day 

90.253 7.14588 5.134 725 

 

4.3. Feature selection results  

At this point, we have seven input variables for each pollutant model which are: the pollutant value of the 

previous day, the meteorological and seasonal variables of the previous day, namely: the humidity, temperature, 

the day of the year and the special day, wind direction, and wind speed. In this stage, we used the wrapper 

method to decrease the number of features to the minimum amount possible to improve the performance and 

decrease time. The following subsections demonstrate how feature selection affected each of the pollutant 

results. Note that the experiments were carried out using dataset 1 and using the MLP model. For NO2, we can 

see in Table 8 that the best subset of features found was NO2, humidity and wind direction of the previous day. 

Since NO2 is generated by emissions and mainly peaks in cold weather, we deduce that wind direction and 

humidity would impact its production the most. We encountered a great improvement in time of about 80%, 

while R2 improved by about 0.1%, the RMSE and MAE decreased to 0.950 ppb and 0.701 ppb respectively. 

Table 9 shows the results obtained for SO2. The optimal set of features was SO2, humidity and wind direction 

of the previous day, which is also similar to NO2 optimal subset of features. The time improvement was 92%, 

while R2 increased by 0.6% and RMSE, and MAE dropped to 0.491 and 0.330 respectively. Finally, for PM10, 

we can observe in Table 10 that the best subset of features found was the previous day values of PM10, the 

humidity, and the day of the year, with a time improvement of around 90%. The important features of PM10 can 

also tell us how this pollutant is highly influenced by the time of the year and also by weather conditions. The 

increase in R2 was nearly 2% while MAE decreased by more than 1% and RMSE dropped to 5.570. The previous 

results indicate that feature selection improved the results of all pollutants in various degrees as well as help us 

understand the nature of pollutants more and what influences them the most. The R2, RMSE, and MAE have all 

been improved, although the greatest improvement was seen in PM10. Another major enhancement was the time. 

We can see a vast improvement in time from before and after the feature selection as it improved by 80%, 92%, 

and 90% for NO2, SO2, and PM10 respectively. 
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 Table 9. NO2 feature selection results 

Features R2 (%) RMSE (ppb) MAE (ppb) Time (ms) 

Previous day values of 

NO2, meteorological 

variables, day of the year, 

and special day 

96.437 0.968 0.716 226 

Previous day values of 

NO2, wind direction, and 

humidity. 

96.574 0.950 0.701 45 

  

Table 10. SO2 feature selection results 

Features R2 (%) RMSE (ppb) MAE (ppb) Time (ms) 

Previous day values of 

SO2, meteorological 

variables, day of the year, 

and special day 

96.191 0.491 0.330 301 

Previous day values of 

SO2, temperature, and 

wind direction 

96.792 0.451 0.291 23 

 

Table 11. PM10 feature selection results 

Features R2 (%) RMSE (µg/m3) MAE (µg/m3) Time (ms) 

Previous day values of 

PM10, meteorological 

variables, day of the year, 

and special day 

92.152 6.412 4.432 552 

Previous day values of 

PM10, day of the year, 

and humidity. 

94.079 5.570 3.594 52 

 

At this point we have arrived at the optimal results and number of features for every pollutant. The configuration 

of the machine learning models has all been found through trying different parameter values. Figures 6,7, and 

8 illustrate the optimal neural network configurations for each model of the three pollutant models we have. We 

arrived at this combination of neurons based on experimenting with different neural network configurations and 

chose the ones that yielded the best performance for each pollutant. 

 
Figure 6. NO2 model 
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Figure 7. SO2 model 

 

 
Figure 8. PM10 model 

Figures 9, 10, and 11 reflect the performance of the final models for NO2, SO2, and PM10. We can clearly observe 

that the predicted samples in the dotted black line fit the actual samples in the light orange, and there is very 

little error rates. 

 

Figure 9. NO2 time-series actual and predicted 
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Figure 10. SO2 time-series actual and predicted 

 
Figure 11. PM10 time-series actual and predicted 

5. Conclusion and future work 

In this research, we built a model to predict air pollution for one day ahead in Amman, Jordan, for four 

pollutants, namely: NO2, SO2, and PM10. the main findings of this research are as follows: 

• We worked with three combinations of datasets to uncover the location’s importance of the dataset as well as 

the relevance of some additional meteorological variables to the prediction process. Dataset 1, in which the 

meteorological and pollution variables were obtained from the KHP station. Dataset 2 in which the 

meteorological variables were taken from another station which is the ASU station, 9km away from the KHP 

station, and dataset 3 in which some meteorological variables were taken from KHP and the rest from ASU 

station. We found the dataset 1 scored the best results, yet the other datasets still performed well too but less 

than dataset 1. This leads to the conclusion that the prediction is the most accurate when the meteorological 

station is the same as the pollution station or as close as possible. Another remark on this point is that the 

additional meteorological variables obtained from the ASU station were irrelevant. 

• A comprehensive comparison between MLP ANN, SVR, XGBoost, and DTR was carried out for all the 

pollutants and all the datasets. The model that outperformed the others was always MLP in the case of all 

stations and all the pollutants. SVR and XGBoost performed well too especially for dataset 1, but they were 

slightly less than the performance of MLP. DTR performed poorly compared to the other models and was 

unstable when the dataset changed. 

• A study of seasonal variables importance was carried out which showed that using the day of the year feature 

instead of the day of the week, day of the month, month, and season generated better results and reduced the 

time. 

• The crucial features for predicting each of the four pollutants were discovered through the feature selection 

step. All the performance evaluation metrics were improved with major enhancement in time for all pollutants. 

• This research achieved a reduction of features for each pollutant model from 11 down to 3 which greatly 

reduced the time by 80%, 92%, and 90% for NO2, SO2, and PM10 respectively.  
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• Machine learning models, especially MLP, showed promising results in the field of air quality prediction with 

reduced errors and reliable forecasts. 

• We built a model for predicting air pollution concentration in Amman, Jordan for the next day, which is the 

first to be done in Amman using these datasets we worked with. The final model for NO2 achieved R2 of 

96.574%, RMSE of 0.950 ppb and MAE of 0.701 ppb. Similarly, the SO2 model scored 96.792%, 0.451 ppb 

and 0.291 ppb for R2, RMSE, and MAE respectively. Finally, PM10 achieved R2 of 94.079%, RMSE of 5.570 

µg/m3, and MAE of 3.594 µg/m3. 

For future work in this area, it would be great if this model would be applied to online generating data, in which 

the data readings are fed into the model daily so that it would be possible to continuously predict the pollution 

levels of the next day. A website or a mobile application could be built if such data and permission from the 

data owners would be obtained. Ideally, there should be various air pollution and meteorological stations across 

Amman to allow continuous prediction of air pollution for multiple areas. If they became available in the future, 

this model could be applied to them with some modifications. If more than one air pollution station was 

available, it would be possible to add some spatial parameters like the location of the station and its elevation 

from sea-level. Also, consider adding some meaningful parameters related to pollution like traffic parameters 

such as the number of passing cars in a day, which we considered but weren’t able to obtain in our research. 
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