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ABSTRACT   

In this paper, the RSSI testing as well the Angle of Arrival (AoA) have been examined for position prediction 

also produce the front specified composition of the possibility distribution of the location of a sensor node. 

"Multiple Signal Classification" (MUSIC) defined as a popular "Eigen" construction approach with large 

declaration, which broadly utilized for predicting the total of waveforms, as well their corners of arrival. In 

this research an examination of the ability to development of part of key specifications of the "MUSIC" 

technique has been presented, which might improve the response of the prediction operation. The outcomes 

of the simulation of this approach point out that the position of the sensor node may be evaluated in a little 

time period values  as well that the condition of the explanation is competitive beside last techniques. 
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1. Introduction  

The primary aim of a localization algorithm is to decide the location of a node. However, such conditions must 

be fulfilled by the algorithm in order for it to be useful. The parameters are normally defined by the form of the 

application for which the "localization algorithm" is intended. The following are the general architecture goals 

or optimal features of an ideal localization algorithm [1]: RF-based localization algorithms are particularly 

desirable. A short-range RF transmitter is installed into the sensor nodes. In addition to its primary function of 

data transmission, an effective localization algorithm allows use of this radio capability for localization. The 

essence of a "wireless sensor network is ad hoc". The ad hoc design of the network should be considered by the 

localization algorithm. The nodes must be capable to decide their location in as little time as possible, enabling 

the "localization algorithm" to react rapidly. This will allow for the rapid deployment of sensor nodes. The 

location of the sensor node calculated via such technique must be precise sufficient for the implementation for 

which it is being utilized. The technique should be stable in order to work under unfavorable constraints. The 

technique must be flexible, so that even if sensor nodes are inserted or withdrawn, it can always determine the 

location of the nodes. Additionally, the technique can yield satisfactory outcomes for sensor structure with a 

limited to large number of nodes. Since sensor nodes are self-ruling also typically do not have an exterior origin 

of electricity, the localization algorithm should be energy effective and, ideally, energy conscious. Beacon nodes 

that are accessible In general, a localization algorithm can calculate more reliable estimates of node locations 

with a larger number of beacon nodes. The technique must be effective enough to calculate node positions with 

the fewest number of beacon nodes available. The technique must be uniform such that it can calculate node 

positions in a number of evolving ecosystems and weather conditions. It can, in fact, function in both confined 

also unconstrained settings, such as indoors and outdoors. Just an optimal "localization algorithm" would be 

capable to achieve any of the previous objectives. In reality, localization algorithms can only satisfy a subset of 

these requirements, based on the application for which they are built. 

https://creativecommons.org/licenses/by/4.0/
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1.1. Distance estimation  

Range-based algorithms perform an essential role called distance estimation between two nodes. A distance-

dependent technique calculates the location of a sensor node using range knowledge among the nodes, that has 

been determined utilizing part of physically systematic variety. The distances among dumb nodes also beacon 

nodes are typically computed through attaching an extra hardware to the nodes, or by utilizing the sensor nodes' 

current radio contact facility. The disparity between dumb and beacon nodes influences many aspects of wireless 

contact among them. When such features are multitude also calculated at the receipting sensor node, the range 

among the nodes may be determined. The following features are widely used for this purpose:  

1. "Received Signal Intensity Indicator ("RSSI") 

2. "Angle of Arrival" ("AoA")  

3. "Time of Arrival" ("ToA")  

4. "Time Difference of Arrival" ("TDoA")  

Modulation classification is a method where modulation type is determined without prior knowledge. This 

would support the convergence of various communications devices. This will involve getting the signal in real 

time instead of doing demodulation and de-multiplexing after the signal was collected. Software-defined radio 

would benefit from this kind of capability because the transmitter and receiver would no longer need to agree 

on a specific modulation scheme beforehand. Blind Modulation Classification had important publications in the 

field due to the advantages it offers. There is no widespread consensus which ways of producing music to be 

regarded. Within the same family, there are innumerable variances and nuances [1]. 

 

By and large, the "WSN" area methods might be characterized into two classifications, that is, without range 

and reach based localization. Solidly talking, sans range localization can gauge the general distance by thinking 

about the internode availability and the organization geography relationship. Contrasted and reach free 

localization, the reach-based localization claims higher exactness. There are some regular reach-based 

methodologies, like season of appearance ("TOA") [7], time distinction of appearance ("TDOA") [8], point of 

appearance ("AOA") [9, 10], and got signal strength sign ("RSSI") [12]. Among them, "TOA", "TDOA", and 

"AOA" strategies have high precision, yet they require complex equipment and extra energy utilization. The 

"RSSI"-based technique uses the data given by radio recurrence ("RF") contraption, and needn't bother with 

extra expense [14]. Subsequently, "WSN" frameworks are adept to embrace the "RSSI"-based techniques to 

gauge the area of sensor hubs 

 

The remainder of the paper is organized accordingly. The latest related work is seen in section 2. The detailed 

process of the proposed "QIGA" algorithm is given in Section 3. Section 4 presents the findings of the 

experiments and their discussion. We end this paper in Section 5. 

There are a few researches zeroed in on considering the "RSSI"-based area issues from alternate points of view. 

For instance, Kumar et al. received "RSSI"-based area method to appraise the internode distances which further 

utilized for assessing the hubs' area [20]. They reasoned that the distance-assessed blunder for RSSI based area 

conspire in WSN is generally indistinguishable under ideal sending conditions. Awad et al. proposed a distance-

based area strategy in WSN dependent on RSSI estimations [21] and tracked down that the principal impact on 

the distance estimations is the force transmission. Alippi and Vanini proposed a RSSI-based incorporated area 

procedure for open air conditions and tracked down that this methodology is the least demanding executed path 

in "RSSI"-based multihop area frameworks [22]. Subaashini et al. examined the connection between ZigBee 

sensor hub's "RSSI" esteems and the general climate particulars for variation kinds of deterrents put among 

transmitter and beneficiary [23]. They tracked down that some "RSSI" esteem in online stage has not been 

fingerprinted in the preparation stage, and consequently, the area can't be resolved. Adewumi et al. processed 

the internode distance of a "WSN" depending on "RSSI"-based model and found that the distance-assessed 

mistake in indoor climate is more noteworthy than that in outside climate [24]. 

2. Proposed algorithm 

"Automatic modulation classification" ("AMC") is an important subject in the digital communication field. 

However, conventional methods of classification of modulation are not precise enough. In addition, existing 

GA-based prediction methods suffer from high computing costs, non-convergence to optimal global 

convergence and premature convergence. In order to eliminate possible errors in the GA-based modulation 

classification, the systematic QIGA model is sufficient for the modulation classification. This paradigm, which 
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is capable of addressing grouping, without which the diversity of the population continues to steadily vanish 

and will cause the algorithm to stagnate at the local level. 

This section details the proposed quantum-inspired prediction method in automated modulation classification. 

The input signal includes 10 modulations which are 'BPSK,' 'QPSK,' '8PSK,' '16QAM,' '64QAM,' '256QAM,' 

'2PAM,' '4PAM,' '8PAM' and '16PAM.' The system adapts GA in order to achieve the optimum modulation 

classification functions. Figure  Figure  2 illustrates the key elements of the current classification scheme and 

how such elements are related well-adjusted, also the succeeding subsections explain the measures in detail.  

Given the randomly signals data set that consists of 10 classes; each sensor will receive the signals and transmit 

it again to  the fusion center. Fusion center will select the best signal according to its signal noise ratio. The 

features which are extracted from the dataset are "Enhanced Cumulates". These captions are saved in a midmost 

database together with the headlines classification of each modulation. 

 
Figure 1. Location and position estimation model 

 

2.1.  Position prediction in wireless sensor networks (Time of Arrival and Angle of Arrival) 

This distance estimating methodology employs the following relationship, which compares the distance traveled 

by a signal to the time taken if the speed of propagation is established. 

d = v × t 

where, d is distance, v is speed of the signal and t is time taken by the signal to travel the distance d. Therefore, 

if the time taken by a signal to propagate from the beacon node to the dumb node, which is called time of arrival 

or time of flight is measured and speed of propagation of the signal is known, the distance and hence position 

of the dumb node can be calculated. "Signal-to-Noise" ratio "SNR" is that value used in communications as 

well analysis which looks at the peak of an optimal waveform to the clamor value. "SNR" is represented as the 
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ratio of the force of a sign (significant contribution) to the force of foundation commotion (futile or undesirable 

info): 

SNR=Psignal/Pnoise 

where P is normal force. Both sign and commotion power should be estimated at something very similar or 

identical focuses in a framework, and inside a similar framework data transmission 

For estimating its location, the orientation of incoming of the waveform at the stupid node might further be 

utilized. The location of a detected wave may be measured by the angle of reference or inclination it produces. 

The angle between the stupid node and the phone node may be calculated instead. The angles of arrival of at 

least three light nodes are calculated for the position of a stupid node with this technique. The positioning of a 

dumb node may be estimated using position knowledge from three or more beacon nodes coupled with the three 

arrival angles. 

 

The arrival angle may be determined by means of directional antennas, a special antenna array arrangement or 

a mixture of them. These may be installed on the beacon nodes by means of directional antennas. A directional 

antenna on a beacon node rotates around its axis and hence transmissions light signals in both directions to 

support several stubborn nodes. A stupid node will use the antenna setup in a similar path to transmit beacon 

signals. Otherwise, stupid nodes can often be used to obtain and calculate the arrival angle of a lightning signal 

with unique antenna array setups. As an antenna array is used, an established separation is imposed in the array. 

To predict the position of the signal arrived, the time delay for the arrival of the wave front at various antennas 

[12]. 

 

Due to the difficulty of deploying special antennas, realistic application of this strategy is restricted. For e.g., it 

is difficult to install rotating directional antennas on small nodes, also the revolving part is much susceptible to 

failure. In the same way, antennas in the array should be positioned apart by a particular range if an antenna 

array arrangement is used, that is also a hard suggestion given the small sizes of sensor nodes. In comparison, a 

higher precision is obtained only where the distance between the antennas is limited in the series. But more 

complicated and precision hardware is required for the calculation of period variance with less separation size 

[12]. 

 

 

An estimate of the "angle of arrival" ("AOA") is the mechanism by which the path of the input signal from 

the dispatchers to sensors is calculated. The procedure for estimating the pseudo spectrum PMU (θ) historically 

is used. The role may also be identified by many possible approaches: "beam forming, array correlation matrix, 

Eigen analysis, linear prediction, minimum variance, maximum likelihood, MUSIC, root-MUSIC", as well 

several alter techniques.  

 

2.2. MUSIC algorithm 

MUSIC manages the disintegration of "correlation matrix" into double symmetrical grids, signal-subspace and 

commotion subspace. Assessment of course is implemented using either of such subspaces", accepting that 

clamor in each channel is exceptionally uncorrelated. This causes the "correlation matrix" diagonal. In this 

context, "MUSIC" discusses the breakdown of the "correlation matrix" to two orthogonal matrices, signal 

subspace and noise "subspace". Path prediction is carried out from each of these ""subspaces", provided that 

noise is strongly uncorrelated in each channel medium. Then, as seen in the flow chart in Figure 3, we will 

summarize previous measures to approximate "AOA" with "MUSIC". See [30] [16] for more information. Table 

3 illustrates the used "MUSIC" parameters. 
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Figure 2. "MUSIC" implementation flow chart [42] 

Table 2. MUSIC parameters 

Parameter Default Value 

Number of Elements M 10 Antennas/ Sensor 

Phase of the antenna 1 ϕ1 Random Number nº (0º-90º) 

Phase of the antenna n ϕ2 68º 

Element Spacing “Space between 2 antennas” d 1 Meter  

Wavelength ƛ 2* Element Spacing =2M 

Frequency Light Speed / Wavelength ƛ=150 MHz 

Distance Between Sender and Receiver Random from100m to 10 km 

 

2.3. Quantum genetic algorithm figure 

 

As of late, in "Quantum Inspired Genetic Algorithm" ("QIGA"), the Q-bit portrayal was received for lowest 

issues dependent on the idea and guideline of quantum processing. The attribute of the portrayal is that any 

straight superposition can be addressed. The littlest unit of data put away in a two-state quantum PC is known 

as a Q-bit, which might be in the "1" state, or in the "0" state, or in any superposition of the two. The condition 

of a Q-spot can be addressed as follows: 

 
|𝜓𝑠› = γ|0⟩ + β|1⟩                                                           (1) 

 

So that α with β defined as "complex" values which decide the possibility capacities of the analogous phases. 

| γ |2 with |β|2 represent the possibility which makes the Q-bit to be evaluated in the “1” phase as well “0” phase, 

respectively. Normalization of the phase to the unity assures: 
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      |γ1|2 + |β2|2 = 1                                                             (2) 

 

2.4. Received signal strength 

"Received signal strength" ("RSS") is prescribed as the potential tested via a "received signal strength indicator" 

("RSSI") circuitry. Frequently, "RSS" is equally detailed as estimated power, i.e., the squared extent of the sign 

strength. The "RSS" of acoustic, "RF", or different signs can be thought of. Remote sensors speak with adjoining 

sensors, and "RSS" of "RF" signs can be estimated by every beneficiary during ordinary information 

correspondence, without introducing extra transmission capacity or energy necessities. Since RSS estimations 

are moderately economical and easy to execute in equipment, they are a significant and well known subject of 

localization research. However, "RSS" estimations are famously eccentric. On the off chance that they are to be 

helpful and part of a powerful localization framework, their wellsprings of blunder should be surely known [21]. 

2.5. Angle-of-Arrival 

Pragmatic utilization of this procedure is restricted because of the intricacies of arrangement of extraordinary 

radio wires. For instance, mounting pivoting directional receiving wires on small hubs is tricky and the turning 

parts are more inclined to disappointment. Also, if a radio wire exhibit arrangement is utilized, receiving wires 

in the cluster should be put explicit distance separated which is again a troublesome recommendation thinking 

about the small sizes of sensor hubs. Additionally, a more noteworthy exactness of point estimation is 

accomplished just when detachment distance between receiving wires in the exhibit is little. In any case, with 

more modest partition distance, more refined and exact equipment is required for time contrast estimations. 

Besides, shadowing, multipath blurring and non-view conditions present a lot of blunder in the assessed 

position which is more than same sort of mistakes in other comparable strategies for example "RSSI", "ToA" 

and "TDoA". Because of these reasons, point of appearance is thought about to a lesser degree a decision for 

localization in sensor networks [22] [16]. 

3. Simulation result and analysis 

This portion validates the performance of the proposed method by conducting a series of experiments. 

Furthermore, the output is contrasted with the standard genetic algorithm in order to determine the precision of 

the classification of the proposed solution. Many separate modulation databases may be used to assess the 

feasibility of the proposed model. Genetic Function Approximation (GFA) algorithm provides a new solution 

to the AMC problem. Unlike most other research algorithms, GFA offers multiple models where model 

populations are generated by the evolution of random initial models using a genetic algorithm. 

The framework is introduced in the form of a MATLAB library built to be simple for utilized in traditional 

implementations. Tests was carried out on a computer with Intel(R) Zeon(R) CPU E5430@ 2.66GHz (2 

processor), 16GB RAM PC operating Microsoft Windows 10-64 bit. The findings of the simulation approve the 

potential of the proposed technique to obtain a detailed classification of modulation. 

 

Table 7. Original signals vs different paths using 4 sensors  

Original 

Signal 
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Sensor 1 

  

Sensor 2 

  

Sensor 3 

 
 

Sensor 4 
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Sensor 2 
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Sensor 4 
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Sensor 
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Table 8. SNR values by increasing sensors 

Signal 

Sensors 

1 2 3 4 5 6 7 8 9 10 

BPSK 14.053 14.053 17.557 18.649 18.649 21.396 21.396 21.396 21.396 21.396 

QPSK 13.890 13.890 17.237 18.268 18.268 20.837 20.837 20.837 20.837 20.837 

8PSK 14.409 14.409 17.980 19.099 19.099 21.937 21.937 21.937 21.9372 21.937 

16QAM 8.9822 8.9822 10.877 11.406 11.406 12.666 12.666 12.666 12.665 12.666 

64QAM 17.811 17.811 21.47 21.735 21.735 31.959 31.959 31.959 31.952 31.959 

256QAM 16.658 16.658 17.771 18.037 18.037 27.132 27.132 27.132 27.133 27.132 

2PAM 13.450 13.450 17.500 18.586 18.586 21.325 21.325 21.325 21.327 21.325 

4PAM 4.8682 5.0855 5.0855 5.0855 5.0855 5.0855 5.1021 5.1021 5.1021 5.1021 

8PAM 1.2137 1.2137 1.389 1.4338 1.4338 1.5277 1.5277 1.5277 1.5276 1.5277 

16PAM 2.4435 2.4435 3.0419 3.0419 3.0419 3.0419 3.0419 3.0419 3.0418 3.1236 
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Figure 9. Representing of Table 7 data 

 

Table 9. SNR, time and distance in case of 1 sensor   
SNR 

(dB) 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

(dB) 

BPSK 14.05342 1 2.03E-08 6.1 41 0.502432 

QPSK 13.89059 1 2.03E-08 6.1 41 0.546856 

8PSK 14.40987 1 2.03E-08 6.1 41 0.406377 

16QAM 8.982277 1 2.03E-08 6.1 41 0.349403 

64QAM 17.81198 1 2.03E-08 6.1 41 0.439594 

256QAM 16.65886 1 2.03E-08 6.1 41 0.536495 

2PAM 13.45064 1 2.03E-08 6.1 41 0.575998 

4PAM 4.868291 1 2.03E-08 6.1 41 0.610568 

8PAM 1.213729 1 2.03E-08 6.1 41 0.543049 

16PAM 2.443565 1 2.03E-08 6.1 41 0.507777 

 

 

Table 10. SNR, Node Number Time and Distance in case of 2 Sensors.   
SNR 

(dB) 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

(dB) 

BPSK 14.05342 1 2.03E-08 6.1 41 0.502432 

QPSK 13.89059 1 2.03E-08 6.1 41 0.546856 

8PSK 14.40987 1 2.03E-08 6.1 41 0.406377 

16QAM 8.982277 1 2.03E-08 6.1 41 0.349403 

64QAM 17.81198 1 2.03E-08 6.1 41 0.439594 

256QAM 16.65886 1 2.03E-08 6.1 41 0.536495 

2PAM 13.45064 1 2.03E-08 6.1 41 0.575998 

4PAM 5.085589 2 3.23E-08 9.7 50 0.624219 

8PAM 1.213729 1 2.03E-08 6.1 41 0.543049 

16PAM 2.443565 1 2.03E-08 6.1 41 0.507777 

 

Table 11. SNR, node number time and distance in case of 3 sensors 

  
SNR 

(dB) 

Node Time Second Distance 

KM  

AoA˚ RSSI 

(dB) 

BPSK 17.5574403 3 9.33E-09 2.8 47 0.505835 

QPSK 17.2370514 3 9.33E-09 2.8 47 0.465741 
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SNR 

(dB) 

Node Time Second Distance 

KM  

AoA˚ RSSI 

(dB) 

8PSK 17.9807796 3 9.33E-09 2.8 47 0.502915 

16QAM 10.8775082 3 9.33E-09 2.8 47 0.467547 

64QAM 21.472103 3 9.33E-09 2.8 47 0.490139 

256QAM 17.7711866 3 9.33E-09 2.8 47 0.391207 

2PAM 17.5005506 3 9.33E-09 2.8 47 0.407934 

4PAM 5.08558889 2 3.23E-08 9.7 50 0.624219 

8PAM 1.38945011 3 9.33E-09 2.8 47 0.460131 

16PAM 3.04194803 3 9.33E-09 2.8 47 0.480514 

 

 

Table 12. SNR, node number time and distance in case of 4 sensors  
SNR 

dB 

Node Time Second Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 18.64908 4 7.33E-09 2.2 45 0.483618 

QPSK 18.26875 4 7.33E-09 2.2 45 0.580517 

8PSK 19.09976 4 7.33E-09 2.2 45 0.629898 

16QAM 11.40679 4 7.33E-09 2.2 46 0.570713 

64QAM 21.73553 4 7.33E-09 2.2 45 0.567371 

256QAM 18.03784 4 7.33E-09 2.2 45 0.340983 

2PAM 18.58646 4 7.33E-09 2.2 45 0.44687 

4PAM 5.085589 2 3.23E-08 9.7 50 0.624219 

8PAM 1.433891 4 7.33E-09 2.2 45 0.599498 

16PAM 3.041948 3 9.33E-09 2.8 47 0.480514 

 

 

 

Table 13. SNR, node number time and distance in case of 5 sensors   
SNR 

(dB) 

Node Time 

(Second) 

Distance 

(KM)  

AoA˚ RSSI 

(dB) 

BPSK 18.64908 4 7.33E-09 2.2 45 0.483618 

QPSK 18.26875 4 7.33E-09 2.2 46 0.580517 

8PSK 19.09976 4 7.33E-09 2.2 45 0.629898 

16QAM 11.40679 4 7.33E-09 2.2 45 0.570713 

64QAM 21.73553 4 7.33E-09 2.2 45 0.567371 

256QAM 18.03784 4 7.33E-09 2.2 45 0.340983 

2PAM 18.58646 4 7.33E-09 2.2 45 0.44687 

4PAM 5.085589 2 3.23E-08 9.7 50 0.624219 

8PAM 1.433891 4 7.33E-09 2.2 45 0.599498 

16PAM 3.041948 3 9.33E-09 2.8 47 0.480514 

 

 

Table 14. SNR, node number time and distance in case of 6 sensors  
SNR 

dB 

Node Time Second Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 21.396591 6 4.00E-09 1.2 56 0.481151 

QPSK 20.8379165 6 4.00E-09 1.2 56 0.541572 

8PSK 21.9377248 6 4.00E-09 1.2 56 0.542078 

16QAM 12.6668532 6 4.00E-09 1.2 56 0.387887 
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SNR 

dB 

Node Time Second Distance 

KM  

AoA˚ RSSI 

dB 

64QAM 31.9598151 6 4.00E-09 1.2 56 0.592337 

256QAM 27.1325259 6 4.00E-09 1.2 56 0.630504 

2PAM 21.3251674 6 4.00E-09 1.2 56 0.437409 

4PAM 5.08558889 2 3.23E-08 9.7 50 0.624219 

8PAM 1.52770562 6 4.00E-09 1.2 56 0.510891 

16PAM 3.04194803 3 9.33E-09 2.8 47 0.480514 

 

 

Table 15. SNR, node number time and distance in case of 7 sensors  
SNR 

dB 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 21.39659 6 4.00E-09 1.2 56 0.481151 

QPSK 20.83792 6 4.00E-09 1.2 56 0.541572 

8PSK 21.93772 6 4.00E-09 1.2 56 0.542078 

16QAM 12.66685 6 4.00E-09 1.2 56 0.387887 

64QAM 31.95982 6 4.00E-09 1.2 56 0.592337 

256QAM 27.13253 6 4.00E-09 1.2 56 0.630504 

2PAM 21.32517 6 4.00E-09 1.2 56 0.437409 

4PAM 5.102111 7 3.33E-08 10 36 0.449601 

8PAM 1.527706 6 4.00E-09 1.2 56 0.510891 

16PAM 3.041948 3 9.33E-09 2.8 47 0.480514 

 

 

 

Table 16. SNR, node number time and distance in case of 8 sensors   
SNR 

dB 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 21.39659 6 4.00E-09 1.2 56 0.481151 

QPSK 20.83792 6 4.00E-09 1.2 56 0.541572 

8PSK 21.93772 6 4.00E-09 1.2 56 0.542078 

16QAM 12.66685 6 4.00E-09 1.2 56 0.387887 

64QAM 31.95982 6 4.00E-09 1.2 56 0.592337 

256QAM 27.13253 6 4.00E-09 1.2 56 0.630504 

2PAM 21.32517 6 4.00E-09 1.2 56 0.437409 

4PAM 5.102111 7 3.33E-08 10 36 0.449601 

8PAM 1.527706 6 4.00E-09 1.2 56 0.510891 

16PAM 3.041948 3 9.33E-09 2.8 47 0.480514 

 

 

Table 17. SNR, node number time and distance in case of 9 sensors  
SNR 

dB 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 21.396591 6 4.00E-09 1.2 56 0.481151 

QPSK 20.8379165 6 4.00E-09 1.2 56 0.541572 

8PSK 21.9377248 6 4.00E-09 1.2 56 0.542078 

16QAM 12.6668532 6 4.00E-09 1.2 56 0.387887 

64QAM 31.9598151 6 4.00E-09 1.2 56 0.592337 

256QAM 27.1325259 6 4.00E-09 1.2 56 0.630504 
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SNR 

dB 

Node Time 

Second 

Distance 

KM  

AoA˚ RSSI 

dB 

2PAM 21.3251674 6 4.00E-09 1.2 56 0.437409 

4PAM 5.10211117 7 3.33E-08 10 36 0.449601 

8PAM 1.52770562 6 4.00E-09 1.2 56 0.510891 

16PAM 3.04194803 3 9.33E-09 2.8 47 0.480514 

 

Table 18. SNR, node number time and distance in case of 10 sensors  
SNR 

dB 

Node Time Second Distance 

KM  

AoA˚ RSSI 

dB 

BPSK 21.39659 6 4.00E-09 1.2 56 Figure  10 0.481151 

QPSK 20.83792 6 4.00E-09 1.2 56 Figure  10 0.541572 

8PSK 21.93772 6 4.00E-09 1.2 56 Figure  10 0.542078 

16QAM 12.66685 6 4.00E-09 1.2 56 Figure  10 0.387887 

64QAM 31.95982 6 4.00E-09 1.2 56 Figure  10 0.592337 

256QAM 27.13253 6 4.00E-09 1.2 56 Figure  10 0.630504 

2PAM 21.32517 6 4.00E-09 1.2 56 Figure  10 0.437409 

4PAM 5.102111 7 3.33E-08 10 36 Figure  11 0.449601 

8PAM 1.527706 6 4.00E-09 1.2 56 Figure  10 0.510891 

16PAM 3.123691 10 5.67E-09 1.7 49 Figure  12 0.512696 

 

 

 
Figure 10. Arrival Angel Measurements of BPSK signals 
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Figure 11. Arrival Angel Measurements of QPSK signals 

 

  

 
Figure 12. Arrival Angel Measurements of 8PSK signals  
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Table 19. SNR values by increasing distance 

Signal SNR (Db) Distance (Km) 

16PAM 2.443565 6.1 

3.041948 2.8 

3.123691 1.7 

16QAM 8.982277 6.1 

10.87751 2.8 

11.40679 2.2 

12.66685 1.2 

256QAM 16.65886 6.1 

17.77119 2.8 

18.03784 2.2 

27.13253 1.2 

2PAM 13.45064 6.1 

17.50055 2.8 

18.58646 2.2 

21.32517 1.2 

4PAM 4.868291 6.1 

5.085589 9.7 

5.102111 10 

64QAM 17.81198 6.1 

21.4721 2.8 

21.73553 2.2 

31.95982 1.2 

8PAM 1.213729 6.1 

1.38945 2.8 

1.433891 2.2 

1.527706 1.2 

8PSK 14.40987 6.1 

17.98078 2.8 

19.09976 2.2 

21.93772 1.2 

BPSK 14.05342 6.1 

17.55744 2.8 

18.64908 2.2 

21.39659 1.2 

QPSK 13.89059 6.1 

17.23705 2.8 

18.26875 2.2 

20.83792 1.2 

 

 
Figure 13. Representing data of Table 19  
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4. Conclusion 

In this work, one must understand that the mentioned techniques illustrate just the essential concepts with algorithms that 

could be utilized for sensor nodes localization. A full localization implementation as well structure of a workable "wireless 

sensor network" might be constructed utilizing a composition of such approaches. The essential incitation of here 

research is the ability of augmentation of weights which may influence the response of "AOA" estimation 

utilizing "MUSIC" technique. Hence the outcomes might be summated by the following points: 

• The response of "MUSIC" enhanced using much components 

beginning with M = 10. 

• As "SNR" ascends, improved precision will be achieved that points 

to noise free medium. 

• The event of such dominant amount of ‘‘d’’ could be blamed to the reduction of the annoying portions of 

the antenna array at such particular amount of ‘‘d’’, as well thus an ascended precision in the evaluation 

of the "AOA" is the straight reactions of that dominant amount. 

• When increase number of sensors, the accuracy well be best to find location of the transmitter  based on 

sensors . 
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