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ABSTRACT   

The problem of increasing the thermal stability of structural elements made of heat-resistant metals and 

alloys operating in a complex force and thermal field is one of the key priorities of modern high technology 

research. The most important case is the study of the thermal stability of structural elements in real 

conditions of heat fluxes with varying intensity, with a complex configuration of heat-insulated local 

surfaces and internal point heat sources. Many basic load-bearing structural elements operating in a large 

thermal field (elements of gas turbine and jet engines, etc.), are made of heat-resistant alloys. The physical 

feature of such alloys is that the coefficient of thermal expansion and the modulus of elasticity of the 

material strictly depends on the temperature distribution field, that is, the coefficients are a function of 

temperature. The purpose of this study is to simulate a thermo-stressed state in rod elements of a structure 

based on the law of conservation of energy, in the presence of a heat flux applied on the lateral surface, 

which varies along the coordinate in a linear manner. To solve the outlined problem, a potential energy 

minimisation method is used in combination of a quadratic finite element with three nodes. As a result, 

from the condition of the minimum of the functional defining the potential energy, a resolving system of 

linear algebraic equations is obtained. All possible natural boundary conditions are taken into account. In 

this system, all integrals used are calculated analytically. Moreover, the law of conservation of energy is 

fulfilled for each of the equations of the resulting system. As a result, the values of displacement, 

deformation and stresses were calculated, as well as the values of elastic temperature and thermoelastic 

components of deformations and stresses for a specific example. 

 

Keywords:  Thermal expansion, Modulus of elasticity, Thermal stress state, Displacement 

discretisation, Stress strain. 

Corresponding Author: 

Nurgul Shazhdekeyeva, 

Department of Mathematics and Methods of Teaching Mathematics, 

Kh. Dosmukhamedov Atyrau University,
 

060011, 1 Studenchesky Ave., Atyrau, Republic of Kazakhstan; 

E-mail: shazhdekeyeva6526@kaiost.cn 

1. Introduction 

Modern internal combustion engines, gas turbine power plants, oil heating compressor stations, steam 

generators of nuclear reactors, and technological processes that allow the deep processing of uranium and 

osmium ores, as well as crude oil, pose the urgent problem of developing a mathematical model for studying 

the temperature distribution field of thermal, physico-mechanical state of the bearing elements of these 

structures, taking into account the nonlinear physical properties of materials and their operating conditions. In 

all technological processes, the load-bearing elements of these structures are made of heat-resistant alloys. 

Therefore, in the field of metallurgical science, favourable conditions are created for the production of more 

advanced heat-resistant alloys with high resistance to plastic deformation and fracture under the influence of 
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high temperatures [1-15]. 

It is known that in a thermo-physical-mechanical process, the main characteristic that has a significant effect 

on the strength of load-bearing structural elements is an intense temperature rise, i.e., heat flux. In general, 

temperature is one of the most important characteristics of the growth process and affects the morphology and 

crystal structure of heat-resistant alloys. In different parts of the alloy, the distribution of the temperature field 

is uneven [16]. Consequently, during the thermomechanical process, in some areas of the structural elements, 

the temperature will be acceptable, and in some areas – critical, which leads to rapid wear of the structural 

elements and to the loss of their physical qualities. In this regard, for an accurate calculation of the distribution 

of the temperature field over the volume of multidimensional bodies of various configurations made of heat-

resistant alloys, it is necessary to carry out effective theoretical and numerical modelling [17-30]. 

The purpose of modelling, both analytical and imitation, is to predict the state of the system, which most 

realistically displays the picture of the temperature field distribution over the volume of a multidimensional 

body. [31]. In the long term, based on this forecast, by changing both the internal parameters of the structure 

of structural elements and the characteristics of external influences, it will be possible to determine all the 

vulnerabilities in the structural elements and protect them from deformation or destruction. The development 

of a model of the temperature distribution over the body volume is necessary, since the complexity of the 

thermomechanical process in real time greatly reduces the ability to intuitively assess the identification of 

critical temperatures in body parts. Therefore, theoretical modelling of the temperature distribution over the 

volume of multidimensional bodies of various configurations made of heat-resistant alloys is undoubtedly an 

urgent problem. 

2. Material and methods 

In the case of a nonlinear one-dimensional and two-dimensional problem, the numerical simulation of the 

temperature distribution field in a fixed cross section is determined when the investigated temperature process 

depends on the applied heat flux, material length, the heat transfer coefficient, and the ambient temperature. 

Using all this data by the method of minimising potential energy in combination of a quadratic finite element 

with three nodes, the thermo-stressed state of the material is numerically assessed in the presence of a heat 

flux on the lateral surface, which varies along the coordinate in a linear manner. 

To calculate the temperature stresses in structural elements, it is necessary to determine the temperature 

distribution law in the investigated elements. As known, the equation of heat conduction in a continuous 

medium has the form [32-45] (Eq. 1): 

, (1) 

where  – temperature, the dimension of which is ; – coefficient of thermal 

conductivity (of the body material) in directions zyx ,, , dimensions ; Q – a heat source inside 

the body, which is considered positive if heat is applied to the body . or equation (1), the following 

boundary conditions hold: if the temperature is known at the points of the surface 
1S  then on this surface the 

boundary conditions will be (Eq. 2): 

 for , (2) 

where – set temperature at the boundary, which can be a function of the coordinates of the surface point 
1S . 

If convective heat transfer passes through the surface 2S , which is characterised by the value , 

then for points of this surface the boundary conditions have the form (Eq. 3): 

 for S2 (3) 

where  – heat transfer coefficient,  and this coefficient can be a function of the coordinates 

of the points of the surface ;  – temperature at points of the surface , the value of which is 

unknown;  – set temperature of the surrounding surface  of the environment. It can also be a function of 
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the coordinates of points on the surface ; – direction cosines of surface . If the heat flux , 

 is applied to the surface  of the body, then (Eq. 4) holds for points of this surface: 

 for . (4) 

The given heat flux  can be a function of the coordinates of the points of the surface . It should be noted 

here that the heat flux  and convective heat loss  do not occur on the same area of the boundary 

surface. This means that if there is heat loss due to convection, then there is a removal or inflow of heat due to 

the heat flux and vice versa. Thus, equation (1) with the reduced boundary conditions (2)-(3) has a unique 

solution. This solution is the law of temperature distribution in the body. But in the calculus of variations [46; 

47; 48-56], it is established that solving equation (1) with boundary conditions (2)-(4) is equivalent to finding 

the minimum of the functional (Eq. 5): 

. (5) 

In addition, equation (1) and boundary conditions (2)-(4) can be applied to one-dimensional problems by 

simply deleting the terms associated with unnecessary coordinates. Then the equation for the one-dimensional 

problem is written in the form (Eq. 6): 

, (6) 

with the corresponding boundary conditions (Eq. 7-9): 

 for , (7) 

 for , (8) 

 for . (9) 

If there is no convective heat transfer and, in addition, the heat flux is zero, then equations (8), (9) are reduced 

to (Eq. 10): 

, (10) 

which expresses the condition for the existence of a thermally insulated boundary. Here n – outward normal. 

In the calculus of variations, it is established that to minimise the functional (Eq. 11): 

, (11) 

it is necessary that the differential equation (6) and boundary conditions (7)-(9) are satisfied. Therefore, any 

temperature distribution field at which functional (11) becomes minimal also satisfies differential equations 

and thus is a solution to the posed problem. 

3. Results and discussion 

Using this statement, the thermo-stressed state of the material of the body (rod) is investigated. This study is 

devoted to mathematical modelling and the development of an appropriate computational algorithm for 

studying the thermo-stressed state of a rod clamped by two ends. On the lateral surface of the rod, a heat flux 

is applied, varying along the coordinate linearly [57; 58-66] (Eq. 12): 

, (12) 
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 – real numbers. In order to numerically study the thermo-physical-mechanical phenomena of the 

alloy material, take a rod of length , the cross-sectional area  – is constant along the length of 

rod. The physical and mechanical properties of the rod material are characterised by the modulus of elasticity 

, the coefficient of thermal expansion , heat exchange with the environment and 

thermal conductivity . Through the cross-sectional areas of the two clamped ends, heat exchange 

of different intensities occurs with the media surrounding them. The heat transfer coefficient for the left end of 

the rod is denoted by , and the temperature of the environment surrounding this area – , 

and for the right end, respectively – and . The diagram scheme for this problem is 

presented in Figure 1. 

 

Figure 1. Analytical model 

The rod heats up due to the action on the lateral surface of a given heat flux . In this regard, it is 

expanding. Since both ends of the rod are rigidly restrained, it cannot be lengthened. In this regard, a 

compressive force , arises at the two ends of the rod, which leads to the appearance of a stress 

 in the sections of the rod. Such a task is called statically indeterminate. Despite this, this 

problem can be solved numerically if the potential energy minimisation method is used in combination with a 

quadratic finite element with three nodes. The equation of potential energy for the considered problem is 

defined as follows [67; 68; 69-80] (Eq. 13): 

, (13) 

where V, ( ) – volume of the considered bearing rod element; u(x), (cm) – displacement distribution field 

of the cross section of the rod; field distribution of elastic component of deformation (longitudinal 

deformation) (Eq. 14) 

; (14) 

the field of distribution of the elastic component of the compression-tension stress (Eq. 15-16); 

, (15) 

; (16) 

field distribution of the elasticity modulus of the material of the rod element (17): 

E=E(T(x)) (17) 
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and  – field of distribution of the coefficient of thermal expansion of the material of the rod 

element, which depend on temperature; temperature distribution law along the length of the bearing element 

(Eq. 18): 

, (18) 

which is approximated by a complete second-order polynomial, i.e., [81; 82; 83; 84-102] (Eq. 19): 

, (19) 

where  – some constants whose values are still unknown. To find the value of these constants, divide the 

considered part of the rod in half. And in this part three nodes  are fixed (Figure 2). 

 

Figure 2. One-dimensional quadratic finite element 

The global coordinates of these nodes are respectively   , while (Eq. 20): 

. (20) 

In this case, in the local system, the coordinates of the three nodes are determined as follows (Eq. 21-23): 

 (21) 

 (22) 

.  (23) 

Next, introduce the following notation characterising the temperature value at nodes  (Eq. 24): 

. (24) 

Then, substituting (24) into (19), a system of three equations is composed to determine the values of the 

constants a, b, c (Eq. 25): 

  (25) 

taking into account that (21)-(23), from the last system obtain (Eq. 26): 

 (26) 

Considering that (Eq. 27): 

x 

j i k 

  
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, (27) 

from the last two equations of system (26) obtain (28): 

 (28) 

From here it follows (Eq. 29): 

 (29) 

Substituting the obtained values of  into (19), obtain (Eq. 30): 

 (30) 

Let us introduce the following equation (31): 

 (31) 

Then, taking into account (31), rewrite (30) in the following form (32): 

, at ,  (32) 

where the functions  are called form functions for a one-dimensional quadratic finite 

element with three nodes. It should be noted that these form functions have certain properties. Now consider 

the properties of these form functions (Eq. 33-34): 

, (33) 

, (34) 

, (35) 

In addition, for any point of (Eq. 36): 

 (36) 
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in the range  one has (Eq. 37): 

. (37) 

For example (Eq. 38): 

. (38) 

Then (Eq. 39): 

 (39) 

Also, form functions have the following properties. For any point of the interval , i.e., within each 

finite element one has (Eq. 40): 

. (40) 

Using equation (31), prove (Eq. 41): 

. (41) 

Next, find the total (Eq. 42): 

. (42) 

Within the length of the element under consideration, the displacement distribution field (Eq. 43): 

, (43) 

approximating by a second-order polynomial, obtain (Eq. 44): 

,  (44) 

where , ,  – displacements of the section of the rod, the coordinates of which (Eq. 45): 

; . (45) 

Then, within the limits of the length of the rod (the element under consideration), the displacement gradient, 

i.e., the distribution field of the elastic component of deformation  is expressed as follows (Eq. 46): 

 (46) 

Based on Hooke's law, the value of the elastic stress component is determined as follows (Eq. 47): 

 (47) 
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According to the theory of thermoelasticity, the values of deformation from the temperature field are 

determined by the equation (Eq. 48): 

.  (48) 

The values of the temperature component of the voltage are determined by the equation (Eq. 49): 

 , (49) 

 of thermoelastic stress (Eq. 50): 

. (50) 

The cross-sectional area of the rod is constant along the length, equation (13) is written in the 

following form (Eq. 51): 

 

 

; (51) 

In order to improve the accuracy and improve the convergence of the obtained numerical results, two 

intergrades are analytically integrated in volume (52): 

 

 

 

 

 

 

 

 (52) 
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It should be noted here that the total of the coefficients in square brackets is zero. This shows the convergence 

of the obtained numerical results. Using the obtained calculations in equation (52), it is possible to write the 

final integrated form of the potential energy formula (Eq. 53): 

 

 (53) 

Considering that the nodal temperature values are known, the potential energy will be minimised by the nodal 

displacement values. As a result, obtain a system of linear algebraic equations (Eq. 54): 

1) ; 

2) ; 

3) . (54) 

To test the developed computational algorithm, the following test problem is taken [103-124]: rod length – 

., radius of the cross-section of the rod – , constant along the length of the rod, the 

elasticity modulus of the rod material – , coefficient of thermal expansion 

, coefficient of thermal conductivity of the rod material – . Heat 

flux –  is applied to the lateral surface of the rod by a linear law. Solving the 

system of linear algebraic equations (38) with the accepted initial data and using the property of the applied 

quadratic finite element, calculate the values of displacement, deformation, and stress for different (N=1) – 

one quadratic finite element (QFE), N=2-QFE, N=3-QFE, N=5-QFE, N=10-QFE), i.e., at 11, at 20, at 30, at 

50, at a 100 equally spaced points and ten intervals between them. All calculated values and displacements, 

 – elastic, temperature, and thermoelastic components of deformations and stresses were 

given in the corresponding tables (Table 1). 

Table 1. Values and displacements,  – elastic, temperature, and thermoelastic components 

of deformations and stresses 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -0.0007335304 1 -0.0015142235 1 -0.0022477539 

3 -0.0001168919 3 -0.0021320339 3 -0.0022489258 

4 0.0001211149 4 -0.0023717985 4 -0.0022506836 

7 0.0003945101 7 -0.0026457797 7 -0.0022512695 

9 0.0000642736 9 -0.0023167151 9 -0.0022524414 

10 -0.0002977196 10 -0.0019564796 10 -0.0022541992 

Total: -0.0225097656 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -1467.0608108108 1 -3028.4470016892 1 -4495.5078125000 

3 -233.7837837838 3 -3682.9761402027 3 -4497.8515625000 

4 242.2297297297 4 -4743.5969172297 4 -4501.3671875000 

7 789.0202702703 7 -5291.5593327703 7 -4502.5390625000 

9 128.5472972973 9 -4633.4301097973 9 -4504.8828125000 

10 -595.4391891892 10 -5083.5884712838 10 -4508.3984375000 
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Arithmetic mean: -4501.9531250000 

Note: . 

 

The values of 11 nodal displacements and the corresponding law of distribution of deformation and stress are 

presented in Figures 3-4: 

 

Figure 3. Values of 11 nodal displacements along the length of the rod 

 

 

Figure 4. Fields of distribution of the value of 11 nodal displacements corresponding to deformation and stress 

( ) along the length of the rod 

Similarly, the distribution field of the deformation value from the temperature field  is presented in Figure 5 
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Figure 5. Values of 11 nodal deformations from the temperature field 
T  along the length of the rod 

Analysing Table 1, it can be seen that the value of thermoelastic stress exceeds the exact 

( ) solution by a maximum of 0.16%. In this regard, the considered rod is 

discretised with two (N=2) quadratic finite elements. At twenty fixed points, the values of elastic, temperature 

and thermoelastic components of deformations and stresses – , , , , ,  are given in Table 2, the 

corresponding fields of displacement, deformation and stress distribution in Figures 6-7, and the distribution 

field  in the Figure 8. 

 
Figure 6. Values of 20 nodal displacements along the length of the rod 
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Figure 7. Fields of distribution of the value of 20 nodal values corresponding to deformation and stress 

( ) along the length of the rod 

 

Figure 8. Values of 20 nodal deformations from the temperature field 
T  along the length of the rod 

Table 2. Values of elastic, temperature, and thermoelastic components of deformations and stresses 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -0.0008192040 1 -0.0014283180 1 -0.0022475220 

6 -0.0000507496 6 -0.0021972851 6 -0.0022480347 

7 0.0000694257 7 -0.0023173871 7 -0.0022479614 

13 0.0004061022 13 -0.0026545031 13 -0.0022484009 

17 0.0001364126 17 -0.0023851064 17 -0.0022486938 

20 -0.0004054054 20 -0.0018436547 20 -0.0022490601 

Total: -0.0449658203 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -1638.4079391892 1 -2856.6360061233 1 -4495.0439453125 

6 -101.4991554054 6 -4394.5701805321 6 -4496.0693359375 

7 138.8513513514 7 -4634.7742029138 7 -4495.9228515625 

13 812.2043918919 13 -5309.0061497044 13 -4496.8017578125 

17 272.8251689189 17 -4770.2128642314 17 -4497.3876953125 

18 -18.0743243243 18 -4479.7528241131 18 -4497.8271484375 
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20 -810.8108108108 20 -3687.3093063767 20 -4498.1201171875 

Arithmetic mean: -4496.5820312500 

Note: . 

Analysing Table 2, it can be seen that the largest deviation from the exact ( ) 

solution is 0.04%. For engineering calculations, this accuracy is considered to be excellent, but, nevertheless, 

in order to reduce the error of the obtained numerical results, the considered rod is discretised with three 

(N=3) quadratic finite elements of the same length. As a result of solving the resolving systems of equations, 

the values of the sought variables at thirty fixed points are obtained and presented in Table 3, and the 

corresponding displacement field and the law of distribution of elastic, temperature, and thermoelastic 

components of deformations and stresses , , , ) along the length of the rod are given in Figures 9 -10, 

and the law of deformation distribution from the temperature field ) is given in Figure 11: 

 
Figure 9. Values of 30 nodal displacements along the length of the rod 

 

 

Figure 10. Fields of distribution of 30 nodal values corresponding to deformation and stress ( ) 

along the length of the rod 
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Figure 11. Fields of distribution of values of 30 nodal deformations from the temperature field  along the 

length of the rod 

Table 3. The values of the sought variables at 30 fixed points 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -0.0008480512 1 -0.0013994061 1 -0.0022474573 

9 -0.0000293387 9 -0.0022182922 9 -0.0022476309 

10 0.0000506913 10 -0.0022983874 10 -0.0022476960 

19 0.0004081144 19 -0.0026559623 19 -0.0022478479 

26 0.0000686718 26 -0.0023167151 26 -0.0022480433 

27 -0.0000356732 27 -0.0022123484 27 -0.0022480216 

30 -0.0004441942 30 -0.0018039359 30 -0.0022481301 

 Total: -0.0674338108 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -1696.1023523523 1 -2798.8122888512 1 -4494.9146412035 

9 -58.6774274274 9 -4436.5844359983 9 -4495.2618634257 

10 101.3826326326 10 -4596.7747043917 10 -4495.3920717591 

19 816.2287287287 19 -5311.9246199322 19 -4495.6958912035 

26 137.3435935936 26 -4633.4301097971 26 -4496.0865162035 

27 -71.3463463463 27 -4424.6967670794 27 -4496.0431134257 

30 -888.3883883883 30 -3607.8717389263 30 -4496.2601273146 

Arithmetic mean: -4495.5873842591 

Note: . 

In this case, it was revealed from the obtained numerical solutions that the maximum discrepancy between the 

value and the exact one  is 0.017576%. Thus, it was found that with an 

increase in discrete finite elements, a decrease in errors is observed. If the considered rod is discretised with 

five (N=5) quadratic finite elements, then the obtained numerical results in Table 4 show that the maximum 

error in the value of the thermoelastic stress does not exceed 0.00641%. 
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Table 4. Numerical results of discretising a rod by five quadratic finite elements 

Nodal 
points 

x  Nodal 
points 

T  Nodal 
points 

 

1 -0.0008712331 1 -0.0013761864 1 -0.0022474195 

15 -0.0000126642 15 -0.0022348210 15 -0.0022474852 

16 0.0000353872 16 -0.0022828864 16 -0.0022474992 

31 0.0004090574 31 -0.0026566176 31 -0.0022475602 

44 0.0000083000 44 -0.0022559305 44 -0.0022476305 

45 -0.0000579986 45 -0.0021896271 45 -0.0022476258 

50 -0.0004762669 50 -0.0017713917 50 -0.0022476586 

Total: -0.1123769531 

Nodal 

points 
x  Nodal 

points 
T  Nodal 

points 
 

1 -1742.4662162164 1 -2752.3728462840 1 -4494.8390625 

15 -25.3283783784 15 -4469.6419341219 15 -4494.9703125 

16 70.7743243243 16 -4565.7727618247 16 -4494.9984375 

31 818.1148648650 31 -5313.2351773653 31 -4495.1203125 

44 16.6000000000 44 -4511.8609375003 44 -4495.2609375 

45 -115.9972972973 45 -4379.2542652030 45 -4495.2515625 

50 -952.5337837839 50 -3542.7834037165 50 -4495.3171875 

Arithmetic mean: -4495.0781250004 

Note: . 

The corresponding field of distribution of displacements along the length of the rod is presented in Figure 12. 

 

Figure 12. Values of 50 nodal displacements along the length of the rod 

This curve is based on the displacement values at 51 equidistant points. In this case, the distance between the 

points is 0.6 cm. It can be seen from this graph that approximately at the point with the coordinate 

 the displacement value will be zero. The corresponding strain and stress fields are presented in 

Figures 13-14. 
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Figure 13. Fields of distribution of 50 nodal values corresponding to deformation and stress ( ) 

along the length of the rod 

 

Figure 14. Fields of distribution of the value of 50 nodal deformations from the temperature field 
T  along 

the length of the rod 

Then discretise the considered rod with ten (N=10) quadratic finite elements, then the obtained numerical 

value of the thermoelastic stress in Table 5 exceeds the exact ( ) solution by 

0.00163%. 
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Table 5. Numerical value of thermoelastic stress 

Nodal 

points x  
Nodal 

points T  
Nodal 

points  

1 -0.0008886803 1 -0.0013587217 1 -0.0022474021 

30 -0.0000003670 30 -0.0022470532 30 -0.0022474202 

31 0.0000236681 31 -0.0022710877 31 -0.0022474196 

61 0.0004093758 61 -0.0026568131 61 -0.0022474372 

87 0.0000241872 87 -0.0022716396 87 -0.0022474524 

88 -0.0000075778 88 -0.0022398764 88 -0.0022474542 

100 -0.0005009291 100 -0.0017465322 100 -0.0022474612 

Total: -0.2247431641 

Nodal 
points x  

Nodal 
points T  

Nodal 
points  

1 -1777.3606418924 1 -2717.4434596715 1 -4494.8041015639 

30 -0.7339527025 30 -4494.1064769865 30 -4494.8404296890 

31 47.3361486489 31 -4542.1754064628 31 -4494.8392578140 

61 818.7516891894 61 -5313.6261032534 61 -4494.8744140640 

87 48.3743243241 87 -4543.2792071381 87 -4494.9048828140 

88 -15.1555743246 88 -4479.7528241144 88 -4494.9083984390 

100 -1001.8581081080 100 -3493.0643528303 100 -4494.9224609390 

Arithmetic mean: -4494.8632812515 

Note: . 

This accuracy in terms of thermal stability is very excellent. In this case, the corresponding field of 

displacement distribution is presented in Figure 15: 

 

Figure 15. Values of 100 nodal displacements along the length of the rod 

This figure shows that near the point  cm the displacement value will again be zero. The constructed 

deformation and stress fields are presented in Figures 16-17. 
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Figure 16. Fields of distribution of the value of 100 nodal displacements corresponding to deformation and 

stress ( ) along the length of the rod 

 

Figure 17. Fields of distribution of the value of one hundred nodal deformations from the temperature  

along the length of the rod 
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Thus, when calculating the thermal strength of rods of limited length clamped by two ends under action of the 

heat flux on the lateral surface changing along the coordinate, in order to obtain high-precision numerical 

results, it is necessary to discretise at least ten quadratic finite elements. After testing the developed 

mathematical model and the corresponding computational algorithm, the effect of the length of the rod on the 

thermo-stressed state was analysed. To do this, the values of the compressive force  and the 

effective stress  were calculated for different values of the rod length. These results are 

shown in Table 6. 

Table 6. The effect of the length of the rod on the thermo-stressed state of the investigated rod 

No. 
  

 

% 

1 30 -56454.58 -4494.79 100 

2 27 -47446.29 -3769.61 83.86 

3 24 -39522.13 -3146.66 70 

4 21 -32893.79 -2618.93 58.26 

5 18 -27272.95 -2179.375 48.48 

6 15 -22871.3 -1820.96 40.5 

In addition, the thermal stress-strain state of the rod under consideration is influenced by the value of the heat 

transfer coefficient  between the material of the rod and the surrounding cross-sectional area 

of the clamped ends of the rod. This dependence on a specific example is shown in Table 7. 

Table 7. Influence of the heat transfer coefficient on the thermo-stressed state of the investigated rod 

No. 
 

 

 

% 

1 10 -56454.58 -4494.79 100 

2 9 -59332.916 -4723.958 105.1 

3 8 -62930.83 -5010.41 111.47 

4 7 -67556.72 -5378.72 119.66 

5 6 -73724.583 -5869.79 130.59 

6 5 -82359.583 -6557.29 145.88 

It should be noted that the thermo-stressed state of the investigated rod is also influenced by the value of the 

ambient temperature . These dependencies are shown in Table 8. 

Table 8. Influence of ambient temperature on the thermo-stressed state of the investigated rod 

No. 
 

 

 

% 

1 40 -56454.58 -4494.79 100 

2 35 -54884.58 -4369.79 97.22 

3 30 -53314.58 -4244.79 94.438 

4 25 -51744.58 -4119.79 91.657 

5 20 -50174.58 -3994.79 88.876 

4. Conclusion 

Thus, a mathematical model and a corresponding computational algorithm for the numerical simulation of the 

thermo-stressed state of a rod clamped by two ends under influence of a heat flow on the lateral surface were 

developed. It has been proven that in order to obtain high-precision numerical results, it is necessary to 

discretise at least ten quadratic finite elements, then the calculation error does not exceed 0.00163%. When 

solving this problem, it was also found: 
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a) with a decrease in the length of the rod, the values of the compressive force (R) and the effective stress (σ) 

decrease in a nonlinear manner. In particular, with a decrease in the length of the rod by 10, 20, 30, 40 and 

50%, the values of R and σ decrease by 16.14; 30; 41.74; 51.52 & 59.5%, respectively; 

b) with a decrease in the value of the heat transfer coefficient in this example by 10, 20, 30, 40, and 50% leads 

to an increase in the values of the compressive force (R) and effective stress (σ), respectively, by 5.1; 11.47; 

19.66; 30.59, and 45.88%; 

c) with a decrease in the temperature value of the surrounding area of the cross-sections of the two clamped 

ends of the medium rod by 12.5; 25; 37.5, and 50% leads to a decrease in the values of the compressive force 

(R) and effective stress (σ), respectively, by 2.78; 5.562; 8.343, and 11.124%. 
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