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ABSTRACT   

Despite the slenderness that usually characterizes planar RC structural walls, these structural elements 

effectively resist significant in-plane earthquake demands. However, during the 2010 Chile and 2011 New 

Zealand earthquakes, some medium to high-rise buildings exhibited out-of-plane buckling instability, a 

failure mode that had only been observed in experiments. This failure mode was first studied in the 1980s; 

however, it was just after the recent earthquakes that several studies arose to improve design procedures to 

avoid future damage. Parameters as the height-to-thickness ratio, reinforcement content, material properties, 

and the hysteretic behavior of the longitudinal steel have been identified as critical for the onset of buckling 

instability. In this paper, the influence of the concrete cover was studied through a fiber-based element 

parametric analysis conducted on 120 RC prisms that simulate boundary elements of special RC walls. The 

prisms were subjected to incremental axial cyclic loading that mimics the effects of in-plane lateral 

displacements. As a result, a new approach is presented to limit tensile strains developed in the longitudinal 

reinforcement of boundary zones to prevent the onset of out-of-plane buckling instability. 
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1. Introduction 

On February 27, 2010, Chile endured an 8.8 Mw earthquake, with a maximum recorded peak ground 

acceleration (PGA) of 0.65g in the NS direction [1], affecting more than 300,000 structures [2]. In New Zealand, 

on February 22, 2011, a 6.2 Mw earthquake with a 0.85g PGA in the UP direction [3] damaged more than 

100,000 buildings [2]. Some medium to high-rise wall and dual RC buildings exhibited out-of-plane buckling 

(OPB) instability on their RC structural walls (RCSW) [4-7]. This failure mode concentrates the most significant 

damage on the end zones of planar walls (see Fig. 1).   
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Figure 1. Out-of-plane buckling scheme 

The OPB instability of RCSW was studied for the first time by [4]. Here, it was noticed that the longitudinal 

bars located on the boundary regions served as the only source of stability in the compression zone due to wide 

cracks that were still open from a previous inelastic tensile demand. This study served as the basis for the 

phenomenological models proposed by [5] and [6] that associate the effects of in-plane loading with out-of-

plane deformations in RCSW to prevent OPB instability.  

Based on [6], [7] proposed a less conservative model that limits maximum tensile strains in boundary elements 

(BE) of special RCSW. This approach also considered the influence of the longitudinal reinforcement ratio, the 

height-to-thickness ratio of the end regions, the buckling length, the mechanical properties materials, the 

experimentally adjusted curvature distribution along the buckling length, and the hysteretic behavior of the 

longitudinal steel.  

It is important to note that all the models mentioned above and the described failure mode are primarily deduced 

from the assumption of a wall with two layers of reinforcement. However, recent studies [8] have evidenced a 

wide use of walls with only one layer of reinforcement in Latin America, mainly in Colombia. The latter 

configuration implies more vulnerability since it is associated with a reduced thickness and, even more 

important, different patterns that trigger the instability. 

The two-layer reinforcement configuration is still the most common in countries such as Chile, where the usage 

of single-layer walls has been forbidden after various reconnaissance teams' observations. Consequently, this 

research focused on RCSW reinforced with two layers. 

Finally, although more models developed over time (including numerical ones), they have not directly addressed 

the cover thickness influence, which has been identified as a critical parameter related to the onset of OPB 

instability on RCSW. The approach presented in this paper includes the effect of the mentioned parameter. For 

this purpose, a fiber-based parametric study was established for 120 column-type specimens that simulate BE 

of special RCSW. Different height-to-thickness aspect ratios and longitudinal steel ratios were combined with 

two cover thicknesses. Finally, a modified version of [7] is presented and compared with experimental results 

on BE.  

The main contributions of this work are listed below: 

1. A fiber-based model to simulate the effect of in-plane loading on BE of RCSW. 

2. A seismic design approach to predict the OPB instability limit state on RCSW 

2. Description of the model 

The model considered 30 mm and 20 mm concrete covers thickness and 28 MPa and 35 MPa concrete 

compressive strengths. Also, longitudinal steel reinforcement ratios of 1%, 1.5%, 2.0%, 2.5%, and 3% were 
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analyzed. A total of 120 BE were modeled in SeismoStruct with aspect ratios between h/5 and h/30 that varied 

with a 5-step increment. First, the design approach by [7] is described. 

2.1. Haro A. G. et al. (2019) 

The model proposed by [7] considers three hysteretic components for the longitudinal reinforcement, see (1), 

allocated in the extreme regions of RCSW when subjected to in-plane loading. Instability occurs when concrete 

crushes before cracks close on the opposite side, where the maximum out-of-plane deformations develop once 

high inelastic levels are reached. In this phase, longitudinal rebar strains are critical parameters that govern out-

of-plane instability. Consequently, by estimating sm with the idealized response (see Fig. 2), OPB can be 

controlled. 

𝜀𝑠𝑚 = 𝜀∗
𝑎 + 𝜀𝑒 + 𝜀𝑟 (1) 

 
Figure 2. Hysteretic components of longitudinal rebar 

 

In (1), *

a  is the axial strain at first crack closure, e is the elastic strain recovery that depends on the elastic 

properties of the concrete and the transfer connection between the steel and concrete, and r is the reloading 

strain associated with the compression yielding in both reinforcement layers, which occurs due to the steel 

stiffness reduction, as a result of the Bauschinger effect [6]. Both e and r are expressed as a function of the 

longitudinal reinforcement yielding strain, y, as shown in (2), developed by [7]. 

𝜀𝑠𝑚 ≤
24

5
(

𝑏𝑤

𝐿𝑜
)

2

∙ 𝜉𝑐 +
5

9
[−2.4 + 160 (

𝑏𝑤

𝐿𝑜
)

2

− 1.9 𝑙𝑛(𝜌𝑙𝑏𝑒)] 𝜀𝑦 (2) 

Where bw is the BE thickness, Lo is the buckling length (Lo = hs / √3, being hs the clear height), c is the stability 

criterion proposed by [5], which is defined by ( ) = + − +
20.5 1 2.35 5.53 4.7 ,

c
m m m m =  '( / )

lbe y c
f f  is the 

mechanical reinforcement ratio, lbe is the longitudinal steel ratio of the BE, and fy and 
'

c
f  are the yielding stress 

of steel and the concrete compression stress, respectively [5]. 

2.2. Geometry, detailing, and mechanical properties of materials 

Six geometry types were modeled as presented in Table 1, assuming hs = 3m and lbe twice bw. According to [7], 

lbe has no significant impact on the onset of OPB instability when only BE are modeled. The transverse 

reinforcement, Ast, was calculated according to [10] for special walls that require BE; lbe took values of 1%, 

1.5%, 2%, 2.5%, and 3%. 
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Table 1. Cross-section details 

Geometry Ratio bw (mm) lbe (mm) Cover (mm) 

 

h/5 600 1200 20; 30 

h/10 300 600 20; 30 

h/15 200 400 20; 30 

h/20 150 300 20; 30 

h/25 120 240 20; 30 

h/30 100 200 20; 30 

 

The mechanical properties of the materials are shown in Table 2, where fr is the fracture stress, and Ec is the 

elastic modulus; both calculated as stipulated by [10]. The different geometry types were modeled with two 

different
'

c
f : 28 and 35 MPa. 

Table 2. Mechanical properties of materials 

Steel 

Parameter Variable Value 

Yielding stress fy 420 (MPa) 

Elastic Modulus Es 210000 (MPa) 

Yielding strain y 0.002 

Concrete 
'

c
f = 28 MPa 

Parameter Variable Value 

Compression strength 
'

c
f  28 (MPa) 

Tensile strength fr 3.35 (MPa) 

Elastic Modulus Ec 25267.13 (MPa) 

Concrete 
'

c
f = 35 MPa 

Parameter Variable Value 

Compression strength 
'

c
f  35 (MPa) 

Tensile strength fr 3.74 (MPa) 

Elastic Modulus Ec 28249.51 (MPa) 

 

2.3. Parametric study 

A nonlinear static time-history analysis was conducted in SeismoStruct with a force-based element proved to 

be a more reliable formulation since it provides an exact solution for prismatic type elements because it is 

independent of the material constitutive behavior [11], [12]. Six finite elements represented the BE with fixed 

supports at both ends. Also, the numerical model considered 200 fibers and 6 integration sections. 

2.3.1. Loading protocol 

The specimens were subjected to axial cyclic loads. Tensile targets were established as a 3-cycle loading 

depending on y fractions until reaching sm, leading to OPB instability. Compression loads were determined 

based on the maximum compression capacity of each BE. Fig. 3 shows an example of the loading protocol.  

2.3.2. Stress-strain model for steel and concrete 

The concrete model used for the simulation was Mander (con_man) [13], based on [14], for elements confined 

by stirrups subjected to uniaxial compression. For the reinforcement, the Menegotto & Pinto (stl_mp) [13] was 

used, based on [15], which captures the expected cyclic behavior of steel. The adjustment parameters for steel 

are taken from [9], as shown in Table 3. Here, Ro controls the transition shape of the curve between the initial 
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stiffness and post-yielding; a1, a2 grade the changes of Ro; Rn is the updated curvature parameter, and a3, a4 

define how the isotropic hardening is included in the stress-strain material response [13]. 

2.3.3. Failure criteria 

As reported by [7], OPB failure occurs when concrete crushing is exhibited in the area where the highest strains 

develop. Thus, a concrete strain equal to -0.004, as suggested by [9], is used as the failure criterion to stop the 

analysis. 

 
Figure 3. Loading protocol for time history analysis 

Table 3. Mechanical parameters of the reinforcement for the modeling in SeismoStruct [9] 

Parameter a1 a2 a3 a4 Ro 

Value 2.0 18 0.15 0.025 2.0 

3. Results analysis 

The greatest out-of-plane deformations occurred close to hs/2 since the analysis conducted on this research 

corresponds to the case of a constant strain gradient. Subsequently, the maximum tensile strains, sm, on each 

specimen were obtained from the average of these values reached at the center bars (green bars) of the BE as 

shown in Fig. 4. 

  
(a) (b) 

Figure 4. Analysis points for each BE (a) elevation view and (b) plan view [16] 
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3.1. Results 

The estimate of sm was discretized into two parts: 
*

a  and e + r, the later expressed as a function of y according 

to [6]. 

The results from the BE with an aspect ratio of h/30 were discarded due to convergence problems associated 

with the insufficient cross-section to carry the load cycles before experiencing OPB instability, even though 

they met the provisions from [10]. Other discarded specimens were those with an h/5 aspect ratio and some with 

h/10 and hs = 3 m since that exhibited concrete crushing because of robust cross-sections [16]. 

3.2. Trend functions 

Fig. 5 shows the influence of lbe and cov on the normalized values of e + r whereas Fig. 6 shows trend 

functions for %lbe vs. sm, once the results from the BE that presented a different failure mode were removed. 

Additionally, the predictions for each aspect ratio calculated with Eq. (2), identified as the HKC model, are 

included. Although the curves presented in Fig. 6 follow a similar polynomial function used by [7], the results 

suggest an adjustment. 

A higher deformation capacity was associated with a smaller concrete cover, attributed to a larger confined area. 

Also, BE with f’c = 35 MPa reported increased sm values and, consequently, improved OPB stability. 

As noticed in Fig. 6, the concrete cover is an important parameter that affects the predictions for sm, so a 

modification to (2) is suggested. This modification is introduced as the normalized sum of the e + r 

components. The concrete cover, cov, is subtracted from bw since it decreases the core contribution. 

To adjust [7], a linear regression was employed following (3): 

𝑓(𝑥, 𝑦) =  𝑝00 + 𝑝10 (
𝑏𝑤 − 𝑐𝑜𝑣

𝐿𝑜
)

2

+ 𝑙𝑛(𝜌𝑙𝑏𝑒) (3) 

Equation (3) coefficients that best fit the results from SeismoStruct are obtained from interpolation and 

extrapolation of the confidence limits. Equation (4) is presented as an adjustment to the normalized sum of the 

components (e + r) / y. 

𝑓(𝑥, 𝑦) =  −1.40 + 165 (
𝑏𝑤 − 𝑐𝑜𝑣

𝐿𝑜
)

2

+ 1.10 𝑙𝑛(𝜌𝑙𝑏𝑒) (4) 

 

 

Figure 5. Steel and aspect ratios influence on e + r 
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(a) (b) 

  
(c) (d) 

Figure 6. Steel content vs. strain for different aspect ratios 

When comparing (2) and (5), there is a difference associated with cov, which is exhibited on Fig. 7. 

𝜀𝑠𝑚 ≤
24
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(
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(a) 

 
(b) 

 
(c) 

Figure 7. Results: SeismoStruct (solid), (2) by [7] (dot) and (5): new proposal (dash)          

(a) h/15, (b) h/20 y (c) h/25 

3.3. Proposal validation 

A comparison of the results from (5), (2), and the ones obtained in [6] and [9] was developed. The buckling 

length Lo was taken as hs since the considered boundary conditions were pinned-pinned, contrary to what was 

considered in [9], see Fig. 8 and Fig. 9. It is observed that the new proposal better approaches the experimental 

results from [6]. Finally, (2) results more conservative when contrasted with (5) but better approximates the 

experimental values since [9] excluded the concrete cover. 

 
Figure 8. Comparison: Experimental program by [6], (2) by [7], and (5): new proposal 
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Figure 9. Comparison: Experimental program by [9], (2) by [7], and (5): new proposal 

4. Conclusions  

This paper has addressed the influence of concrete cover and additional critical parameters on the onset of out-

of-plane buckling instability of reinforced concrete structural walls through an analytical study on boundary 

elements. The main conclusions are described below: 

• Concrete cover with higher thickness reduces the capability to exhibit increased tensile strain under 

cyclic loading, and consequently, out-of-plane instability develops at earlier stages. The same trends 

were observed for lower concrete cover compression strengths.  

• The proposed approach better predicts the onset of buckling instability when compared with the 

previous model, which does not consider the influence of the concrete cover.  

• Boundary elements with the slenderest aspect ratios present out-of-plane buckling instability problems 

sooner than the thicker ones, corroborating what has been proved through several research programs on 

the topic. 

• Higher longitudinal steel ratios exhibit a reduced out-of-plane buckling stability capacity. When the 

sections are robust enough and the steel content is minimal, the predominant failure mode is concrete 

crushing. 
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