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1. Introduction 

During last two decades, renewable energy sources have become crucial due to the traditional energy 
Therefore the usage of wind energy sources has been increased. [1]
Several wind turbine concepts have been proposed. There are three major topologies of wind turbine systems: 
fixed-speed wind generators with multi
multi-stage gearbox) and direct-drive wind generators. [2,3]
Because of several advantages such as removal the gearbox, drive simplification, longevity, high reliability, 
weight reduction, maintenance cost reduction, high
the drive train, simplified SCADA structure and better utilization of the available wind power, direct drive 
variable speed structures in wind power turbines are in attention. [3,4]
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ABSTRACT  

Flux Switching Permanent Magnet Generators (FRPMGs) have been used 
increasingly in direct drive variable speed wind turbines due to their merit 
such as their high torque density, easy flux weakening operation and robust 
rotor structure. Generally, the quality of output power in direct drive systems 
is lower than multi stage fixed speed systems, because of removing the gears, 
so it’s important to design these kinds of generators with low ripple and 
lowest harmful harmonics and cogging torque. This aim is one
important terms in increasing the quality of output power of generator 
simultaneously with back-EMF improvement. The objective of this paper is 
introducing a simple design method and optimization of high power FRPMG 
applied in direct drive wind turbine system by lowest possible amplitude of 
cogging torque and highest possible power factor, efficiency and power 
density. For optimization reason an optimum method called combined 
response surface methodology (RSM) and design of experiment has been 
applied. Also in order to extract the output values of generator and sensitivity 
analysis for design, 2D-Finite element model, was used. This method has high 
accuracy and gives us a better insight of generator performance and presents 
back EMF, cogging torque, flux density and FFT of the FSPMG. This study 
can help in design approach of such machines. 
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During last two decades, renewable energy sources have become crucial due to the traditional energy 
Therefore the usage of wind energy sources has been increased. [1] 
Several wind turbine concepts have been proposed. There are three major topologies of wind turbine systems: 

speed wind generators with multi-stage gearbox, variable speed wind generators (with single
drive wind generators. [2,3] 

Because of several advantages such as removal the gearbox, drive simplification, longevity, high reliability, 
weight reduction, maintenance cost reduction, higher aggregate efficiency, low level of vibration and noise of 
the drive train, simplified SCADA structure and better utilization of the available wind power, direct drive 
variable speed structures in wind power turbines are in attention. [3,4] 
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The most important part of these kinds of systems are permanent magnet type generators that have less weight 
and volume and less cooper and iron losses, more TPC, power factor and efficiency, less mechanical problems 
and more longevity than their rivals. [4-7] 
Among all kinds of permanent magnet synchronous generator types, Flux Switching Permanent Magnet 
Generators are one of the most top options for variable speed wind turbines because of merit below [4,8-10]: 
1) Easily managing temperature rise of magnets which is on the stator. 2) The PM field and the armature field 
are in parallel magnetic circuit structure, hence the armature field has little influence on the PMs. 3) A high 
per-unit winding inductance can be readily achieved which leads to a better capability to restrain short-circuit 
currents. 4) Easy magnet cooling and better rotor stability. 5) Lower permanent magnet used in machine 
structure. 
In fact, a Flux-Switching Permanent Magnet (FSPM) machine is a switched reluctance machine having 
magnets in its stator in addition with field winding that is a concentrated windings type and a passive rotor 
structure, however it could be designed by an active rotor and passive stator structure. Nonetheless, compared 
to the active rotor topology (having magnets in the rotor), conventional FSPM machines, the placement of 
both PMs and windings in the stator is favourable for cooling applications where the ambient temperature of 
the machine may be high. By this topology, several problems regarding active rotational part such as 
manufacture difficulties, maintenance, rotor destruction and PM demagnetizing would be resolved. The FSPM 
machine may exhibit high torque density, besides the magnetic circuit of FSPM machine is short, which may 
result in low iron loss in the stator back-iron. [4,10] 
Generally, these merit makes 3-phase topology of FSPMGs more suitable for variable-speed drive systems, in 
which the torque capability in the constant torque region and the flux-weakening capability in the constant 
power region are the two important performances. Flux density in the airgap region could reach to 2.5 Tesla, 
besides, the PM orientation and windings are magnetically parallel and it can remove the armature reaction 
effect in working point and increase the electric loading. [4,10-14] 
Because of removing the gears, it’s important to design these kinds of generators with low ripple and lowest 
harmful harmonics and cogging torque that is one of the most important terms in increasing the quality of 
output power of generator [11-16]. Cogging torque in these machines is quite dependent on the geometry of 
teeth in both sides (rotor and stator) and volume of PMs in each stator tooth. In order to design a FSPM 
machine by lower rate of leakage flux, higher efficiency and power factor but the lower amplitude of cogging 
torque, isolating gaps in stator teeth between different phase windings was used. [17,18] 
This paper implemented a simple design and optimization method of high power FSPMG applied in direct 
drive wind turbine system by lowest possible amplitude of cogging torque and highest possible power factor, 
efficiency and power density. For this purpose, a 2D-finite element model and an optimum method called 
combined response surface methodology (RSM) was applied. This method can achieve excellent performance 
and low costs by optimizing multiple design variables of FSPMG [16], and has high level of accuracy and 
gives a better insight of generator performance. 
 

2. Structure and Configuration 

FSPM machines have unequal stator and rotor poles and are capable to design by odd or even number poles in 
both sides. Fig. 1 shows the cross-sections of a prototype 3-phase, 12/10-pole FSPM machine by passive 
stator structure. [4,10] It can be seen that the PMs in these kinds of machines will placed between two stator 
teeth and magnetize circumferentially and each PM has magnetic orientation in apposite of its nearest 
neighbours also the rotor of the machine is similar to that of a switched reluctance machine. Obviously, for 
this prototype each phase consists of 2 windings in series and each winding has 2 coils [4,15]. In this paper, an 
active stator type FSPMG by isolating gaps in stator teeth between different phase windings will design based 
on turbine speed and torque so a direct drive wind generator system operating again at Ten = 200 k.Nm and 
n=30 rpm, fn ≈ 100 Hz will be designed and simulated. [4,11] 
 

3. Design Method 

By using the PM flux concentration, we can adopted a larger force density ftn to offset the effect of the 
inductance increase due to the fringing effect: ftn = 6 N/cm2. Table. 1 shows the geometrical parameters and 
their values and the designing equations. [4,11,15,19,20]. 
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Fig.2 shows the machine geometry represented with one pole, some of stator and rotor geometric details were 
illustrated in this figure. The ideal PM flux density in the airgap BgPMax is could be found as [4,11,15]: 

PM

rec

PM

ts

r
gPMaxi g

h

W

B
B



 



2

0  

(1) 

This expression is derived from equations below [4,11,15]: 
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Fig. 3 shows the magnetic characteristics diagram of soft magnetic material used in stator and rotor core: 
Initial Relative Permeability is equal to 6000, Saturation Magnetization is 1.6 Tesla and knee adjusting 
coefficient is 0.3 [15].  
Fig. 4 shows the magnetic characteristics diagram of PM used in rotor structure (Nd-Fe-B). For this reason a 
linear approximation has been used. Remanent Flux Density (Br) of used PM is 1.3 Tesla and the Relative 
Permeability (μrec) is 1.05 μ0 [15]. 
The fringing effect will reduce the ideal PM airgap flux density to a smaller value [4,11,15]: 
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Figure 1. Topology of 12/10, 3-phase FSPM 
machine 

Figure 2. Flux Switching PM generator geometry 
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Table. 1: Geometrical parameters and their equations 

Parameter Equation Value 
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Figure 3. Magnetic characteristics diagram of soft 
magnetic material used in stator and rotor core. 

Figure 4. Magnetic characteristics diagram of PM 
used in stator structure. 

 
With kfringe =1.5, ks =0.2, we set the actual airgap flux density BgPMax at a reasonable value, say BgPMax =0.7 
Tesla, so BgPMaxi would be 2.1 Tesla. From the equation 1, the PM height hPM would be 120 mm, therefore the 
outer stator diameter would be 2635 mm. The PM maximum flux per coil turn could be 2.81 mili weber and 
obtained from equation below: 

stacktsgPMaxPMaxc lWB 
 

(4) 

The maximum flux linkage is [4,11,15]: 

cccPMaxcPMphase nnnk   07867.01081.214.22 3
 

(5) 
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The Emf per phase (peak value) Em is: 

ccPMphasem nnfE  949.4507867.09322 1 
 

(6) 

The ampere turns per slot would be 6458.9 and may be calculated as [4,11,15,19,20]: 
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The slot width is about equal to the pole pitch (Fig. 2), we consider it 22 mm as below: 
bsu≈ (1 to 1.2)×τPM (8) 

Also, the stator tooth average width is around half the pole pitch τPM. The total slot height could be obtained 
from Fig. 2 and is 90 mm. The current density required to host the coil jcon is 6.524 A/mm2 as follows 
[4,11,15,19,20]: 
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By having stator slot cross section, current density and obtained ampere turn, it can use 11 turns of wires each 
turn 90 mm2, the nominal voltage would be 505.44 volt. Length of each coil could be obtained as [4,11]: 
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The stator coil resistance is: 
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Then, for the entire phase: 

scs kRR 2
 

(12) 

Fig. 5, shows the concentrated winding diagram of the presented 3-phase, 12/10-pole FSPM prototype in Fig. 
1 [4, 10,15,21,22]. As it can be illustrated, namesake winding coils’ located in 180 mechanical degree from 
each other and each phase has 2 parallel windings and each winding has 2 coils in series. 
So, by using this method of winding, for the designed prototype (3-phase  84/196 FSPMG), each phase has 14 
parallel windings and each winding has 2 coils in series, also namesake winding coils’ located in 180 
mechanical degree from each other as it be noted [4, 10,15,21,22]. This simulation is based on circuit coupled 
model using the phase voltage as input quantity, Fig. 6 shows the circuit coupled model that is used in this 
study, Fig. 6-a shows one half of the designed FSPMG, green colour shows windings for phase-a, black colour 
for phase-b and red colour for phase-c, determinate in stator slots.  
 

 

Figure 5. Concentrated winding diagram for a 12/10 FSPM 
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4. FEM Model 

Finite element method (FEM) is the most widely used numerical analysis method in the computer simulations. 
The FEM does not require a physical pr
of the whole system under certain operating conditions. Also, it permits improvements in the reliability of 
product by changing the design according to the results of analysis. [23,24]
As it has been mentioned, a 2D-finite element model is implemented in order to simulate the proposed FSPM 
generator. This 2D model has simple, high level of accuracy and gives a quick and better insight of machine 
performance.  
In order to have high level of accuracy the mesh diagram is designed manually, in this simulation node 
congestion is higher around the air gap and stator and rotor teeth. The total number of nodes is about 286680 
for the half part of machine, that lead to high level of accuracy, meanw
homogenous dirichlet condition is adopted on the infinite box that encompasses the generator, according to 
this assumption on infinite box flux distribution is zero. It must be noted that one half of PMSG is analyzed 
because of the magnetic periodicity of the machine, as seen in Fig. 7, nodes congestion becomes higher near 
the air gap in order to accurate simulation. Based on FEM model the simulation of the generator is done and 
output characteristics are extracted. 
 

5. Optimization Methodology  

In order to choose an accurate volume of permanent magnet regarding to magnetic circuit that PM material is 
in, airgap length (lg) and the PM thickness (lm) as it has been mentioned, RSM method and design of 
experiment was applied. RSM is a set of statistical and mathematical techniques. In RSM, a polynomial model 
is constructed to represent the relationship between the performance and multiple design variables. The 
ultimate goal of RSM is to find the best fitted response of the physica
computer simulation [25]. Research and application of RSM as an optimization method have been carried out 
in many fields [26-28]. As a summary, RSM combined with design of experiment is regarded as an ideal 
method to perform the optimum design for TFM generator [16]. 
 

 

 

(a)  

 

(b)  

Figure 6. Concentrated winding diagram for a half part of the 84/196 FSPMG (a) determination of 
the slots for each phase. (b) Electrical
connection in a sample phase (14 parallel windings in phase

 PEN Vol. 7, No. 

59 

Finite element method (FEM) is the most widely used numerical analysis method in the computer simulations. 
The FEM does not require a physical prototype production and it can be used to analyze any parts/components 
of the whole system under certain operating conditions. Also, it permits improvements in the reliability of 
product by changing the design according to the results of analysis. [23,24] 
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generator. This 2D model has simple, high level of accuracy and gives a quick and better insight of machine 
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congestion is higher around the air gap and stator and rotor teeth. The total number of nodes is about 286680 
for the half part of machine, that lead to high level of accuracy, meanwhile, for boundary conditions, the 
homogenous dirichlet condition is adopted on the infinite box that encompasses the generator, according to 
this assumption on infinite box flux distribution is zero. It must be noted that one half of PMSG is analyzed 
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is constructed to represent the relationship between the performance and multiple design variables. The 
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computer simulation [25]. Research and application of RSM as an optimization method have been carried out 
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(c)  

Concentrated winding diagram for a half part of the 84/196 FSPMG (a) determination of 
Electrical circuit for winding connection. (c) Electrical 

connection in a sample phase (14 parallel windings in phase-a containing 2 coils in each winding)
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Figure

 
Design of experiment can be regarded as a carefully arranged experiment procedure. The 
experiment is two-fold. The first is to make the experiment procedure reasonable and can be conducted 
orderly; and the second is to get adequate and reliable information by minimal number of experiments [16, 25
31]. 
Design of Experiments (DOE) is statistical tool deployed in various types of system, process and product 
design, development and optimization. It is multipurpose tool that can be used in various situations such as 
design for comparisons, variable screening, transfer function
[30,31] Design of Experiments (DOE) mathematical methodology used for planning and conducting 
experiments as well as analyzing and interpreting data obtained from the experiments. It is a branch of applied 
statistics that is used for conducting scientific studies of a system, process or product in which input variables 
(Xs) were manipulated to investigate its effects on measured response variable (Y). [31] Factorial experiments 
can be design with one, two, three and more factors. Experiments with only one factor are often called simple 
comparative experiments. [31] 
For this methodology, the crucial parameters are: airgap length (lg) dv1, PM thickness (lm) dv2, overlap 
between PM and rotor length in radial dire
on cogging torque and output back EMF of the generator. The overlap is defined as zero when hR=0 and it is 
defined as 100% when hR=Dr. Therefore, dv1, dv2, and dv3 are selected as the desi
the performance of FSPM generator. 
 

Figure 8. Optimum design process of proposed FSPM generator using RSM
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Fig. 8 shows the optimum design process applied in this study using RSM. Table 2 shows the design variables 
and levels. The design variables in zero level are the values of the initially design. The design variables in -α 
level and +α level, which are determined by possible values of the three design variables, decide the minimum 
and maximum respectively [16, 25-29]. Design of experiment procedure and Response surface methodology 
has been implemented based on [16], with the three design variables dv1, dv2 and dv3, CCD is required to 
perform 15 experiments, The 2D finite element model is analyzed for each experiment and the cogging torque 
and the back EMF are calculated. The main achievements of this method are: 

 Finding the accurate dimensions (PM thickness (lPM), slot outset (Wos), Stator teeth thickness, Outer 

rotor diameter (Dr), airgap length (lg) and hR). 

 Reaching to cogging torque less than 5% of rated torque and suitable waveform for cogging torque 

and back EMF equal to amplitude of input voltage per phase. 

Table 2. Design variables and levels implemented in RSM 

Design 
variables 

levels 

-α -1 0 +1 + α 

dv1 (mm) 0.5 1 3 5 8 

dv2 (mm) 4 6 8 10.5 13 

dv3 (%) 1 2 3 5 10 
 

Table 3. RSM method results 

Parameter Primary 
value 

Optimal 
value 

PM thickness (lPM) 8 (mm) 7 (mm) 

Slot outset (Wos) 8 (mm) 4 (mm) 

Outer rotor diameter (Dr) 2511 (mm) 2511 (mm) 

Cogging torque 810 (N.m) 694 (N.m) 

Back EMF amplitude 604 (v) 640 (v) 

 

6. Simulation Results and Discussion 

Based on the above methodology, finite element simulations for the 3-Phase, 84/196 FSPM generator with 
active stator with concentrated winding has been done in each step. It must be noted that one half cross section 
is analyzed in 2D FEM because of the magnetic periodicity of the machine. Table. 3 shows the varieties of the 
FSPM generator dimensions after using the optimization method. As it can be observed from the simulation 
results, this procedure is so effective to find the optimal dimensions of PM, airgap length and the inner 
diameter of the stator.  
Fig. 9-a,b,c and d show the isovalues diagram and paths of flux density. Fig. 9-d also shows the distribution of 
flux at rated power in magneto static mode. The red lines show the flux in clockwise direction and the counter 
clockwise direction. This figure shows the accuracy of assignment of PMs and the correctness of the 
simulation.  
As it can be seen from this figure, flux density at the airgap space and the iron cores in the rotor teeth and 
stator teeth are the highest amount. Hot spots can be seen in the stator yokes near the PMs, the other parts of 
rotor and stator cores don’t have hot spot and it shows the iron loss in the machine is low. 
Fig. 10 shows the flux density variation along the airgap during the rotating the rotor for 0.0357 second equal 
to 12.85 degree in magneto static mode, this can demonstrate the accuracy of simulation. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9. Flux lines and flux density in magneto static mode for FSPM generator (a) 
Distribution of flux density in stator and rotor in the preliminary steps (b) Distribution of flux 

density in stator core (c) Distribution of flux density in rotor core (d) Flux lines 

  

Figure 10. Flux density variation along the 
airgap during the rotating the rotor 

Figure 11. Magnetic field variation along 
the airgap during the rotating the rotor 

  

Figure 12. Magnetic field variation along the 
airgap for 360 mechanical degree 

Figure 13. Permanent magnet linkage flux 
variation along the airgap 
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Magnetic field created along the airgap space for 0.0357 second equal to 12.85 degree that is equal to 3 stator 
and 7 rotor poles shown in Fig. 11. For 360 degree of mechanical rotation (-180 to 180), magnetic field along 
the airgap shown in Fig. 12. Also, Fig. 13 shows the magnetic linkage flux variation of PM along the airgap 3 
stator and 7 rotor poles. Noted to the amplitude of magnetic flux and it’s equal to 2.8 mWeb, equivalent to the 
extracted value from the computed one. 
Fig. 14 shows the cogging torque diagram by optimal values of geometry obtained by RSM. As it can be 
observed from this figures, cogging torque has reached to about 694 Newton. This small value is because of 
the geometry of rotor teeth and passive rotor structure and circumferentially magnetized PMs in the stator 
structure. Fig. 15 shows the cogging torque based on mechanical position of the rotor and by higher amounts 
of sampling than previous figure for 3 stator poles.Fig. 16 represent the magnetic force on the rotor structure 
along the airgap space for 0.0357 second equal to 12.85 degree arc that is equal to 3 stator and 7 rotor poles. 
Fig 17 shows the extracted back EMF for one phase of the FSPMG and it’s obvious that amplitude of back 
EMF per phase is equal to the amplitude of input voltage per phase (640 Volt). 
 

  

Figure 14. Cogging torque diagram for 
FSPM generator per second 

Figure 15. Cogging torque diagram for 
FSPM generator per mechanical position 

 

  

Figure 16. Magnetic force on the rotor 
structure along the airgap 

Figure 17. Extracted back EMF for one phase 
of simulated FSPM generator 

 
The output current per phase of simulated FSPM generator by considering the extracted back EMF has been 
shown is Fig. 18. It’s shown that the extracted value from the FEM is close to the value extracted in design 
method.  Also, the harmonic behaviour of the output current is shown in Fig. 19. The results shows the 
authenticity of the simulated and accuracy of the proposed method for FSPM generator design, this fig shows 
the 3th and 5th harmonics respectively are equal to 23% and 8% of nominal current. 
Fig. 19 shows the electromagnetic torque of the simulated and optimized machine. This figure shows the 200 
Kilo Newton of electromagnetic torque as it was our goal by having about than 4% of torque ripple.   
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Figure 18. The output current per phase of 
simulated FSPM generator 

Figure 19. Harmonic Spectrum of generator's 
output current 

 

7. Conclusion  

In this paper a simple design method and optimization was introduced for a high power FSPMG applied in 
direct drive wind turbine system by lowest possible amplitude of cogging torque and highest possible power 
factor, efficiency and power density. For this reason an optimum method called combined response surface 
methodology (RSM) and design of experiment and in order to extract the output values of generator and 
sensitivity analysis for design and optimization, a 2D-Finite element model was used. This method has high 
accuracy and gives us a better insight of generator performance and presents back EMF, cogging torque, flux 
density and FFT of FSPMG. This study can help designers in design approach of such machines. 
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