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 In past five years, there has been a rapid increase in the publication on 

additive manufacturing (AM). Many technologies have been introduced in a 

rapidly growing market. The designers are confronted with many challenges 

in designing products for additive manufacturing. AM offers significant 

advantages, but there are also many constraints for AM to be used in its full 

potential. This paper explores trends, issues and challenges in design for AM, 

including associated costs, design options, quality considerations. It has been 

found that AM is in its infancy, there is insufficient understanding of the 

process, method, strategies, tools applied in design for additive manufacturing 

process, while process quality and capabilities are continuously improving. 
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1. Introduction 

1.1. Design for conventional manufacturing 

Design for additive manufacturing has been used in literature frequently over past decades [1][2][3][4][5] but 

some authors tried to define it [6][7]. Therefore here is provided a brief overview of the design for additive 

manufacturing and its principles. Traditional design for manufacturing and assembly (DFMA), is about 

designing and optimizing product [8] [9] [10],  together with manufacturing process improvement [11] [12] 

[13] with the aim of reducing time and cost [14] and increasing the quality [15] and performance of the 

product by considering design goals [16] and manufacturing constraint [17].  

Design for Assembly (DFA) is concerned with reducing time and cost of a product assembly with the aim of 

making a product as easy as possible to assemble. This is usually achieved by minimizing number of 

assembly parts/components. As result, parts become more complex. Design for Manufacture (DFM), is 

concerned with reducing cost and complexity of manufactured parts with the aim of manufacturing product as 

easy as possible without reducing quality or performance of the part. This is usually achieved by minimizing 

manufacturing operations complexity and number of tight tolerances [18]. DFMA is a subset of Design 

for X [19], therefore it usually specifies the process [20] [21], feature [20] or activity [22]. Also, it explores 

relationship between design and manufacturing, its impact on the design process, and CAD improvement to 

support DFMA [20]. 

 

1.2. Design for additive manufacturing 

All this mentioned for traditional DFM and DFA is valid for additive manufacturing (AM) as well. In practice, 

design knowledge, method, tools, and rules are different for design for additive manufacturing (DFAM). In 

DFAM process, different types of features must be created and different constraints must be applied that 
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required specific design rules and tools [23][24][25][26][27][28]. Unlike traditional DFM, all additive 

manufacturing processes have different Bach size, reduces the need for certain activities such as assembling 

[29] and production time that cause different cost [30]. The biggest challenge of AM is the DFAM knowledge, 

understanding and application of DFAM method, tools, and rules. Therefore, the new knowledge has to be 

created to that includes new approaches, new materials and large complex spaces. To achieve this, the 

cognitive barriers and past experiences with traditional manufacturing techniques will have to be overcome 

[31].  

 

AM has numerous advantages, but on the other hand, there are disadvantages as well. The advantages of this 

technology will continue to arise through continuous research efforts, which should be undertaken to eradicate 

and recognize the constraints which inhibit the use of this technology and eliminate constraints that inhibit the 

use of this technology. Design tools used for AM are more user-friendly and progressive simulation abilities 

are the key aspects which should be grasped. A notable benefit of AM is the possibility of mass 

customization, since it is devoid of the additional costs which arise due to mold making and tooling for a 

customized product. Therefore, mass production of several identical parts has the possibility of being as cost-

effective as the same number of different personalized goods [32]. The alteration among different designs is 

simple alongside with negligible added cost and with no need for special preparation. AM also has the 

possibility for mass production of complex geometries as well. 

 

This paper aims to provide a review of DFAM recent developments, techniques in terms of the main methods 

employed, as well as its future development possibilities. The paper will also focus on other existing 

secondary and primary research to focus on the current research gaps, as well as to explore the challenges 

encountered in adopting this relatively “young” technology. Figure 1 shows the growing trend of publications 

over time from Scopus. 

 

 
Figure 1. AM application in scientific research [33]

1
 

 

The figure above describes the application of AM in scientific research, and how the research interest for this 

technology grew over time. It is observed significant jump in publication since 2013. 
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2. Benefits of Additive Manufacturing 

AM technology is continuously improving with a capability of printing end user products from using diverse 

material including metallic and nonmetallic products [34]. It has many benefits over traditional manufacturing 

processes. The major advantages are shown in Table 1. 

 

 

Table 1. Design opportunities and benefits of AM  

Advantages                             Explanation       

Cost and geometry  

complexity  

 

Cost is lower printing complex part instead of simple one 

with the same size.  

Possibility to produce near net shape, 

Complex shape geometry with complex internal channels 

that are not feasible with to make with conventional 

manufacturing processes. 

 

[35] [36] [37] 

Functional complexity 

(Assembly may not be 

required) 

In addition to single part manufacturing, there is possibility 

to produce functional devices (such as hinges and bicycle 

chains) if the technology permits the functional integration, 

which recuces part count. 

[38] 

Material complexity  

 

Possibility of manufacturing multiple materials in one 

operation and complex composition of materials that 

provides different properties at certain locations. 

 

[39] [40][41] 

Hierarchical complexity Possibility of design manufacturing various shapes of 

internal structure (honeycomb, lattices or foams) to 

increase strength to weight stiffness to weight ratio which 

reduces material usage and cost. 

[38] [35][42] 

Low manufacturing skills No need for highly skilled professionals to make complex 

parts and features, everyone who is able to create any 3D 

model can create them with additive manufacturing. 

[43] 

Reduced material waste There is very low waste of the material, only required 

amount of the material is used. 

[43] 

Part and material variety  Possibility of manufacturing part similarity without 

investment in extra tools, it is required to modify original 

CAD file only.   

[39] 

Design method Design method, tools and rules for AM products have been 

reported in the literature which are tracing a new concept of 

DFAM to get benefits from AM technologies 

[7] 

[44] 

Quality control Quality control method that includes sample size 

requirements, settings and analysis procedures has been 

discussed as well 

[45] 

 

Some of these most important advantages are discussed in detail in the following sub sections. 

 

2.1. Cost competitiveness 

Application of AM in industry is driven by costs and almost unlimited freedom of product design complexity. 

Compared to traditional subtractive manufacturing processes, AM has limited ability to use variety of 

materials and make part size, required prost processing because the parts are not close to final form, the part 

accuracy is low. Major advantages of AM are in lead time for one part that includes tooling and material 

procurement as well as capability to produce complex parts.  Impact product design complexity on the 

production cost is shown in Figure 2, while the competitiveness of AM vs. traditional manufacturing is across 

various fields is shown in Figure 3. 
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Figure 2. Relationship between cost and geometrical complexity in AM vs. traditional processes 

 

Comparing manufacturing cost of a produced part, AM slightly increase with the geometry complexity while 

traditional subtractive manufacturing processes such as turning, milling etc. increase rapidly with part 

complexity. 

 
Figure 3. Additive vs. subtractive manufacturing competitiveness 

To maintain AM manufacturing cost competitive, this relation worth for small series of complex geometry 

parts. Therefore, currently it has competitive application in processes such as cutting and investment casting. 

Design for additive manufacturing is about being able to build complex, cost effective and reliable parts. It 

considers also avoiding fixation on current design and locking into design for manufacturing (DFM) and 

design for assembly (DFA) principles that are major challenges in design for AM. 

 

Supply chain differences between additive manufacturing and traditional manufacturing differs significantly. 

Significant amount of money, time and logistics management are required for functionality of traditional 

supply chain while the logistics in AM supply chain is reduced, which requires less money and time 

investment. 

 

Forecasting of AM adoption rate vary significantly across industries, which is shown in Figure 4 [46] . 
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Figure 4. Adoption rate of AM across industries 2015–2025 forecasting 

Referring to Figure 4, consumer electronics, aerospace and defense, automotive and medical devices are the 

most mature industries. In aerospace and defense industry AM is used to create lightweight parts such as 

engine parts and interior parts. In automotive industry AM is used to produce lightweight design and reduce 

the number of part and assembly groups by integrating multiple functions into a single part. In addition, it is 

used to produce tools and parts such as interior components, climate control and engine cooling parts. In 

industry of medical devices AM is used to produce medical and dental devices and implants, hearing aids, 

orthopedics and prosthetics in a cost-effective way.  

 

2.2. Geometry complexity - Design for improved function and design for topology optimization 

Very complex internal features can be created using AM to achieve the optimum performances of the product. 

These features cannot be created using traditional manufacturing processes. As it was shown in Figure 5, 

optimized fluid channel for conformal cooling.  Integrated air ducts [47] and writing conduits [48] for robots 

were frequently studied as well.  

 
Figure 5. Design for improved function - Internal geometry freeform: (a) conventional cooling channel; (b) 

conformal cooling channel [49] 

 

Heat transfer will be more effective if conformal cooling channels follow external geometry as it is shown in 

Figure 6. Traditional machining operation cannot achieve such shape of the channel. Conformal cooling 

improves efficiency and quality of injection molded parts [50].  This provides more uniform temperature 

distribution that reduces cycle time and costs, and improves quality [51].  

 
Figure 6. Design for improved function - Internal geometry freedom: (a) traditional channel; (b) conformal 

cooling channel [49] 
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Possibility to manufacture geometry optimized parts based on numerical optimization. To achieve desired 

functionality, based on numerical simulation material is placed on those places where it is required. This is 

achieved with assumption that the part is made out of homogenous material. Part structure optimization is 

mainly used in automotive and aerospace industries [52]. This is extremely important in application where 

weight reduction is important design characteristic of product, which is most frequent case in aerospace 

industry [53], and improving biomedical implants [54]. 

 

 
Figure 7. Design for topology optimization - brackets before and after geometry optimization for AM: (a) 

hinge bracket designed for cast steel [55]; (b) a new hinge bracket design for titanium [55]; (c) aluminum 

square bracket design for CNC machine; (d) a new design manufactured in Ti6Al4 on an EBM machine [56] 

 

2.3. Functional complexity - design for direct assembly manufacturing 

Direct assembly manufacturing is possible with AM. Moving parts such as bicycle chain, chain mails [57], 

armor [58], crank slider mechanisms [59], gears [60], hinge [30], and various types of joints [60], can be 

manufactured directly using AM. Figure 8 shows an example of additively manufactured assembly of the 

Italian aircraft P180 Avant II by Piaggio Aero Industries S.p.A [30]; and Figure 9 shows directly 

manufactured of assemblies joints and crank and slider mechanism [59].  

 

 

 
Figure 8. Main landing gear of the Italian aircraft P180 Avant II by Piaggio Aero Industries S.p.A [30]  

 

 

 
 

Figure 9.  Direct production of assemblies: (a) joints; (b) crank and slider mechanism [59]  

All these assemblies require clearance between particular parts, which can be achieved by using DFAM 

approach.  

(d) (a) (c) (b) 

(a) (b) 
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2.4. Material complexity 

Possibility of manufacturing multi-material parts and products in one operation and complex composition of 

materials that provides different properties at certain locations. To achieve this different feedstock or binder is 

used. Example of using multi-material additive manufacturing is seamless soccer boot [61], printed chair [62], 

motorcycle glove and multi-colored bike helmet [63], are shown in Figure 10.  

 

 
Figure 10. Multi-material products: (a) Seamless soccer boot [61] (b) Printing in "durotaxis chair" [62]; (b)  

multi-colored bike helmet [63] 

 

Multimaterial AM was mentioned in literature with examples such as manufacturing of integrated electronics 

[64], art [65], compliant mechanism [66], or optimized structure topology [67]. 

 

2.5. Part integration (Design for part integration) 

Instead of using complex assembly with lot of parts, AM allows designer to integrate assemblies in a single 

part. This eliminates assembly time, manufacturing time and reduces costs and inventory.  Redesign for AM 

take in account design optimization of existing products in a way to reduce its weight or geometry 

optimization with maintaining or increasing product functionality and performances. An example of part 

integration is the nozzle used in GE Aviation for LEAP engines produced with metal AM. Part count is 

reduced from 18 to 1., and mass is reduced by 25%. The durability of the part was increased by 500% an 

efficiency of the part [68].  The example is shown in Figure 11. 

 

 

 
Figure 11. Part integration - assembly redesign to take the advantage of AM: (a) assembly - conventional 

manufactured parts; (b) the new consolidated design for AM - it is not longer an assembly [68] 

 

More examples of part integration using AM were mentioned in literature with examples such as aircraft duct 

redesign reducing part count from 16 to 1 [4], robot gripper redesign by reducing part count from 9 to 1 [69], 

medical injector system packaging redesign reduced part count from 15 to 7 [70].  Much of this work show in 

this review is in conceptual stage, which requires a lot of research and development in this field to bring this 

technology to the market. 
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3. Design method for AM  

To get benefit from AM designers must learnt think "out of the box". Especially in cases of design of robust 

industrial solution, all strategies, tools, techniques and method must be adopted[71]. There are several design 

methods for additive manufacturing introduced in the literature but the most promising is the one that takes a 

functional surface approach and design part from the bottom up [26] [27] [72] [73]. Functional surface method 

requires very close link between design and Finite element analysis (FEA). 

Functional surface method of design for additive manufacturing is explained in details in the literature, such as 

the one reported in [56]. Basically, it has four steps such as: (1) initial shape generation; (2) definition of 

parameters; (3) parametric optimization; (4) shape validation. 

Initial shape generation - the goal is to get set of rough part shapes. The way a designer gets a new optimal 

shape can be very innovative. At this stage the designer may start defining the functional surfaces of the part. 

Functional surfaces are those interfaces between the considered part and its neighbors in assembly, or those 

surfaces that carry out the function of a fluid (gas or water, etc.). These surfaces must be linked based on the 

specific part exposure to mechanical or thermal load. At the end, main directions of the part are determined by 

the loads, therefore the shape of the part can be determined. 

 

 
Figure 12. (a) Functional surfaces and mechanical load; (b) part sape [56] 

 

Definition of parameters - to optimize the shape determined in the previous step, a relevant set of parameters 

have to be defined. The designer should be able to modify parameters associated with the part, it s geometry 

with respect to the part specifications and manufacturing constraints [56]. 

 

Parametric optimization - the goal is to reduce amount of raw material, energy consumption, manufacturing 

duration and associated cost. All of mentioned can be achieved by minimizing part volume. FEA is conducted 

for each iteration to verify part compliance with the specification.  

 

Shape validation - the easiest way to validate manufacturability of the part is to use virtual manufacturing. 

The problem might be the lack of virtual validation tools at this state of the AM technology, thus directly AM 

can be still used for validation. 

 

 

4. Quality of produced part 

Parts produced using AM process face significant variation in quality, therefore it can not be used in high 

quality industrial applications. Major issues with quality are variability in: surface finish, geometry, 

mechanical properties, internal material defects [74]. Confidence that quality requirements of AM products 

are fulfilled has to be assured in order to be used in high quality application. Therefore, AM products must be 

fully certified for each step from the beginning to the end in supply chain that includes certification of the row 

material than all manufacturing step and finally produced part [75]. Major influencing factors that have a 

strong impact on AM process are machine/equipment, material, production, batch, part and data. A more 

detailed overview of the factors is shown in Figure 13 [76]. 

 

(b) (a) 
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Figure 13. Factors that affect an AM process [77] 

As it was shown from Figure 13, many major factors affect AM process. The number of factors that may 

affect the product quality is variable in the literature, depending of the AM process it can vary from 49 [78] to 

130 [79]. 

 

5. Conclusion  

Most of additive manufacturing studies are based on conceptual approaches, thus it can be said that it is still 

kind of in its infancy stage. DFAM is not defined well; there is insufficient understanding of the process 

method, strategies and when to undertake design for AM. Also many technologies are missing to support this 

process such as virtual additive manufacturing that takes in account thermal stress on the layer, so it will take 

time to gets its maturity stage. Process quality, capabilities and consistencies of AM are continuously 

improving. Currently existing standard are applying to AM but it is necessary to have AM-specific standards 

developed in the future. Even thought DFMA faces many challenges, still new products, design possibilities 

and manufacturing paradigms are born.  

 

6. References 

 

[1]  D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese and A. Clare, "Materials for additive manufacturing," 

CIRP Annals - Manufacturing Technology, 2017.  

[2]  W. E. Frazier, Metal additive manufacturing: A review, 2014.  

[3]  N. Guo and M. C. Leu, Additive manufacturing: Technology, applications and research needs, 2013.  

[4]  I. Gibson, D. W. Rosen and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital 

manufacturing, 2010.  

[5]  Ian Gibson · David Rosen Brent Stucker, Additive Manufacturing Technologies, 2015.  

[6]  J. P. Kruth, M. C. Leu and T. Nakagawa, "Progress in additive manufacturing and rapid prototyping," CIRP Annals - 

Manufacturing Technology, 1998.  

[7]  D. W. Rosen, "Design for additive manufacturing: a method to explore unexplored regions of the design space," in 

18th Annual Solid Freeform Fabrication Symposium, 2007.  

[8]  B. Durakovic and M. Torlak, "Experimental and numerical study of a PCM window model as a thermal energy 

storage unit," International Journal of Low-Carbon Technologies, vol. 12, no. 3, p. 272–280, 2017.  

[9]  B. Durakovic and S. Mesetovic, "Thermal performances of glazed energy storage systems with various storage 

materials: An experimental study," Sustainable Cities and Society, vol. 45, no. Feb, pp. 422-430, 2019.  

[10]  B. Durakovic and M. Torlak, "Simulation and experimental validation of phase change material and water used as 



Durakovic  PEN Vol. 6, No. 2, 2018, pp. 179 – 191 

188 

heat storage medium in window applications," J. of Mater. and Environ. Sci., vol. 8, no. 5, pp. 1837-1746, 2017.  

[11]  B. Durakovic, H. Bašić and H. Muhič, "The Interrelationships between quality managment practicies and their 

effects on innovation," in Trends in the Development of Machinery and Associated Technology, Budapest, 2014.  

[12]  B. Duraković and H. Bašić, "Textile Cutting Process Optimization Model Based On Six Sigma Methodology In A 

Medium-Sized Company," Journal of Trends in the Development of Machinery and Associated Technology, vol. 16, 

no. 1, pp. 107-110, 2012.  

[13]  H. Bašić, B. Duraković and A. Softić, "Six Sigma Model Testing In Optimizing Medium-Sized Company Production 

Process," Journal of Trends in the Development of Machinery and Associated Technology, vol. 16, no. 1, pp. 103-

106, 2012.  

[14]  B. Durakovic, R. Demir, K. Abat and C. Emek, "Lean Manufacturing: Trends and Implementation Issues," Periodical 

of Engineering and Natural Sciences, vol. 6, no. 1, pp. 130-143, 2018.  

[15]  B. Duraković and H. Bašić, "Continuous Quality Improvement in Textile Processing by Statistical Process Control 

Tools: A Case Study of Medium-Sized Company," Periodicals of Engineering and Natural Sciences, vol. 1, no. 1, pp. 

36-46, 2013.  

[16]  B. Durakovic, "Design of Experiments Application, Concepts, Examples: State of the Art," Periodicals of Engineering 

and Natural Scinces, vol. 5, no. 3, p. 421‒439, 2017.  

[17]  O. Kerbrat, P. Mognol and J. Y. Hascoët, "A new DFM approach to combine machining and additive 

manufacturing," Computers in Industry, 2011.  

[18]  G. Boothroyd, "Product design for manufacture and assembly," Computer-Aided Design, 1994.  

[19]  T. C. Kuo, S. H. Huang and H. C. Zhang, "Design for manufacture and design for 'X': Concepts, applications, and 

perspectives," Computers and Industrial Engineering, 2001.  

[20]  G. D. P. A. K. W. Boothroyd, Product Design for Manufacture and Assembly(2nd edition), New York: Marcel 

Dekker., 2002.  

[21]  C. Poli, "Design for Manufacturing: A Structured Approach," Mechanical and Industrial Engineering Department 

University of Massachusetts Amherst, 2001.  

[22]  G. Boothroyd, Assembly Automation and Product Design, New York: Taylor and Francis, 2005.  

[23]  C. Chu, G. Graf and D. W. Rosen, "Design for additive manufacturing of cellular structures," Computer-Aided Design 

and Applications, 2008.  

[24]  D. E. Cooper, M. Stanford, K. A. Kibble and G. J. Gibbons, "Additive Manufacturing for product improvement at Red 

Bull Technology," Materials and Design, 2012.  

[25]  Y. Huang, M. C. Leu, J. Mazumder and A. Donmez, "Additive Manufacturing: Current State, Future Potential, Gaps 

and Needs, and Recommendations," Journal of Manufacturing Science and Engineering, 2015.  

[26]  R. Ponche, O. Kerbrat, P. Mognol and J. Y. Hascoet, "A novel methodology of design for Additive Manufacturing 

applied to Additive Laser Manufacturing process," Robotics and Computer-Integrated Manufacturing, 2014.  

[27]  R. Ponche, J. Y. Hascoet, O. Kerbrat and P. Mognol, "A new global approach to design for additive manufacturing," 

in Additive Manufacturing Handbook: Product Development for the Defense Industry, 2017.  

[28]  B. Vayre, F. Vignat and F. Villeneuve, "Identification on some design key parameters for additive manufacturing: 

Application on Electron Beam Melting," in Procedia CIRP, 2013.  

[29]  N. Hopkinson, R. Hague and P. Dickens, Rapid Manufacturing An Industrial Revolution for the Digital Age, 2006.  

[30]  E. Atzeni and A. Salmi, "Economics of additive manufacturing for end-usable metal parts," International Journal of 

Advanced Manufacturing Technology, 2012.  

[31]  C. C. Seepersad, "Challenges and Opportunities in Design for Additive Manufacturing," 3D Printing and Additive 

Manufacturing, 2014.  

[32]  W. C. C. T. Ivanova O, "Additive manufacturing (AM) and nanotechnologypromises and challenges," Rapid Prototyp 



Durakovic  PEN Vol. 6, No. 2, 2018, pp. 179 – 191 

189 

J , vol. 19, no. 5, p. 353–64, 2013.  

[33]  "Scopus," 2018. [Online]. Available: www.scopus.com. [Accessed May 2018]. 

[34]  M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja 

and F. Martina, "Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints," CIRP 

Annals - Manufacturing Technology, 2016.  

[35]  M. P. Caputo, A. E. Berkowitz, A. Armstrong, P. Müllner and C. V. Solomon, "4D printing of net shape parts made 

from Ni-Mn-Ga magnetic shape-memory alloys," Additive Manufacturing, 2018.  

[36]  I.Yadroitsev, I.Shishkovsky, P.Bertrand and I.Smurova, "Manufacturing of fine-structured 3D porous filter elements 

by selective laser melting Author links open overlay panel," Applied Surface Science, vol. 255, no. 10, pp. 5523-

5527, 2009.  

[37]  D. R. B. S. I. Gibson, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital 

manufacturing, New York: Springer, 2014.  

[38]  I.Yadroitsev, L. Thivillon, Ph.Bertrand and I.Smurov, "Applied Surface Science Strategy of manufacturing 

components with designed internal structure by selective laser melting of metallic powder Author links open 

overlay panel," Applied Surface Science, vol. 254, no. 4, pp. 980-983, 2007.  

[39]  A. Bandyopadhyay and B. Heer, Additive manufacturing of multi-material structures, 2018.  

[40]  A. Levy, A. Miriyev, A. Elliott, S. S. Babu and N. Frage, "Additive manufacturing of complex-shaped graded TiC/steel 

composites," Materials and Design, 2017.  

[41]  P. Muller, P. Mognol and J. Y. Hascoet, "Modeling and control of a direct laser powder deposition process for 

Functionally Graded Materials (FGM) parts manufacturing," Journal of Materials Processing Technology, 2013.  

[42]  J. Chu, S. Engelbrecht, G. Graf and D. W. Rosen, "A comparison of synthesis methods for cellular structures with 

application to additive manufacturing," Rapid Prototyping Journal, 2010.  

[43]  B. B., "3-D printing: the new industrial revolution," Bus Horiz, vol. 55, no. 2, pp. 155-62, 2012.  

[44]  G. A. Adam and D. Zimmer, "Design for Additive Manufacturing-Element transitions and aggregated structures," 

CIRP Journal of Manufacturing Science and Technology, 2014.  

[45]  A. du Plessis, P. Sperling, A. Beerlink, W. B. du Preez and S. G. le Roux, "Standard method for microCT-based 

additive manufacturing quality control 4: Metal powder analysis," MethodsX , vol. 5, pp. 1336-1345, 2018.  

[46]  Frost & Sullivan's Global 360° Research Team, "Global Additive Manufacturing Market, Forecast to 2025," Frost & 

Sullivan, 2016. 

[47]  E. GmbH, "ASS Maschinenbau – Additively Manufactured Robotic Hand for Pharmaceutical Supplier Theo Hillers 

GmbH," [Online]. Available: 

https://cdn0.scrvt.com/eos/public/f31a95f72c2b78d0/d398604e0e07448cb94721ec3a43496c/download.pdf. 

[Accessed 21 Oct 2018]. 

[48]  Materialise, "Keeping Intrion Robots Up to Speed," [Online]. Available: 

https://www.materialise.com/en/cases/keeping-intrion-robots-up-to-speed. [Accessed 24 Oct 2018]. 

[49]  K. Altaf, A. Majdi Abdul Rani and V. R. Raghavan, "Prototype production and experimental analysis for circular and 

profiled conformal cooling channels in aluminium filled epoxy injection mould tools," Rapid Prototyping Journal, 

2013.  

[50]  E. Sachs, E. Wylonis, S. Allen, M. Cima and H. Guo, "Production of injection molding tooling with conformal cooling 

channels using the Three Dimensional Printing process," Polymer Engineering and Science, 2000.  

[51]  E. GmbH, "Plastic Manufacturer FWB Achieves Major Savings in Production Time and Cost Using Additive 

Manufacturing," [Online]. Available: 

https://cdn0.scrvt.com/eos/public/d6021a2d744738ce/d359c096085bce7316bf56d5c9341a4d/fwb.pdf. [Accessed 

15 Dec 2018]. 

[52]  G. I. Rozvany, "A critical review of established methods of structural topology optimization," Structural and 



Durakovic  PEN Vol. 6, No. 2, 2018, pp. 179 – 191 

190 

Multidisciplinary Optimization, 2009.  

[53]  M. Tomlin and J. Meyer, "Topology optimization of an Additive Layer Manufactured (ALM) aerospace part," in 7th 

Altair CAE Technology, 2011.  

[54]  O. Cansizoglu, O. L. Harrysson, H. A. West, D. R. Cormier and T. Mahale, "Applications of structural optimization in 

direct metal fabrication," Rapid Prototyping Journal, 2008.  

[55]  "EADS and EOS – Study Demonstrates Savings Potential for DMLS in the Aerospace Industry," 2018. [Online]. 

Available: 

https://cdn0.scrvt.com/eos/public/3fb75eeabb786ba7/6bea4ef6e33191ffaf0372fd47e8601a/download.pdf. 

[Accessed 21 Oct 2018]. 

[56]  B. Vayre, F. Vignat and F. Villeneuve, "Designing for additive manufacturing," in Procedia CIRP, 2012.  

[57]  G. A. Bingham, R. J. Hague, C. J. Tuck, A. C. Long, J. J. Crookston and M. N. Sherburn, "Rapid manufactured textiles," 

International Journal of Computer Integrated Manufacturing, 2007.  

[58]  A. Johnson, G. A. Bingham and D. I. Wimpenny, "Additive manufactured textiles for high-performance stab 

resistant applications," Rapid Prototyping Journal, 2013.  

[59]  Y. Chen and C. Zhezheng, "Joint analysis in rapid fabrication of non-assembly mechanisms," Rapid Prototyping 

Journal, 2011.  

[60]  F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Pavese and P. Fino, "Direct fabrication of joints based on 

direct metal laser sintering in aluminum and titanium alloys," in Procedia CIRP, 2014.  

[61]  "Aalto University Digital Design Laboratory, Nanoshell: Unity," [Online]. Available: http://addlab.aalto.fi/design-

research/projects/nanoshell. [Accessed 21 Oct 2018]. 

[62]  R. Stott, "Synthesis Design + Architecture Utilizes Gradient 3-D Printing in Durotaxis Chair. ArchDaily," [Online]. 

Available: https://www.archdaily.com/610939/synthesis-design-architecture-utilizes-gradient-3-d-printing-in-

durotaxis-chair. [Accessed 21 Oct 2018]. 

[63]  "Stratasys, Multi-Material 3D Printing," [Online]. Available: https://www.stratasys.com/polyjet-technology. 

[Accessed 21 Oct 2018]. 

[64]  M. Vaezi, S. Chianrabutra, B. Mellor and S. Yang, "Multiple material additive manufacturing – Part 1: a review," 

Virtual and Physical Prototyping, 2013.  

[65]  N. Oxman, "Variable property rapid prototyping," Virtual and Physical Prototyping, 2011.  

[66]  A. T. Gaynor, N. A. Meisel, C. B. Williams and J. K. Guest, "Multiple-Material Topology Optimization of Compliant 

Mechanisms Created Via PolyJet Three-Dimensional Printing," Journal of Manufacturing Science and Engineering, 

2014.  

[67]  M. Y. Wang and X. Wang, ""Color" level sets: A multi-phase method for structural topology optimization with 

multiple materials," Computer Methods in Applied Mechanics and Engineering, 2004.  

[68]  J. Corney, R. Becker, A. Grzesiak and A. Henning, Rethink assembly design, 2005.  

[69]  R. A. Buswell, R. C. Soar, A. G. F. Gibb and A. Thorpe, "Freeform Construction: Mega-scale Rapid Manufacturing for 

construction," Automation in Construction, 2007.  

[70]  "FDM Helps Acist Medical Pursue perfection," [Online]. Available: 

http://usglobalimages.stratasys.com/Case%20Studies/Medical/CS-FDM-Med-AcistMedical-EN-03-15-

Web.pdf?v=635708250049307509. [Accessed 20 2018dEC]. 

[71]  E. Lutters, F. J. Van Houten, A. Bernard, E. Mermoz and C. S. Schutte, "Tools and techniques for product design," 

CIRP Annals - Manufacturing Technology, 2014.  

[72]  J. Hascoët, R. Ponche, O. Kerbrat and P. Mognol, "From functional specifications to optimized CAD model : 

proposition of a new DFAM methodology," in Proceedings of the ASME Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference, 2011.  

[73]  Y. Zhang, A. Bernard, R. K. Gupta and R. Harik, "Evaluating the design for additive manufacturing: A process 



Durakovic  PEN Vol. 6, No. 2, 2018, pp. 179 – 191 

191 

planning perspective," in Procedia CIRP, 2014.  

[74]  P. O’Regan, P. Prickett, R. Setchi, G. Hankins and N. Jones, "Metal Based Additive Layer Manufacturing: Variations, 

Correlations and Process Control," Procedia Computer Science, vol. 96, pp. 216-224, 2016.  

[75]  L. G, S. P and S. A. B, "Total Quality Management (TQM) Model for Rapid Manufacturing.," in Rapid Manufacturing 

Conference, Loughborough, 2006.  

[76]  M. Schmid and G. Levy, "Quality Management and Estimation of Quality Costs for Additive Manufacturing with 

SLS," in Direct Digital Manufacturing Conference (Ed.), Direct Digital Manufacturing Conference, 2012.  

[77]  M. Schmidt, M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen and G. N. 

Levy, "Laser based additive manufacturing in industry and academia," CIRP Annals, 2017.  

[78]  P. O’Regan, P. Prickett, R. Setchi, G. Hankins and N. Jones, "Metal Based Additive Layer Manufacturing: Variations, 

Correlations and Process Control," Procedia Computer Science, vol. 96, pp. 216-224, 2016.  

[79]  O. Rehme and C. Emmelmann, "Reproducibility for Properties of Selective Laser Melting Products," in 

INTERNATIONAL CONFERENCE; 3rd, Lasers in manufacturing; LIM 2005, Munich, 2005.  

 

 

 


