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ABSTRACT   

The random forest algorithm is one of important supervised machine learning (ML) algorithms. In the present 

paper, the accuracy of the results of the random forest (RF) algorithm has been improved by the use of the 

One Hot Encoding method. The Intrusion Detection System (IDS) can be defined as a system that can predict 

security vulnerabilities within network traffic and is located out of range on a network infrastructure. It does 

not affect the efficiency of the built-in network because it analyzes a copy of the built-in traffic flow and 

reports results to the administrator by giving alerts. However, since IDS is a listening system only, it cannot 

take automatic action to prevent an attack or security vulnerability detected from infecting the system, it 

provides information about the source address to start the break-in, the address of the target and the type of 

suspected attack. The IoTID20 dataset is used to verify the improved algorithm, where this dataset is having 

three targets, the proposed system is compared with the state-of-art approaches and shows superiority over 

them. 
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1. Introduction 

The Internet of Things, or IoT, can be defined as a network of several million computers that are linked together 

by the internet for the purpose of collecting, exchanging, and processing data. To put it another way, any smart 

computer connecting to a wireless network can be managed and communicated with. IoT applications can be 

used in a variety of settings, including homes, businesses, vehicles, and industries. The Internet of Things (IoT) 

is extremely elastic and has a significant economic effect on society. The IoT Market is expected to be consisting 

of over 84 billion connected devices that generate 186 zettabyte of data by the year of 2025[1, 2]. Having several 

gadgets attached to the internet is a major security issue. Not all data transmitted over the IoT system is secured, 

making it susceptible to malicious attacks. To build a stable and safe network, a lot of research is being carried 

to improve IoT security. The three fundamental rules of confidentiality, integrity, honesty, and authenticity, 

should be followed when developing solutions. Developing different types of security mechanisms for IoT 

networks, such as intrusion detection systems (IDS), has become very important, and the concept of applying 

machine learning to IDS is gaining a lot of interaction[3]. Intrusion detection systems are applications or services 

that can be used to track or diagnose unusual behavior in a network or device. A number of ML approaches are 

being utilized to forecast anomaly detection in IoT networks, with promising findings[4, 5]. Host-based IDSs 

and network-based IDSs are the two major categories of intrusion detection systems. Based on information from 

the computer, such as machine logs, host-based IDS is used to track and protect a single device or network. 

Network-based IDS is used to track an entire network by accessing and evaluating the flows that exist within it. 

Packet-based IDS and Flow-based IDS are 2 types of network-based IDS. Network packet information, such as 

https://creativecommons.org/licenses/by/4.0/
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payload or header information, was used by packet-based IDS. Traditional IDS [6]is another name for them. 

Flow-based IDS, on the other hand, analyzes and monitors network anomalies using network flow 

characteristics such as data rate and byte information. Network Behavior Analysis [6] is another name for flow-

based IDS. Several supervised and unsupervised machine learning models are used to classify malicious or 

unusual network behavior. Traditional protection methods are difficult to implement directly to protected IoT 

devices due to computational and fundamental resource constraints. Rule-based detection techniques, on the 

other hand, produced effective results[7, 8]. As a result, as IoT environments and technologies evolve, anomaly-

based detection mechanisms may become increasingly important. Machine-learning algorithms can benefit 

greatly from big data generated by IoT devices so they can carry out the data analysis and produce meaningful 

predictions and interpretations of IoT devices. As a result, using machine learning to secure IoT systems is seen 

as the best way for protecting them from the intrusion attacks, particularly through the detection of any unusual 

behavior in the system. It's also worth noting that ML performs well in other fields[9, 10]. The following is the 

rest of the paper's structure. The related work to the proposed approach is discussed in the second section. The 

IoTID20 dataset is defined in the third section. In the fourth part, the proposed architecture for anomaly detection 

in IoT systems is presented. The proposal's results and analyses are discussed in Section 5. Finally, we wrap up 

this study with suggestions for future research in the final section. 

 

2. Related work 

In 2021, Qaddoura et al. [11] introduced a 3-stage solution that included clustering with the reduction, over-

sampling, and classification with the use of a Single Hidden Layer Feed-Forward NN (SLFN). The paper's 

innovation lies in the approaches of data reduction and oversampling that have been utilized for the generation 

of the balanced and usable training data, as well as the hybrid consideration of unsupervised and controlled 

approaches for detecting activities of the intrusion. The tests were divided into four stages and tested in terms 

of the precision, recall, accuracy, and G-mean: measuring the impact of clustering on data reduction, the 

framework's performance against basic classifiers, the impact of oversampling method, and a contrast against 

basic classifiers On the chosen IoTID20 [12]dataset, the SLFN method of the classification and the option of 

Synthetic Minority Oversampling Technique (SVM-SMOTE) and Support Vector Machines (SVMs) with a 

ratio of 0.90 and a k value of 3 for k-means++ clustering method produce superior performance, with a score of 

98.4%. Qaddoura et al.[13] in 2021 introduced a deep multilayer classification method that included the 

following components: an oversampling strategy utilizing SMOTE to address the problem of mismatch data-

sets; and a deep multilayer method of classification that included the following components. To improve the 

classification outcomes, two methods are proposed. The SLFN technique's first level of classification forecasts 

interference and routine operations. DNN predicts the type of intrusion activity in the second stage of 

classification. The tests were carried out on IoTID20 [12], demonstrating that the suggested solution produced 

better performance. Ullah and Mahmoud in 2020 [12] used similarity of features, rating of features, and various 

ML approaches for classification for analyzing and comparing the IoTID20 dataset. For the normalization and 

interpretation of IoTID-20 data-set, they used ML algorithms and column normalization approaches. The 

identification capabilities of a machine learning algorithm are harmed by associated characteristics. For 

IoTID20, twelve associated attributes were removed from the dataset. The Shapira-Wilk algorithm was used to 

rate the features in the IoTID20 dataset, which tests the regularity of the feature-related distribution of 

occurrences. More than 70% of the features graded with a score greater than 0.50, indicating that they have a 

high rating. The binary, subclass, and subcategory mark datasets were all evaluated. Machine learning models 

are built using ensemble, Gaussian Naïve Bayes, Support Vector Machine, Logic Regression, Latent 

Dirichlet Allocation, RF, and Decision Tree classifiers. To evaluate the effectiveness of the different classifiers, 

we used numerous K-fold cross-validation measures, including 3, 5, and 10 fold cross-validation tests. The 

highest accuracies were achieved by Ensemble, Random Forest, and Decision Tree classifiers, while the lowest 

accuracies were achieved by SVM and Logic Regression. In 2020, Yang and Shami suggested the adaptive 

Light GBM model for the IoT data analytics [14, 15], which has high precision while using little time and 

memory. The proposed model will automatically respond to the ever-changing data streams of complex IoT 

systems owing to incorporation of their proposed novel drift-handling algorithm, Optimized Adaptive and 

Sliding Windowing (OASW), an ensemble ML algorithm (i.e. Light GBM), and a hyper-parameter tool, Particle 

Swarm Optimization (PSO). Experiments on two public IoT anomaly detection data-sets, IoTID-20 [12, 8] and 

NSLKDD [13], are utilized in order to test and discuss the suggested process.  
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On IoTID-20 and NSL-KDD datasets, the approach for effective outperforms many state-of-the-art drift 

adaptation methods in terms of detecting IoT attacks and adapting to idea drift, with accuracy values of 99.92% 

and 98.31%, respectively. Farah in 2020 [3] used two freely accessible simulation databases, IOTID20 [12] and 

Bot-IoT [16], for training and testing, which were developed to capture IoT networks for various attacks like 

the Denial of Service (DoS) and Scanning. Machine learning models that were applied to these datasets were 

tested within each dataset before being evaluated through datasets. There was a large variation in the analyses 

obtained using the two datasets. Supervised machine learning models were developed and tested for binary 

classification, which differentiated between standard and anomaly attack cases, as well as multiclass 

classification, which classified the type of attack on the IoT network. To ensure that the model works well, the 

flow identifiers of a network packet, like the source and destination IP addresses, port numbers, and timestamp, 

had to be removed. Since attackers will use various IP addresses and times to initiate attacks on the network, if 

the model is trained using these features, it may fail to generalize well when deployed. Furthermore, ten more 

functions were removed because they only had a single value and did not add much value to the machine 

learning models. The models were then trained using a total of 67 features. The models work admirably and are 

capable of detecting irregularities in the data. On both datasets, the decision tree, k-NN, and ensemble scores 

are both above 0.95. Assi and Sadiq in 2018 [17]proposed a feature selection strategy that has been based upon 

the Modified Artificial Immune System. The suggested algorithm makes use of the benefits of the Artificial 

Immune System to optimize the efficiency and the randomization of features. The NSL-KDD dataset [18] 

revealed that when compared to other feature selection algorithms, the NSL-KDD algorithm was more effective 

(best first search, correlation, and information gain). In 2017, Assi and Sadiq suggested five core classification 

methods to classify network attacks using the NSL-KDD dataset [13] and three feature selection strategies [19]. 

These methods include the J48 decision tree, SVM, Decision Table, Bayes Network, and Neural Network Back 

Propagation. Feature discovery approaches include correlation-based feature selection (CFS), information gain 

(IG), and decision tables. A number of the trials have been carried out to yield positive outcomes by using NSL-

KDD preparation and research in the general attack (Anomaly and Normal).  

Those have been performed using 4 different types of attacks: DOS, U2R, R2L, and probing. The J48 

classification scheme with training data produces the highest performance (80.3 percent) by using the testing 

dataset and (93.9 percent) when using the consistency training dataset. 

3.  Random forest 

Random forests can be defined as an ensemble learning system for the classification, regression, as well as 

other tasks, functioning through the construction of a wide range of the decision trees at training time and 

producing the class which is the individual trees classes (i.e. classification) or mean/average predictor (i.e. 

regression) mode. Random decision forests are correct for the decision trees’ habit. RFs have been considered 

as one of the ways for averaging several deep decision trees that have been trained with the intentions to reduce 

the variance on different sections of one training set. Which comes at the cost of a slight rise in the bias and 

some interpretability lack, however, typically results in the substantial improvement of efficiency in the final 

model. Forests are like pulling decision tree algorithm attempts together. In this way, the teamwork of multiple 

trees increases the productivity of a single random tree [20] proposed hybrid feature selection for Random 

Forest depends on two measures Information Gain and Gini Index in different weight-based percentages. The 

key plan is to measure the Information Gain for all random selection features and then look for the best split 

point in the node that offers the best value for a Gini Index hybrid equation [22]. It proposed a random forest 

algorithm using an accuracy-based ranking that relies on the accuracy of a single tree from the previous Random 

Forest assessment. The proposed model consists of two primary stages, the first being the training process 

responsible for the development of the tree and the evaluation phase containing two test tiers (evaluation test 

and accuracy test) [23]. 
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Figure 1. Random Forest Classifier [21] 

 

4. Enhancement Performance of Random Forest Algorithm  

One Hot Encoding is a process of exemplifying categorical values into binary numbers. Many learning 

algorithms either use distances between samples or learn a single weight per element. The former is true for 

linear models like logistic regression, which are simple to understand. It is a known fact that machine learning 

algorithms fail to work on categorical data and hence have to be converted to numbers where one hot encoding 

technique plays its significant role. As a natural reaction it is possible to opine on the use of integer coding 

directly but it has its limitations when used on relationships of the natural ordinal types. In one hot encoding 

technique, the categorical values in the data are directly assessed to integer values and each integer value is 

changed to a binary value. In this proposed system framework shown at Figure 3. The three classes are one hot 

encoded which resulted in two labels for binary, five labels for category and 9 labels for subcategory. The 

process of one-hot encoding is done through using one for the corresponding label and zero for the other labels, 

and the result vector is used as a multi classification problems where we have a vector of target classes. One-

hot encoding makes the training process more effective and the built model would learn more efficient as it 

gives the network more expressive power to learn a probability-like number for each possible label value. This 

can help in both making the problem easier for the network to model.  When a one hot encoding is used for the 

output variable, it offers a more nuanced set of predictions than a single label. Random forest classifier is then 

trained using the training set and the trained model is then tested used the testing set. The proposed system 

achieved higher accuracies which is 99.9% for binary label, 99.3% for category label and 95.8% for subcategory. 

To represent one-hot encoding process more formally, Consider 𝐶 = {𝑐(1), 𝑐(2), … , 𝑐(𝑘)} represents 

corresponding labels for D shown in table 1, which is a given as input set. Also, let 𝐷 = {𝐼𝐷1, 𝐼𝐷2, … , 𝐼𝐷𝑁} 

represents 𝑁 labeled network traffic data in industrial environments. And for each instance there are 𝐹 =

{𝐹(1), 𝐹(2), … , 𝐹(𝑚)} represents m features for the instance. If 𝐶(1) = 𝐿𝑎𝑏𝑒𝑙1, while 𝐶(2) = 𝐿𝑎𝑏𝑒𝑙2, and 𝐶(3) =

𝐿𝑎𝑏𝑒𝑙3, and the other response values of C are either 𝐿𝑎𝑏𝑒𝑙1,or 𝐿𝑎𝑏𝑒𝑙2, or 𝐿𝑎𝑏𝑒𝑙3. One hot encoding process 

would assume a vector where the vector size equal the number of distinct labels, that is three in this example, 

and would refer to each label in the vector as 0 or 1 where 0 means that the data instance not correspond to that 

label and 1 means it have that label. So, 𝐿𝑎𝑏𝑒𝑙1 would be replace with vector [1 0 0], 𝐿𝑎𝑏𝑒𝑙2 would be replaced 

with vector [0 1 0] and 𝐿𝑎𝑏𝑒𝑙3 would be replaced with vector [0 0 1]. For generalization, 𝑐(1)would be [1 0 0 

…], 𝑐(2) would be [0 1 0 …] and 𝑐(k) would be [0 0 … 1]. This process is clarified in Table 1 and its encoding 

process. For more clarification, If we have a single categorical feature "Category", with values “Scan”,  “Mirai”, 

“MITM”,  “ARP” an “DOS”. Assume, without loss of generality, that these are encoded as 0, 1 and 2, 3, 4. The 

integer encoding is insufficient for categorical variables with no such ordinal relationship.  In reality, 

encouraging the model to assume a normal ordering between categories and using this encoding which result in 

bad performance or unpredictable effects (predictions halfway between categories).  

In this case, the integer representation can be encoded using a one-hot encoding. For each unique integer value, 

the integer encoded variable is discarded and a new binary variable is inserted. But with the one-hot encoding, 

the representation is  [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]. 
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Table 1. Input Data Set Example before and after One-hot Encoding 

 
Feature Vector Target  

ID F1 F2 F3 F4 … Fm classes 

01 F1
1 F1

2 F1
3 F1

4 … F1
m C1 

02 F2
1 F2

2 F2
3 F2

4 … F2
m C2 

03 F3
1 F3

2 F3
3 F3

4 … F3
m C3 

…
…

 

…
…

. 

....... 

…
…

 

…
…

. 

......................

.................... 

…
…

 …
…

 

N FN
1  FN

2  FN
3  FN

4  … FN
m Ck 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 shows the algorithm proposed in the second framework where we one-hot encode the classes 

by creating a vector classes that have one for the corresponding classed and zero for the other classes and 

the resulting dataset is then input for the random forest algorithm.  The second algorithm shows how we 

calculate the accuracy evaluation for the second approach where the true positives and true negatives are 

calculated by comparing the results of the dataset with results of the RF algorithm and if the position of the 

on in the result vector matches that of the dataset then the true are added by one. The true is then calculated 

 
Feature Vector Target  

ID F1 F2 F3 F4 … 𝐅𝐦 C1 C2 C3 …. Ck 

01 F1
1 F1

2 F1
3 F1

4 … F1
m 1 0 0 ...... 0 

02 F2
1 F2

2 F2
3 F2

4 … F2
m 0 1 0 ...... 0 

03 F3
1 F3

2 F3
3 F3

4 … F3
m 

0 0 1 ...... 0 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

. 

…
…

 

…
…

. 

N FN
1  FN

2  FN
3  FN

4  … FN
m 0 0 0 …... 1 

Via One Hot Encoding  
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by looping through the testing dataset and then it’s divided by the dataset size and the final percentage is 

then evaluated by multiplying to 100.  

Randomized forests are a collection of regression trees and classifications which train on a training Dataset 

generated by random selection on the initial Data-set. When building a tree, the researchers use a collection 

of randomized test Data that contains no Record constraints from training data-set as a group for testing 

the trees within the forest. To calculate the consistency of every one of the trees, take the error rate in 

determining the form of input from the test community for the tree, and to determine the error rate of the 

forest, take the error rate for all the trees in the forest. The rule will split the data into two bits, allowing it 

to be checked with the same data and with the same precision as laboratory tests, according to the out of 

bag scale. These values are added to all of the trees in the random forest in order to define a new entry. 

Each tree predicts the class of this entry Record, and the forest then makes a decision based on the majority 

vote of the trees [24].  

 

 

 
 

Figure 2.  Enhancement Performance of Random Forest Algorithm Framework 

Start 

Load dataset 
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Split dataset to Training and Testing 
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Training Dataset 
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Figure 3.  Enhancement Performance of Random Forest Algorithm Framework 
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5. Experimental results 

5.1.  Dataset description  

 

IoTID-20 data-set [12] includes intrusion and regular activities recorded by notebooks, tablets, and smartphones 

in a smart home IoT network with Wi-Fi router, SKT NGU computer, and EZVIZ camera. There are 83 

attributes and 625,783 instances in the dataset. with the nominal attributes omitted, resulting in a dataset with 

79 characteristics. The intrusion detection mark, the category label, and the sub category label are all present in 

the dataset. The IoTID20 dataset's binary, category, and sub-category labels are listed in Table 2. 

 

Algorithm 1. Random Forest within One-hot Encoding 

Random Forest within One Hot Encoding 

Input: Training Dataset,  Number of Features, select target  

Output: Tree of random forest 

  Begin: 

   Step 1:  Count number of classes for target in the training dataset 

   Step 2:  Add features columns equal to number of classes with classes name in the training data-set 

   Step 3:  K= the number of instances in the training data-set 

   Step 4: Loop i from 1 to K 

Begin: 

a. put number 1 for the cell that present the class  

b. put number 0 for other cells  

         End 

    Step 5: TG = Create array of target classes 

    Step 6: TD = Drop all the columns for target classes from the training dataset 

    Step 7:  Call Random Forest algorithm (TD, TG) 

End  

Algorithm 2. One-hot Encoding Evaluation 
Evaluation One Hot Encoding 

Input: Tasting Dataset, T=Tree of Random Forest, Select Target  

Output: Final accuracy for Rrandom Forest 

Begin: 

   Step 1:  Count number of classes for target in the testing data-set 

   Step 2:  Add features columns equal to number of classes with classes name in the testing data-set 

   Step 3:  K= the number of instances in the testing dataset 

   Step 4: Loop i from 1 to K 

Begin: 

a. put number 1 for the cell that present the class  

b. put number 0 for other cells  

           End 

    Step 5: TG = Create array of target classes 

           Step 6: TD = Drop all the columns for target classes from the tasting dataset 

           Step 7:  Predictions = Random Forest algorithm (T,TD, TG) 

           Step 8: Right = 0 

           Step 9: Loop i from 1 to K 

 Begin: 

if Predictions = TG; 

    Then: Right = Right +1 

           End  

     Step 10: Accuracy = (100*right/(K)) 

End 
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Table 2. IoTID20 dataset 

 

 

 

 

 

 

 

 

 

 

 
Table 3 lists the precise distribution of dataset records between standard and intrusion operations. By 

adding more damaging risks, IoT systems have increased the attack surface. Denial of service (DoS), Man-

in-the-Middle (MITM), Distributed DoS (DDoS), and active scanning were the most malicious activities 

injected and tracked to produce the dataset. The type of DoS attack that has been considered is one that 

floods synchronized (SYN) packets into TCP-based connections (TCP-based connections). SYN packets 

are typically utilized to create TCP connections between the communicating parties through reserving 

resources on both sides, primarily ports and buffers. It may be used to target the server's and/or victim 

machines' availability. Furthermore, flooding acknowledgment, Hyper Text Transfer Protocol (HTTP), and 

User Datagram Protocol (UDP) packets were used to introduce DDoS attacks in the form of IoT Mirai. 

Furthermore, a brute force attack has been used to decrypt data and reveal the confidentiality. MITM has 

been also used for the poisoning of the Address Resolution Protocol (ARP) table and map the attacker's 

Media Access Control (MAC) address to the router's Internet Protocol (IP) address. As a result, the intruder 

will impersonate the network router and disrupt interactions between network entities. The key goal of this 

attack is to sniff or manipulate data that is being transmitted [11]. The IoTID20 dataset is split into two 

parts: 75 percent preparation and 25% research. 

 
Table 3. IoTID20 Distribution  

 
 

Binary 
 

Category  
 

Sub_Catego

r  

 

75%  25% 

 

Dataset 

IoTID2

0  

625.783 Anomaly 585.710 Anomaly-

Scan 

 

75,265 

Hot Port 22,192 For 

Training  

16,644 For 

Test   

5,548 

Port OS 53,073 For 

Training  

39,805 For 

Test   

13,268 

Anomaly-

Mirai 

415,676 ACK Flooding 55,124 For 

Training  

41,343 For 

Test   

13,781 

Host 

BruteForceg 

121,181 For 

Training  

90,886 For 

Test   

30,295 

HTTP Flooding 55,818 For 

Training  

41,864 For 

Test   

13,955 

UDP Flooding 183,553 For 
Training  

137,665 For 
Test   

45,888 

Anomaly-

MITM 
ARP 

35,377 MITM ARP 

Spoofing 

35,377 For 

Training  

26,533 For 

Test   

8,844 

Anomaly-

DOS 

59,392 Synflooding 59,391 For 

Training  

44,544 For 

Test   

14,848 

Normall

y 

40.073 Normal 40,073 Normal 40,073 For 

Training  

30,055 For 

Test   

10,018 

        
Total 

Sample 

469,337 Total 

Sample 

156,446 

Binary Category  SubCategory 
Anomaly 

Normally 

Anomaly-Scan 
Anomaly-Mirai 

Anomaly-MITM ARP 

Anomaly-DOS 

Normal 

Hot Port 

Port OS 

ACK Flooding 

Host BruteForceg 

HTTP Flooding 

UDP Flooding 

MITM ARP Spoofing 

Synflooding 

Normal 
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for 
Training 

for 
Testing  

5.2.  Results 

Figure 4 shows a comparison between the proposed system for predicting the binary (normal/ anomaly) target 

and other state-of-the-art studies in terms of accuracy. The accuracy is specified by the total number of correct 

predictions divided by the total number of predictions. The accuracy of the proposed system and systems 

proposed by Farah [3] and Qaddoura et al. [13] discussed before in the related work section approaches 100%. 

The overall evaluation shows the superiority of our proposed algorithm. 

 

 
Figure 4.  Comparison between the proposed system and other algorithms predicting 

the binary (normal/ anomaly) target in terms of accuracy and time. 

 
Figure 5 shows a comparison between the proposed system for predicting the category (normal/ Scan, 

Mirai, MITM ARP, DOS) target and other machine learning algorithms in terms of accuracy. The accuracy 

of the proposed system and Decision Trees are the highest. The overall evaluation shows the superiority of 

our proposed algorithm. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5. Comparison between the proposed system and other algorithms predicting the category 

(normal/ Scan, Mirai, MITM ARP, DOS) target in terms of accuracy and time. 

 
Figure 6 shows the accuracy of algorithms proposed by Ullah and Mahmoud [12]for predicting sub-category 
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Spoofing/ Synflooding) on the IoTID20 dataset, they achieved high accuracy using their decision tree, random 

forest, and ensemble algorithms, but their proposed system uses all the data in the training step which makes 

the algorithms suffer from overfitting and make it not dependable.  
On the other hand, highly small microstrip filters and antennas [25-26], can be utilized to improve 

portability of IoT system with an efficient wireless communication. 
 

Figure 6. Accuracy of algorithms proposed by Ullah and Mahmoud [12] predicting 

sub-category (Normal/ Host Port/ Port OS/ ACK Flooding/ Host BruteForce/ 

HTTP Flooding/ UDP Flooding/ MITM ARP Spoofing/ Synflooding). 

 

6. Conclusion 

Intruders will initiate more disruptive cyber-attacks due to the rapid development of IoT gadgets. With 

disruptive operations, the attacker hoped to deplete the target IoT network's resources. Researchers and company 

owners are concerned about the reliability of IoT networks, which has a significant effect on availability of 

services that are provided by IoT devices as well as the safety of users connecting to the network. An intruder 

prevention mechanism protects the network by detecting malicious activity.  The nominal attributes are omitted 

from the IoTID20 dataset, resulting in a dataset with 79 characteristics. Label, category, and subcategory are 

the three groups in the dataset. The data-set is then divided into two parts: training and testing. The three groups 

are hot encoded, yielding two binary labels, five category labels, and nine subcategory labels. The training set 

is then used for training the random forest classifier, and the trained model is then evaluated with the testing set. 

The suggested scheme reached higher accuracies, with a binary label accuracy of 99.9%, a division label 

accuracy of 99.3%, and a subcategory label accuracy of 95.8%. The methodology outperforms currently 

available state-of-the-art approaches. 
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