
ISSN 2303-4521

Periodicals of Engineering and Natural Sciences Original Research

Vol. 9, No. 4, November 2021, pp.854-863

© The Author 2021. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's
authorship and initial publication in this journal.

 854

Documenting and implementing DevOps good practices with test

automation and continuous deployment tools through software

refinement

Manuel Alejandro Pastrana Pardo
1
, Hugo Armando Ordoñez Erazo

2
, Carlos Alberto Cobos Lozada

2

1 Faculty of Engineering, Antonio Jose Camacho University Institution
2 Faculty of Electronic Engineering and Telecommunications, Cauca University

ABSTRACT

The accelerated pace of life of companies in Colombia and the world, entails the need to obtain software

developments with the highest quality, in the shortest possible time and with minimal reprocessing after it

is put into production. Therefore, the use of good software development practices and their automation

through tools is no longer a luxury for development teams today, but part of their way of working.

Unfortunately, in Colombia many of these helps and forms of work are not widely used. This paper

presents the documentation and implementation of preventive quality tools and good practices for software

development that allow code versioning, continuous integration, automation of functional tests, static code

analysis and continuous deployment.

Objective: Present the good practices implemented in the Smart Campus Ecosystem case study for

software development.

Methodology or method: Good practices for software development based on XP and DevOps are

reviewed. A set of tools is selected for implementation that has a direct impact on the quality of software

development. These tools are used in the UNIAJC Smart campus ecosystem case study. The results of the

implementation are documented in this article.

Results: The preventive quality model is exposed, put on test and the results are documented.

Conclusions: The preventive quality model helps to increase the results of quality assurance through the

set of tools that provide development teams with key information for refinement and refactoring of source

code within development runtime and no later than this stage.

Keywords: DevOps, SQA, Software Quality Assurance, Smart Campus, Software Engineering.

Corresponding Author:

Manuel Alejandro Pastrana Pardo

Faculty of Engineering

Antonio Jose Camacho University Institution

Address. Av. 6 Nte. #29N-25, Cali, Valle del Cauca, Colombia

E-mail: mapastrana@admon.uniajc.edu.co

1. Introduction

In the software development industry, from 1994 until the date, the standish group has generated a report on

the projects that turn out to be cases of success, failure and those who present scope changes within their

execution. The objective of this measurement is to identify the main causes that prevent being successful

within the planned scope, time and cost. The report presented in [1] indicates that the greatest number of

problems are presented in 3 specific stages of the development process. The first stage is the review of the

requirements, the second stage is the software design, and the third stage is the implied quality in the

development process. In this last one, it exists two approaches, in one side, the conventional, which requires

the software product to be made before, and subsequently to this, tests are performed to establish if the

 PEN Vol. 9, No. 4, November 2021, pp.854-863

855

software performs or not with the requirement for its approval. This might take several iterations to be

achieved. The second quality assurance approach, is called preventive and it goes more hand in hand with an

agile philosophy, where it is indicated that it must exist a set of filters that allows during the development

time, to measure and advice the team, in how their work is affecting the quality of the final product. In this

way, during the same development time, all the needed measures are taken, so it might be adjusted before the

delivery. For the [2] in its original work, generates 12 good practices, recommended by its well-known

framework for the development of Extreme programming software or XP that is focused in increasing the

development quality during the construction stage and not subsequent to it. These recommendations, are not

so easy of implementing, they required a certain technical degree and the team disposition for the

implementation. Other approaches that help mitigating the aforementioned problem, suggesting good practices

through the implementation of automation tools, as the DevOps case.

They exist authors that have dedicated their work looking for alternatives for the implementations of these

development models, due to the difficulty that involves for the work teams the change in the organizational

culture such as [3] who mentions that the difficulty resides mainly, on the agile frameworks as Scrum and

XP, which provide guidelines on what to do to organize a development process under good practices and a

preventive approach, but they do not indicate how they should be carry out, what may cause a confusion in

the development teamsdue that they do not have a punctual guidelines to follow up, living it to a free

interpretation. Due to this reason and looking for a good way of align the good practices with tools who

permit their implementation in a simpler way, in [4] it exposes a way that makes it possible, implementing

different methods for the development of software as the collective characteristics of the code, the continuous

integration, the continuous deployment, the code standard, the unit test and the sustainable rate.

As a case of study within the macro project smart campus ecosystem, of the University Institution Antonio

Jose Camacho (UNIAJC) a quality assurance environment was implemented with practices that are supported

in tools that help improving the results on projects of software development to be build. This model allows the

collective ownership of the code, which means that the source code is always available to any member of the

team in any moment, to be implemented through a version control tool.

This one is joined to two other tools, by one side, the static code analyzer, which allows to verify the

performance with the programming standards, besides informing constantly about the use or the no use of

good practices of codification according to the object-oriented programming language that are being used. In

other hand you found the continuous integrator, which allows to verify if the changes made to the versioned

code are affecting in a negative way the release. That is to say that every time that a change is done in the

version control tool; this tool detects the changes and tries to generates a packaging for deployment. If it’s not

able to do it, it will inform the team, that the change of one of its members is generating difficulties for the

possibility of deployment. Even though the design suggested by [4] is effective and susceptible to

improvements, due that in its initial scope it leaves out other practices like the deployment continuous and the

functional test automation, due to this reason, the possibility of improving the model was seeing, through the

inclusion of these two practices which increases the quality controls to which this project is submitted during

the building stage.

2. Theoretical framework

DevOps could be defined as the set of principles and practices which allows to face in a different way the

release of software products, increasing their quality through the active collaboration between the developing

areas and company operations according [5].This relation is created in order to improve the integration and

communication of these two areas, in order to obtain the benefits of modern approaches in software

development. An example of this is a set of principles that are presented below for a better appreciation of the

concept and that are proposed by [6]:

 Action focused on the client: The client requirement might slightly change during the construction of

the service or product. If there is not a good communication, problems may arise at the moment of

introducing a new function or new characteristic, that requires the client in a subsequent stage.

 Create with the goal in mind: Roll processes where each individual has a function, must be putted

aside, instead a thought where all the context is visualized and understood and that composes the

creation of the product or service, of the work that is being done.

 PEN Vol. 9, No. 4, November 2021, pp.854-863

856

 responsibility end to end: The development and operation areas must be totally responsible of their

activities and ensure that they are done the best way, with the best results during all the life cycle of

the product.

 Autonomous and multifunctional teams: It is highly recommended to have team members with a

profile that has deep knowledge in a specific topic, but with some understanding in other topics.

 Continuous improvement: The DevOps culture promotes the continues improvement. The way of

acquiring this thinking is through experience, therefor an open thinking to learn as much as it is

possible from failures must be adopted.

 Automate as much as you can: it is not just about automate the continuous release of processes,

consolidation and deployment, but to observe that other functions or characteristics may be automate

in order to obtain a significant advantage.

These principles are implemented through different stages belonging to the life cycle of DevOps, according

[6] it could be represented with the next 6 stages, even though it exists other variations which include more or

less stages:

 Planning: In this stage, the initial setup is done to stablish the base lines of the project and the

different tasks to be performed.

 Development or construction: Stage during the one the product is built. This is how, designs of

infrastructure and tests are made.

 Continuous integration: Automate the mechanism of review, tests and alerts planed in the first stage

of the cycle. The joint of the tests in each section will guarantee the correct performance, otherwise it

will make evident the possible mistakes and the exact place of its origin.

 Continuous deployment: The deployments are made through tools or scripts with the goal of

reducing the human intervention during the process and moreover reducing eventual mistakes.

 Monitoring: The parameters to be monitored are stablished to control the infrastructure and

applications. For example, number of security bugs detected, number of security bugs resolved,

number of bad programming practices, (or code smell) detected and resolved, current technical debt,

number of successful continuous integrations, number of continuous integrations failed, rate of

unitary test coverage, etc.

 Operation: Resources are defined through the growth of the application, through tools that facilitate

the dynamic modification of the infrastructure in quality attributes: scalability, persistence,

availability, transformation and security.

 Continuous feedback: In this stage the information presented is analyzed by everyone in order to

allow the continuous improvement of the product and make decisions aimed to stablish, when the

necessary adjustments should be applied.

DevOps doesn't just depend on communication strategies between development and operation areas. It also

depends on what type of tools are used and how the members manage themselves, when using them, as well

as on the organizational culture and the processes that are impacted by their implementation. This represents a

challenge due to the ever-evolving variety of tools available. The objectives of the tools are to facilitate the

work of the different areas, allow continuous release and maintain software reliability according to [7].

3. Methodology

The research processes used to investigate, document, perform the implementation and the tests is described

hereafter:

3.1. State of the art

In the initial stage a research about devOps, good practices and preventive quality was made. The target of

this item is to know in which development software stage are these topics and provide a knowledge basis,

which exposes the great amplitude of possibilities that may be approached as future projects reference.

The first one is the work of [3], where a predictive research about the behavior of employees is presented in

case of having a Devops implementation, which goes hand to hand with the resent work of [8] that exposes

the advantages and problems of the DevOps inclusion in the organizational culture. The above, is based on the

evaluation of the incertitude and the personality of employees. The target is to identify the advances, and

problems that may arise, having the opportunity of creating strategies to mitigate and improve the

 PEN Vol. 9, No. 4, November 2021, pp.854-863

857

implementation process of DevOps. The identification process is done using surveys and structural model

equations.

On the other side, this research made by [9] at IBM about the transformation of five projects business

intelligence to secdevops, which is a DevOps application, where the security of information is prioritized. The

research has as target, to identify which security aspects are generated during the transformation impact from

a manual implementation process to an automated process. Additionally, it is valuable mentioning the great

contribution provided by the original work of [2], since it provides a fundamental basis to model an agile and

efficient work, but which, in turn, involves a great effort when using said fundamentals, due to this, important

technical skills are needed. Of the fundamentals or good practices that it provides, the following stand out:

continuous integration (CI), continuous deployment (CD), collective ownership of the code, code standard and

unit tests. Some important works around DevOps have delved especially into CI and CD practices such as

[10], who delves into various configurations of tools that allow these operations to be release and the

difficulties encountered in their adoption. Likewise, these practices were important points in the work release

by [4], where a model is presented, and which is based on the agile Scrum framework and some of the good

XP practices to model an environment of preventive quality of software, implemented with free software

tools. These practices and tools dovetail with DevOps recommendations as indicated [11] and [12] who

suggest that preventive quality models should lead to the automation of the continuous submission of the

process.

3.2. Tools used to implement good development practices:

Based on the good practices raised by [4] which include versioning, CI and static code analysis currently

implemented in the Smart Campus ecosystem case study, other tools were investigated by way of example to

expose different possible configurations, this allowed to identify if the current ones required optimization or

not. Additionally, by understanding the model, it is possible to identify the need of a complement in aspects

not covered, such as continuous deployment to both, the test environment and the production environment.

Likewise, the implementation of functional test automation becomes a necessity which helps increasing the

reviews release as the project progresses for each sprint executed.

 Table 1. categorization of tool for the implementation of good development practices.

Category Tools

Virtualization VMware, KVM, Xen, VirtualBox

Containers VMware, KVM, Xen, VirtualBox

Tests and building Solano CI, Jenkins, Maven, Ant, Gradle

Application deployments Capistrano, Red Hat Ansible

Version’s control SVN, Git, Github, Gitlab, Bitbucket

Application servers Weblogic, Glassfish, Tomcat, Jetty, Spring boot, Apache, Nginx

Monitoring Kibana, Cacti, Sensu, Ganglia, Icinga

Logging PaperTrail, Loggly, Splunk, SumoLogic

Process Supervisor Systemd, GNU Emacs

Security Snort, Acunetics

Data Basis Postgres, Oracle, Apache Solr, MySQL, Redis, Firebase, MongoDB

Code Statistical Analysis SonarQube, Pendantic

Currently there are various automation tools to implement good development practices. This means that using

the model exposed by [4], different implementations can be configured and the choice of tools will depend on

the objective and investment that the company wishes to make. The research indicates some representative

tool options on the market, which may be alternatives to those implemented in the Smart Campus ecosystem.

The results are shown in Table 1.

 PEN Vol. 9, No. 4, November 2021, pp.854-863

858

3.3. Tool selection

After reviewing the tools listed in Table 1, it was determined that those implemented in the Smart campus

ecosystem do not require changes, since they correctly fulfill their function. In the same way, it seeks to

complement the model of [4] with the minimum of possible changes to avoid a migration that can be

expensive in terms of the time involved. Therefore, to complement the versioning model, CI and static code

analysis, the CD practices are included, provided by the same CI tool. Regarding the automation of functional

tests from the CD, the Katalon tool was selected. In this case, the use of free software is used, aligning

DevOps principles and tools, with good practices suggested in [2]. That is, the model and the practices

described in [4] would be expanded with the two practices mentioned. Table 2 presents a comparison that

allows to implement good practices through tools, detailing the selected tools below and clarifying that

versioning, static code analysis, continuous integration and unit tests are already part of the culture of Smart

campus ecosystem case study work and are implemented under the model of [4]:

 Git: According to [13], it is a free software designed by Linus Torvalds that is used to control the

evolutionary changes of a software product, assigning a version to the code to generate order and

traceability on its modifications.

 SonarQube: According to [14], it is a tool that is in charge of performing code reviews automatically

in order to find errors, vulnerabilities and the so-called code smells or, due to their translation into

Spanish, odorous code. SonarQube is responsible for finding inconsistencies in the code in the

different branches of the project.

 Jenkins: As [15]indicates, it is a server that allows to automate all kinds of actions, such as releases

and tests, among others. the role in this project is to automate testing and deployment.

 Katalon Studio: As stated in [16], it is a free automate software for web, API and mobile testing. It

offers a wide range of possible configurations that allows easy integration with Jenkins and Git. In

addition, it is focused on users with limited knowledge, unlike tools like Selenium and Cypress which

require more technical skills to be use them properly.

 PostgreSQL: As mentioned in [17], it is a relational database system that uses the SQL language

whose main characteristic is the safe storage and scaling of tasks. The role it fulfills in this

configuration is to provide the service to Sonar in order to store information about executed tests,

among others.

 Table 2. XP Good Practices Vs. Automate DevOps tools

XP Good Practices DevOps Tools

Collective ownership of the code Versions Control

Git, Github,

Gitlab,

Bitbucket

Code standard Static code Analyzer
Sonar,

Kiuwan

Continuous Integration CI

SolanoCI,

Jenkins,

TravisCI

 continuous deployment CD
Jenkins,

Heroku

Unitary test Development Framework
JUnit,

PHPUnit

Therefore, the new model that is represented in Figure. 1 would initiate its interaction with development teams

through the GitLab community edition 12.7.5 version control tool. Here the development teams will centralize

the evolutionary changes of the development, guaranteeing traceability, recovery from failures and availability

at all times of the code for any interested party. The changes made to the repository will be detected by the

Jenkins tool, which must trigger a set of actions that guarantee the automate of preventive quality reports for

the entire team. The first action that arises is the continuous integration (CI) performed by Jenkins 2.22.1 that

allows generating a deployment unit with the latest changes made, identifying whether or not a change has

been generated syntactically that prevents it and notifying the result by email. If there is a failure, it notifies

the user in charge that it was not possible to perform the action, so that an action can be taken immediately.

 PEN Vol. 9, No. 4, November 2021, pp.854-863

859

This prevents that at the moment of making the integration of changes, facing a release, may happened a

contingency that delays it. In case of achieving the generation of the deployment unit, the tool triggers three

actions in parallel. on one side, it asks sonar community edition 8.2 to make a static code review to verify its

quality with respect/respecting to international standards of good practice. here security revisions of coding

mistakes, or that can trigger errors over time are highlighted (referred in the tool as bugs) or of bad

programming practices called odorous code. The accumulation of things to be solved involves a code

refactoring time called technical debt, which is measured by the tool to indicate to the team how much time

should be involved in applying the improvements. Additionally, the tool measures the results of the unit tests

and the rate of their coverage. The higher the coverage rate, the better the quality assurance result in

development time. On the other hand, Jenkins connects with the respective docker container in which the

application server where the project is to be deployed is located. This is done depending on whether it belongs

to the development test server (SmartDev which is a Dell PowerEdge 2900) or whether it belongs to the final

production deployment environment (SmartCampus which is an HP ProLiant DL210 Gen9).

 Figure 1. Model implemented in Smart Campus. Source the authors.

This allows the applicatives to be put into operation quickly. once the deployment is done, the tests cycle,

configurated previously is triggered in the katalon tool, so that automatically the functional correctness of the

application may be reviewed.

Additionally, it is necessary to give a brief explanation about continuous integration (CI) and continuous

deployment (CD), since they directly influence the model proposed by [4] and consequently, in this article.

3.3.1. Continuous Integration

Also known as CI for its acronym in English, it is a good development practice that consists in identifying if

the changes to the source code that have been entered into version control tool affects the deployment unit of

the project. In the event that these changes have a negative effect, the tool is able to recognize it and report

that it is not possible to perform the requested task and indicates who has made the last change. This allows

syntax, configuration or settings mistakes to be resolved immediately and not in an advanced stage of the

project, where it is no longer easy to remember what changes have been done. This practice may be

complemented with the continuous deployment in a natural way, due that the ready-to-deploy version can be

put on an application server to perform functional tests. In this way, a significant reduction in time is achieved

when finding and solving mistakes in early development stages, avoiding that mistake become increasingly

tedious to solve in later stages according to [4]. It is important to note that the impact of the implementation of

this practice may have greater significance in more complex projects and with a greater number of people in

 PEN Vol. 9, No. 4, November 2021, pp.854-863

860

the team. the advantages generated by the inclusion of this practice within the development process are the

following according to [4]:

 Having a central repository of source code versions allows to keep records of code changes, identify

stable versions of the project, identify who has made changes, and recover from failures. Therefore,

when a problem is detected, it is known exactly who made the last change and MAY be corrected

quickly.

 Automate the process of changes allows not to have negative surprises when making releases. which

guarantees from the beginning of the project being prepared for the deployment.

 Performing unitary tests automatically, allows the development team to guarantee, during

development time, that it has successfully achieved the solution of the needs specified in the project

requirements in the analysis artefact.

 Reduces the feedback time of mistakes with the client.

 Strengthens the confidence of programmers when uploading THE code.

 Continuous availability of compilations.

On the other hand, it is also important to mention the disadvantages of this practice, which are not many, but it

is very important to pay attention to them and find a way to reduce their negative impact:

 Overload due to system maintenance.

 Primary need of a server for compilations.

 Change of mentality of the entire work team, so that its implementation and use is effective.

3.3.2. Continuous deployment

Also known as CD for its acronym in English, it is a good practice that aims to implement a deliverable in the

desired environment (of test or production), reducing the cycles of the generation of new versions to a couple

of weeks, days or hours and in this way releasing value quickly, reliably and repeatedly at a lower cost. In

other words, it is to automate the entire workflow to simplify the fast release of the software as indicated [18].

3.4. Tool Settings

The previously selected tools were configured in a virtual machine with CentOS 7 operating system, a replica

of the Smart Campus ecosystem test environment. This practice was carried out in order to validate the

operation in a real development environment, with few variations in the configuration, allowing to measure

the performance of the additional Katalon tool. In the initial configurations of the virtual machine, the tools of

the model of [4] which are GitLab, Jenkins and Sonar were implemented. Additionally, continuous

deployment with GitLab and automated functional tests with Katalon were implemented.

Within the Jenkins application, which allows the necessary integrations with the other tools of the quality

environment, through configurations through the plugins, the installation of what is required was carried out to

display the reports provided by each of the tools. In the case of katalon it is called the Katalon Studio Plugin.

As the first step in the installation of the katalon tool on the server, it is necessary to create an account at

https://www.katalon.com in order to use the tool. Additionally, as the virtual machine's operating system does

not have a graphical interface, it is required to install Google Chrome, since the Katalon tests are executed in a

browser. To do this, the XVFB plug-in must be used, which will be in charge of executing these tests in the

virtual memory of the system, without the need for a graphical environment. The following commands allow

the installation of the aforementioned:

 wget -O google-chrome-stable_current_x86_64.rpm https://dl.google.com/linux/direct/google-

chrome-stable_current_x86_64.rpm

 sudo yum install xorg-x11-server-Xvfb.x86_64

The tests were built within a graphical environment such as Windows, where it was possible to generate the

CMD code that contains the necessary commands. Among these, the following can be highlighted: location of

the project file that will be executed, the browser where the tests will be executed, the API Key of each user

and the Test Suite that will be executed. In addition, the tests created were added to a GitLab repository, being

able to facilitate their portability. In this way it was possible to use files with the extension. prj, Test Cases,

Test Suites and the reports within the execution of the project previously configured in Jenkins on the server.

https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm
https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm

 PEN Vol. 9, No. 4, November 2021, pp.854-863

861

3.4.1. Implementation challenges

When re-deploying, there will always be challenges in adapting new tools and practices. The result depends

on many factors, ranging from the personal skills of the employees to the structure of the organization. Below

are the challenges encountered when implementing DevOps that have been reported in previous studies such

as [19]:

 Significant problems to implement an automated process when variations imply changes in the

database. So, it is recommended that projects use a database versioner such as flywayDB in java, for

example.

 Significant problems to implement an automated process when variations imply changes in the

database. So, it is recommended that projects use a database versioner such as flywayDB in java, for

example.

 Difficulty for software developers and system administrators in learning new technologies, tools and

methods. Therefore, a training process is necessary to adopt new practices and tools, managing to

provide the necessary information on the benefits and practical uses of what is proposed and allowing

them to be integrated into the organizational culture.

 Difficulty in fully automating the implementation process, due to changes in infrastructure

management. Therefore, the identification of the development and operations process must be

correctly mapped and must contain adequate integration and communication mechanisms.

4. Results

The UMATA (Mobile) applications, coded in Ionic and Class Room Reservations (Web), coded in php with

Laravel, were taken as test projects. On the part of the Web application, a good connection was obtained with

the entire implemented system. It was possible to build the tests (Test Cases) correctly in Katalon. In addition,

the integration of Jenkins with Sonar was achieved to perform the static code analysis of the application. From

what was previously mentioned about the tests, it can be said that this characteristic generated an

improvement in the model, as evidenced in Figure 3, where it is observed that the automated tests are

superimposed on the manual ones in relation to the time it takes to perform them. It is important to note that

results may vary, due to directly influencing external factors, for example a person's ability to perform tests

manually or the processing power of the equipment that runs the automated tests. The difference will be

noticeable in larger modules and with more tasks to be carried out, this could be the filling of a form or the

registration of several users consecutively.

Table 3. Manual tests (M) Vs Automate test (A) in Katalon.

Test case M (seconds) A (seconds)

help 19 11.330

Inicial Menu Navegation 14 11.964

Navigation Available Rooms 30 18.373

Navigation book rooms 26 17.974

SeeMyReservations 12 15.625

TOTAL 112 75.266

On the part of the Katalon console version, that is, the Katalon Runtime Engine, it did not interpret the Test

Cases correctly. This is because additional configurations were required to allow the latest plug-ins to be

installed and to function properly. Such a task requires a more advanced knowledge of the use of Selenium

and Katalon. The required adjustments were made and the tests were run again obtaining a favorable result.

In the case of the UMATA application, at the time of building the automated tests in Katalon, the first

drawbacks/disadvantages arose, due that to emulate the application, plug-ins had to be installed that would

allow its execution in the web browser and thus have the possibility to record the evidence. Later, in order to

run the application correctly, it was necessary to automatically open a series of Web sites that required users

to authenticate. When these sites were opened, the login was enabled to enter and consult the information or

use the functionalities that it contained. This was a challenge, since it was necessary to program the opening

 PEN Vol. 9, No. 4, November 2021, pp.854-863

862

of the additional tabs and enter the web addresses, but the confirmation could not be made, because Katalon

does not record the clicks and pulsations on these web pages. In this case, better skills were needed in the

programming of the Katalon tool and in the Ionic language to automate processes of this type or more

complex. It MAY be highlighted from this exercise that despite the fact that the environment exists, it works

differently for each programming language with the one the solutions have been build, due to the fact that

fewer or more additional configurations are required for each case, especially the cases of Web applications

are easier to test in the tool than mobile application cases. As for Katalon, the previous tests had a negative

result compared to the results obtained with the web application encoded in pure PHP. This is mainly due to

the fact that this application did not need a large assembly for its operation and that its programming structure

did not contain plugins or styles, allowing Katalon to correctly interpret the recorded steps.

5. Conclusions

From the results obtained, it is concluded that an automated system may increase the quality and significantly

reduce release times. However, the aim is not to put aside other types of tests, such as unitary tests, for

example, but rather to complement them, because even though it is an automated system, it is not 100%

reliable. There will be cases where the analyzes will generate false positives or no errors will be found and the

idea is to avoid cases where the propagation of these, may become a snowball, making the maintainability and

scalability of the application tedious. On the other hand, it is important to mention that the number of tests

carried out are few and therefore the results may vary in other types of configurations and with other types of

projects. It is recommended to use this type of system together with conventional tests to raise the quality of

the product. It may seem tedious at first, but when you develop the skills to run fluently the analyzes, great

results will be achieved. It is important to note that in some cases the impact will be greater in more complex

projects and with more people involved in the areas. In addition, the environment configurations may vary

greatly depending on the application to be tested, that is, a web application will not have the same

characteristics as a mobile one, each one requires a different level of knowledge about the language and the

necessary configurations for its correct emulation. Another important factor highlighted during the tests is that

the level of adaptation of Katalon will also depend to a great extent on the ability to program the automation

of steps, in some cases it will be more complex than in others. For future works, a more in-depth investigation

of the non-traditional languages supported by the environment will be able to be approached and to identify

which ones could not be examined correctly, in addition to the correct programming using Selenium and

Katalon to automate more complex processes, developing a configuration guide. of various types of projects.

References

[1] Johnson James, “CHAOS Report: Decision Latency Theory: It Is All About the Interval - James

Johnson - Google Libros,” 2018. [Online]. Available:

https://books.google.com.co/books?hl=es&lr=&id=WV1QDwAAQBAJ&oi=fnd&pg=PA1&dq=CHA

OS+Report+2018&ots=9_CUVJxL_j&sig=-o6C1KfyFn2rDEKyUy-

NgIQ72Mw#v=onepage&q=CHAOS Report 2018&f=false. [Accessed: 03-Jun-2021].

[2] K. Beck, Extreme Programming Explained: Embrace Change, no. c. 1999.

[3] J. Shropshire, P. Menard, and B. Sweeney, “Uncertainty, Personality, and Attitudes toward DevOps,”

AMCIS 2017 Proc., Aug. 2017.

[4] M. Pastrana, H. Ordoñez, A. Rojas, and A. Ordoñez, “Ensuring Compliance with Sprint Requirements

in SCRUM: Preventive Quality Assurance in SCRUM,” in Advances in Intelligent Systems and

Computing, 2019, vol. 924, pp. 33–45.

[5] B. B. Nicolau de França, H. Jeronimo, and G. H. Travassos, “Characterizing DevOps by hearing

multiple voices,” in ACM International Conference Proceeding Series, 2016, pp. 53–62.

[6] DevOps Agile Skills Association, “6 Principles of DevOps – DevOps Agile Skills Association

(DASA),” 2019. [Online]. Available: https://www.devopsagileskills.org/dasa-devops-principles/.

[Accessed: 02-Jun-2021].

[7] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of DevOps concepts and

challenges,” ACM Computing Surveys, vol. 52, no. 6. Association for Computing Machinery, 01-Nov-

2019.

[8] M. Muñoz and M. Negrete, “Reinforcing DevOps Generic Process with a Guidance Based on the Basic

Profile of ISO/IEC 29110,” in Advances in Intelligent Systems and Computing, Springer., Springer, Ed.

 PEN Vol. 9, No. 4, November 2021, pp.854-863

863

Springer Cham, 2020, pp. 65–79.

[9] V. Mohan, L. Ben Othmane, and A. Kres, “BP: Security concerns and best practices for automation of

software deployment processes: An industrial case study,” in Proceedings - 2018 IEEE Cybersecurity

Development Conference, SecDev 2018, 2018, pp. 21–28.

[10] S. Vadapalli, DevOps: Continuous Delivery, Integration, and Deployment with DevOps Dive into the

core DevOps strategies. 2018.

[11] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study of DevOps usage in practice,” in

Journal of Software: Evolution and Process, 2017, vol. 29, no. 6.

[12] G. Rong, Z. Jin, H. Zhang, Y. Zhang, W. Ye, and D. Shao, “DevDocOps: Towards Automated

Documentation for DevOps,” in Proceedings - 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice, ICSE-SEIP 2019, 2019, pp. 243–252.

[13] Chacon Scott and Straub Ben, “Git - Book,” Apress, 2020. [Online]. Available: https://git-

scm.com/book/es/v2. [Accessed: 02-Jun-2021].

[14] SonarQube Official Website, “SonarQube Documentation | SonarQube Docs,” 2020. [Online].

Available: https://docs.sonarqube.org/latest/. [Accessed: 02-Jun-2021].

[15] Jenkins Official Website, “Jenkins User Documentation,” 2020. [Online]. Available:

https://www.jenkins.io/doc/. [Accessed: 02-Jun-2021].

[16] Katalon Official Website, “Welcome to Katalon Docs | Katalon Docs,” 2019. [Online]. Available:

https://docs.katalon.com/katalon-studio/docs/index.html#products. [Accessed: 02-Jun-2021].

[17] PostgreSQL Official Website, “PostgreSQL: About,” 2020. [Online]. Available:

https://www.postgresql.org/about/. [Accessed: 02-Jun-2021].

[18] P. Rodríguez et al., “Continuous deployment of software intensive products and services: A systematic

mapping study,” J. Syst. Softw., vol. 123, pp. 263–291, Jan. 2017.

[19] L. E. Lwakatare et al., “DevOps in practice: A multiple case study of five companies,” Inf. Softw.

Technol., vol. 114, no. June, pp. 217–230, 2019.

