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ABSTRACT   

At the end of 2019, a new type of virus that infects the human respiratory system was discovered in China, 

and it was briefly called COVID-19. In March 2020, the world Health Organization (WHO) declared Corona 

Virus a global pandemic. The Corona Virus is transmitted through air or through contact. The possibility of 

infection increases in the area or areas neighboring to the area that witnessed a community spread of the virus 

or when individuals return from that affected area to their areas of residence. Given the limited studies on 

the impact of affected neighboring areas or countries, this study focused on using the spatial autoregression 

model, one of the econometric models. Model parameters have been estimated using the Generalized 

Moment Method (GMM) which has the ability to correct the Endogeneity that occurs by the spatial regression 

variable as well as due to the endogenous variables. The results showed that the number of infections (Yn) 

of Corona epidemic increases as there are infections in the surrounding areas and vice versa. This confirms 

the impact of spatial neighborhood on the spread of infections among neighboring governorates. 
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1. Introduction 

In December of 2019, a new disease was discovered in Wu han , in central China, which was called COVID – 

19. On March 11, 2020, the World Health Organization (WHO) classified COVID – 19 as a global pandemic. 

Given the lack of studies on the mechanism of spread of this epidemic between countries, this study uses spatial 

Autoregressive Model as it takes into account the spatial dimensions of the phenomenon data under study. 

This model allows us to study the spatial effect or the spatial contiguity between the governorates and the 

increase of infections in those governorates. Anselin ( over the period 1988-2001) discussed in detail the 

possibility of spatial interaction, represented by spatial Autocorrelation, and spatial structure, represented by 

spatial Heterogenety. 

The use of the Generalized Moment Method (GMM) estimator for estimating the spatial Autoregressive Model, 

developed by (Arellano and Bover 1995) and (Blundell and Bond 1998), is due to its ability to correct the 

Endogeneity that occurs by the spatial regression variable as well as due to the endogenous variables, treating 

some econometrics problems such as measurement errors and weakness of the Instrumental Variable (IV), 

control of the problem of Heteroskedasticity and Autocorrelation in the term of random error, and flexibility in 

the implemetation of mathematical operations [1]. 

 

2.  Research objective  

A study of the effect of spatial contiguity between governorates on the increase in the number of new cases of 

corona virus. Which  The spread of the Corona pandemic in the Iraqi governorates linking with the degree of 

spatial convergence of each other  
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3. Research problem 

 There are few studies on Corona virus and the effect of spatial contiguity on increasing the number of infections 

during a specific period of time. The GMM technique using to estimate parameter in the spatial autoregresstion 

model because The consistency characteristic is one of the most important characteristics of the GMM estimator. 

 

4. Literature review  

In 1981, Cliff and Ord presented a method for dealing with spatial autocorrelation in linaer regression models 

[2]. In 1988, Anselin and Griffith explained that when spatial dependence and, or spatial heterogeneity is 

neglected, the results of data analusis may become incorrect and as a result, special method must be used instead 

of those that follow the basic assumptions of econometrics [3]. 

In 2008, after studying Durbin Spatial Model, Elhorst, Piras and Arbia explained that the results are based on 

some methodological issues such as choosing the time period and including the fixed effects model. They used 

the Generalized Momentum Method (GMM) of estimation for the purpose of testing endogenity that not only 

appears from endogenous variables at different levels, but also appears due to the prominent economic growth 

rates in neighboring economics [4]. 

In 2009, Jacobs , Ligthari and Vrijbrug  studied dynamic models of panel data ik the presence of both 

endogeneity and spatially correlated errors. This study was carried out through an expansion of the three-stage 

(GMM) method [5]. 

This method corrected the spatially correlated errors of the fixed effects of panal data models by taking the 

spatial regression and temporal regression for the dependent variable and for the explanatory variables added to 

the model. 

The researchers have shown that the differences in the bias and the RMSE criterion between the spatial (GMM) 

estimates and the (GMM) estimates adopted in the research are considered minor differences, neglecting the 

spatially correlated errors.  

 In the same year, Agha & Vedeine studied the estimation of the spatial dynamic model for panel data using the 

(GMM) method to study the convergence of issues of European union regions [6]. The researchers have 

proposed two strategies for estimating the spatial dynamic model of panal data using (GMM). The first was the 

expansion of moment constraints for the (Arellano & Bond) estimator of the spatial dynamic autoregression 

model for panel data. The second strategy is based on the inclusion of spatial dependencein the error term to 

calculate the optimal spatial weights matrix. The research reached the conclusion that the (GMM) estimator 

controls both endogeneity and other problems of econometric model. 

In 2010, Lee & Yu examined (GMM) estimator for the spatial dynamic panel data model with fixed effects 

when n is large but T is small relative to n [7]. The two researchers demonstrated that by excluding spatial fixed 

effects, the convergence properties of estimators are achieved. 

Also they conclude that there are suitable quadratic moment conditions to handle spatial effects and not just 

linear moment conditions, after comparing the spatial dynamic model for panel data with the dynamic model 

for panel data [7-8]. 

In 2011, the researcher Atra Sami Ghani , in his PhD thesis, titled  Biz methods in analyzing the spatial economic 

measurement model for the purpose of identifying suitable alternative methods to traditional economic 

measurement methods that can be used in dealing with spatial data [9]. 

In 2013, Baltagi, B.H, Fingle ton , B and Pirotte , A focused on the estimation and predictive performance of 

several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated 

disturbances. The main idea of their research was to mix non-spatial and spatial instruments to obtain consistent 

estimates of the Parameters [10]. 

They used Monte Carlo Simulations to compare the short – run and long – run effects and evalute the predictive 

efficiencies of optimal and various suboptimal predictors using the Root Mean Square Error (RMSE) criterion. 

Finally, the proposed a spatial GMM estimator under the assumptions that the model includes temporal and 

spatial lags on the endogenous variable togther with SAR-RE disturbances. 

Also, in 2013, Osman and Suleyman demonstrated that maximum likelihood (ML) estimator for spatial 

autoregressive models is generally inconsistent when heteroskadasticity is not taken into account in the 

estimation. Thus, they used the robust generalized method of moment (GMM) estimation for the spatial model 

allowing for a spatial lag not only in the dependent variable but also in the disturbance term [11]. 

As a result, they showed the consistency of the robust GMM estimator and determined its asymptotic 

distribution. 
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In 2016, the researcher Al-Tamimi, Suhad , in her PhD thesis, addressed some parameterized methods to 

estimate the Spatial Dynamic Panel Data (SDPD) model [12]. 

This thesis discussed two spatial models. First, when there are fixed spatial effects. Second, when there are fixed 

spatial temporal effects in addition to fixed spatial effects. 

In 2017, Jay M , Erin E , Mevin B , Ephram M , and Marie – Josee stated that ecodogical data often show 

pattern, which can be modeled as autocorrelation [13]. 

Thay designed conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models to model 

spatially autocorrelated data. The study reached , by using maximum likelihood and Bayesian methods, to 

determine estimators of statistically significant characteristics. 

 

 

5.  Estimate spatial autoregressive model (SARM)  

One of the most widely used model of spatial mutual influences is one that proposed by Cliff and Ord (1973). 

This model was originally based on the model considered by Whittle (1954). 

The model can be expressed according to the following formula: 

 

𝑌𝑛 = 𝜆𝑊𝑛𝑌𝑛 + 𝑋𝑛𝛽 + 𝜖𝑛      …(1) 

Where as: 

Yn : represnts the (n × 1) vector of observations of the dependent variable on every spatial point (n=1,2,…,N). 

Xn : represnts the (n × k) matrix of exogenous variables. 

β : a vector of (k × 1) represnts interaction parameters of exogenous variables. 

Wn :A matrix of dimentions (n × n) represnts the matrix of spatial wights and describes the spatial arrangement 

of units within the sample and all diagonal elements are zero. 

λ : represnts the parameter of interaction with respect to the spatially lagging dependent variable. 

WnYn : represnts the spatially lagging dependent variable. 

ϵn : represnts the (n × 1) vector of regression disturbances. 

 

The direct estimation of model (1) results in a baised and inconsistent estimate of most of the model. 

Parameters according to the Maximum Likelihood method (direct approach as named by Yu and Lee in 2010). 

Yu and Lee explained that there are several proposals for estimating the model in equation (1) for the purpose 

of obtaning estimators with convergent properties and consistent estimates of the estimated parameters, noting 

that all estimation methods are applied after proving that the parameters are fully diagnosed. 

Also, the random errors (ϵnt) in equation (1) when they are spatially correlated, they become as in the following 

equation: 

𝜖𝑛 = 𝛾 𝜖𝑛 + 𝜆2𝑊𝑛𝜖𝑛 + 𝜀𝑛                …(2) 

Where as: 

ϵn : A vector of dimensions (n × 1) reflects the specifications of the random error term of the model , and in 

the general model, it is series and spatially correlated. 

𝛾   : A sequential autocorrelation coefficient with respect to the random error term. 

 λ2 : A spatial autocorrelation coefficient with respect to the random error term. 

At that point , the model in equation (1) is called the spatial error model, but if the errors are independent and 

have a symmetrical distribution, then the general model is called the Spatial Lag Model (SLM). 

6. Spatial autocorrelation and spatial hetrogeneity 

Spatial autocorrelation and spatial hetrogeneity are two characteristics associated with spstial data that must be 

taken into consideration when developing a model of spatial dynamic phenomena. 

The spatial autocorrelation is defined as the existence of a functional relatonship between what happens at a 

certain point in space , which is expressed statistically according to the following formulla  (𝐶𝑜𝑣[𝑦𝑖𝑦𝑗] ≠

0    𝑓𝑜𝑟 𝑖 ≠ 𝑗),  spatial autocorrelation is considered to be of great importance because most of the results are 

based on it in studies dealing with spatial econometics. 
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The term spatial hetrogeneity relates to variation in relationships over space, or, intrinsic characteristics 

unevenly distributed over space. Also, spatial hetrogeneity refers to the instability of error variances , which can 

be expressed according to the following formula: 

(var𝑉𝑎𝑟(𝜖𝑖) = 𝜎𝑟
2   𝑤ℎ𝑒𝑛 𝑖 ∈ 𝐿𝑟)   

Where: 

L : represents a group of spatial units. 

r : represents the location of those units. 

The spatial autocorrelation between the two units (j,i) is relatively dependent on their location and therefore 

positive spatial autocorrelation appears when the values of the random variable ( low / high ) are concentrated 

in neighboring spatial units. 

 

7.  Moran's test (1- Test) 

This test is considered one of the most important tests to verify the presence or absence of a spatial 

autocorrelation between the cross section. 

  For the SDPD model , the test equation for the vector (Ynt) is: 

 

𝐼 = (
𝑅

S0
) Ynt

′  Wn Ynt  (Ynt
′  Ynt)

−1
        …(3)           

Whereas: 

(S0) represents (∑ ∑ Wij
n
j=1

n
i=1 ). 

- (Wij) represnts (ij
th) for the matrix of spatial weights. Wn  

- (R) represents the number of regions (cross sections) taken in the study. 

The test hypothesis is based on the null hypothesis , that is , there is no spatial autocorrelation (𝐻𝑜: 𝜆 = 0 ). 
Accepting or rejecting null hypothesis is through a comparison with (Z) , which is calculated according to the 

following formula: 

Z =
I − E(I)

√var(I)
             … (4) 

Where (E(I) and var(I)) represent respectively the expectation and variance of the Moran test , and it is 

calculated according to the folowing formula : 

E(I) =
−1

R − 1
 

𝑉𝑎𝑟(𝐼) =
𝑅𝑆4−𝑆3𝑆1 (1−2𝑅)

(𝑅−1)(𝑅−2)(𝑅−3)(∑ ∑ w𝑖𝑗𝑗𝑖 )
2              …(5) 

𝑆1 =
1

2
 ∑ ∑ (w𝑖𝑗 +w𝑗𝑖)

2
𝑗𝑖   

𝑆2 = ∑ (∑ w𝑖𝑗𝑖 + ∑ w𝑗𝑖𝑗 )
2

𝑖   

𝑆3 =
𝑅−1(Ynt

′  Ynt)
2

(𝑅−1 Ynt
′  Ynt )

2   

𝑆4 = (𝑅
2 − 3𝑅 + 3)𝑆1 − 𝑅𝑆2 + 3 (∑ ∑ w𝑖𝑗𝑗𝑖 )

2
  

The value of the Moran test (1-test) is calculated under the assumption of a normal distribution and that the 

value of (Z) can be used as the value of (P-value) and be compared with the value of (1-test). It should be noted 

here that the Moran test (1-test) is calculated for each year separately. 

8.  Generalized method of moments (GMM) 

The estimation by using Generalized Method of Moments (GMM) is based on moment functions that are 

constructed from the same model. In 2007, (Lee) developed a specific methodology for constructing moment 
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functions in which he used the linear and quadratic moment functions of the (SAR) model based on converting 

the model in equation (1) to the following reduced form: 

𝑌𝑛 = (𝐼𝑛 − 𝜆𝑊𝑛)
−1𝑋𝑛 𝛽0 + (𝐼𝑛 − 𝜆𝑊𝑛)

−1𝜖𝑛           … (6) 

Then , above equation is multiplied by the matrix of spatial weights (Wn) to become: 

𝑊𝑛𝑌𝑛 = 𝐺𝑛 𝑋𝑛 𝛽0 + 𝐺𝑛 𝜖𝑛                           …(7) 

 

Where (𝐺𝑛 = 𝑊𝑛(𝐼𝑛 − 𝜆𝑊𝑛)
−1). The endogenous variable (WnYn) on the left – hand side of equation (7) 

represents a function with respect to the non- random part represnted by (GnXnβ0) and a function with respect 

to the random part by (Gnεn). 

Therefore, Lee and Yu (2007-2010) formulated moments in terms of the random part and non- random part . 

The non- random part was measured by: 

𝑄𝑛 = [𝑍𝑛 ]   …(8) 

 

On represents the vector of relevance and efficient instrumental variables to obtain consistent estimators with 

respect to both (WnYn) and have fixed column dimensions greater or equal to(kx + 3)  . The matrix of 

instrumental variables that are included in the linear moments function is: 

Q1n = [Q′11 , Q′12 , … , Q′1n]′     , … (9) 

 

In equation (9) above , the matrix is computed by taking the expectation for the instrumental variable (Znt) , 
which represents the matrix of dimensions (kx + 2) from the following variables: 

Zn = (WnYn , Xn) 

Equation (9) can be calculated with the initial values of the parameters (λ0, β′0) . 

When performing the orthogonality parameter transformation, the random error term matrix becomes: 

𝛜1𝑛 = [𝜖11
′ , 𝜖12

′ , … , 𝜖1𝑛
′ ]′ 

Where: 

𝜖𝑛 = (𝐼𝑛 − 𝜆0𝑊𝑛)𝑌𝑛 − 𝑋𝑛 𝛽0        …(10) 

 Then the formula for the linear moments function is  (Q′1nε1n) . 

 As for the random part represented by (𝐺𝑛 𝜖𝑛 ) , it is measured by (PLn) , where (L=1,2,…, m) represnts the 

number of  moment functions , and (𝚸𝐿𝑛)    is a matrix whith dimensions (L × n) and is specified regularly (UB) 

in the sum of row and column are in absolute terms , and (𝚸𝐿𝑛)are calculated according to the following formula 

:  

𝚸𝑛𝐿 = (𝐆𝑛 − (
𝑡𝑟𝐆𝑛, 

𝑛
𝐼𝑛))          …(11) 

Thus , the quadratic moment functions will take the form(𝛜𝑛
′ (𝜃)𝚸𝑛𝐿𝛜𝑛,(𝜃)) and that the orthogonality condition 

is fulfilled in the case that the random error term is (i.i.d) and thus :  

E(𝛜𝑛
′
(𝜃)𝚸𝑛𝐿𝛜𝑛 (𝜃)) = tr(𝚸𝑛𝐿 (𝛜𝑛

′
(𝜃)𝛜𝑛,(𝜃)) = 0           …(12) 

Thus , for both stochastic and non- stochastic parts , the instumental variables (IV) arise in such a way that they 

are related to (𝑊𝑛𝑌𝑛𝑡 ) but not associated with (𝜖𝑛𝑡) and therefore linear and quadratic moment functions can 

be written as a function in terms of the parameters (θ = (λ0, β′0)) and as follows: 
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𝑔𝑛(𝜃) =

(

 
 
 
 

𝝐𝑛
′
(𝜃)𝚸𝑛,1𝝐𝑛 (𝜃)

.

.

.

𝝐𝑛
′
(𝜃)𝚸𝑛,𝑚𝝐𝑛 (𝜃)

𝐐′𝑛𝝐𝑛 (𝜃) )

 
 
 
 

                         …(13) 

 

The moment functions in equation (13) include both linear and quadratic moments and are called systematic or 

finite moments. Liu and others (2010), proved that given the set of moment function (𝑔𝑛𝑇(𝜃)) any other moment 

functions that can be added to this set is redundant.Also, they showed that the ML estimator is characterized by 

the set of moment functions gn(θ) , therefore , the GMM estimator based on these moment functions is 

asymptotically equivalent to the ML estimator. They suggested , when the errors are (i.i.d) , another best set of 

quadratic moment functions so that the optimal GMM estimator is asymptotically more efficient than the quasi 

ML estimator. 

 

9.  Consistency and asymptotically distribution for GMME under moment conditions 

The consistency characteristic is one of the most important characteristics of the GMM estimator under the 

presence of the linear and quadratic moment conditions in equation (13). In order to prove this characteristic, 

the identification conditions for the model must be studied in equation (1) with the following assumption: 

δ = (β′)′ 

Sn = (In − λWn) 

Sn(𝜆) = Sn + (λ0 − λ)Wn 

Then , the formation of  (𝜖𝑛𝑡
∗ (𝜃)) , can be expanded as follows: 

𝜖𝑛 (𝜃) = 𝑓𝑛 (𝜃) + 𝑆𝑛(𝜆)𝑆𝑛
−1𝜖𝑛       …(14) 

Whereas: 

     𝜖𝑛 ≡ 𝜖𝑛 (𝜃0)                                                          

𝑓𝑛 (𝜃) ≡ 𝑆𝑛(𝜆)𝑆𝑛
−1𝑍𝑡 𝛿0 − 𝑍𝑛 𝛿                    

          = 𝑍𝑛 (𝛿0 − 𝛿) + (𝜆0 − 𝜆)𝐺𝑛𝑍𝑛 𝛿0

}        …(15) 

For the moment functions in equation (13) to be identified , the sufficient condition is to prove that: 

𝑃 lim
𝑛→∞

1

𝑛
 𝐐′𝑛 [𝐙𝑛 , 𝐆𝑛𝐙𝑛 𝛿0]      …(16) 

 

Which has full rank (K2 + 1) , whereas 

𝐙𝑛 = (𝑍𝑛
′ , … . . , 𝑍𝑛

′ )′           :    𝐆𝑛 = 𝐼𝑛⊗𝐺𝑛 

As a result of (𝐙𝑛 ) involving spatial regressions, this condition will generally be fulfilled as long as (𝛿 ≠ 0). 

As for the identification of the matrix of instrumental variables (1Vs) in equation (9) , (Qn) must be strictly 

identified. As mentioned above , the dimensions of the columns of  (Qn)  are fixed for all values of (n) and with 

full rank , and thus (Qn) is fully identified. The identification condition requires that the following be fulfilled: 
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𝑃 lim
𝑛→∞

1

𝑛(𝑇−1)
 𝐐′𝑛 𝐐𝑛            … (17) 

After proving the identification , the optimal estimate for the GMM estimator at (𝜃0) values is the following: 

𝜃𝑜,𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ   𝑔𝑛
′ (𝜃) Σ̂𝑛

−1  𝑔𝑛 (𝜃)        …  (18) 

Where (𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ)  means the estimator that achieves a lower estimate than the rest of the estimators within 

the parameter space (θ) .   Σ̂𝑛 represents the information matrix of moment functions (𝑔𝑛 (𝜃)) and when talking 

the inverse , we get the variance and covariance matrix while the number of its rows is greater than or equal to 

(k2 + 1). Under the assumption that the random errors are naturally distributed (i.i.d) , then (Σ𝑛 ) is calculated 

according to the following formula: 

Σ𝑛 = 𝜎0
4(

1

𝑛
𝜔𝑛𝑚
′  𝜔𝑛𝑚

𝑠 0𝑚×(𝑘𝑧+1)

0(𝑘𝑧+1)×𝑚
1

𝜎0
2  
1

𝑛
 𝐐′𝑛 𝐐𝑛

)    …  (19) 

Whereas 

𝜔𝑛𝑚 = [𝑣𝑒𝑐𝐷(𝐏𝑛,1), … . , 𝑣𝑒𝑐𝐷(𝐏𝑛,𝑚) ]  

𝑣𝑒𝑐𝐷(𝐏𝑛,𝐿) , denotes the vertical vector, which is formulated by the main diagonal elements of the matrix (𝐏𝑛,𝑗) 

, and the same applies to: 

 𝜔𝑛𝑚
𝑠 = 𝑣𝑒𝑐𝐷(𝐏𝑛,1

𝑠 ), … . , 𝑣𝑒𝑐𝐷(𝐏𝑛,𝑚
𝑠 ) 

𝑣𝑒𝑐𝐷(𝐏𝑛,𝐿
𝑠 ) , denotes the vertical vector , wich is formulated by the main diagonal elements of the matrix (𝐏𝑛,𝐿

𝑠 ) 

and is calculated through  

𝐏𝑛,𝐿
𝑠 = 𝐏𝑛,𝐿 + 𝐏𝑛,𝐿

′  

 As for the asymptotically normal distribution of the estimator of the generalized moment method in the 

presence of the linear and quadratic moment functions (𝜃𝑜,𝑛) , it is possible to have a specific distribution such 

as the normal distribution at the initial values  (θ0) where the amount  (
𝑔𝑛 (𝜃0)

√𝑛(𝑇−1)
 ) has a distribution asymptotical 

to the normal distribution . on the basis of the central limit theory ( CLT) , when (n) is large , the variance of 

the estimator (θ̂n) is as in equation (19) after taking its inverse .  

10. The simulation  

For the purpose of implementing a simulation to generate explanatory variables that follow a normal distribution 

, the (Box-Muller ) method was used to generate explanatory variables that follow a regular normal distribution 

(U(0,1)) and then convert those variables  into independent random variables (Zr) that follow a standard 

normal distribution according to the following formula: 

 
𝑍𝑟 = (−2𝐿𝑛𝑈𝑟)

1
2 . cos(2𝜋𝑈𝑟)

𝑍𝑟+1 = (−2𝐿𝑛𝑈𝑟)
1
2 . sin(2𝜋𝑈𝑟)

        ]… (20) 

To transform the variables from the standard normal distribution to the normal distribution with mean (μ) and 

variance (σ2) , the following formula is used :  

𝑋𝑖 = 𝜇 + 𝜎
2Z      ,    i = 1,2,… . n  … (21) 
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As for the random error generation (εnt) , it is generated according to the independent normal distribution 

(𝜖𝑛𝑡~𝑁(0, 𝜎𝜖
2) and by using the formula below :  

𝑒𝑖 = 0 + 𝜎𝜖
2 𝑍  , 𝑖 = 1,2,…𝑛           … (22) 

On the application side of this research , it has been assumed that the value of the variance is equal to (1) . 

The dependent variable was generated directly from the models used in the simulation experiments and by using 

the explanatory variables that were generated with the corresponding parameters (β) in addition to the errors in 

equation (19). Also , it has been assumed that the values of the parameters (β) are equal to (1) and in the form 

of the vertical vector whose dimensions are (1 × 18) and its elements represent the unity , and thus :  

𝑌𝑖 = 𝑋𝑟,𝑖 𝛽𝑟 + 𝑒𝑖           … (23) 

With regard to the matrices of spatial weights , the Queen contiguity matrix has been chosen which has the 

advantage of being Row –Normalized as shown in Appendix (1) . As for the proposed spatial weight matrix , it 

was adopted on the basis of distances between adjacent governorate centers (𝑊n ) and as shown in Appendix 

(2) . 

Table 1. The results of the simulation experiment to optain the intial values 

𝛽0 𝜆0  

SD=0.041 SD=0.071 𝜎 = 0.1 

RMSE=0.041 RMSE=0.071 

SD=0.043 SD=0.092 𝜎 = 0.5 

RMSE=043 RMSE=0.092 

SD=0.049 SD=0.095 𝜎 = 0.9 

RMSE=049 RMSE=0.095 

 

 It is noted from the above table that the best initial value is when (σ = 0.1) for obtaining the lowest (SD) 

and lowest (RMSE) which will be relied upon in estimating the model according to the GMM . 

11. The application 

Data published by the Ministry of Health in Iraq for the period from February 2 , 2020 to October 1 , 2020 has 

been used for eighteen governorates (including the Kurdistan region ) that represent cross-sections (n=18) . The 

data related to the research subject included the following :  

- Number of infection with corona virus (representing the dependent variable 𝑌𝑛𝑡 ). 

- Number of health institutions across Iraq (explanatory variable 𝑋𝑛  ) . 
For the purpose of detecting the existence of spatial autocorrelation with respect to the spatial regression variable 

(𝑊𝑛𝑌𝑛) , the Moran's test was calculated according to the aforementioned equation (3). The null hypothesis 

states that there is no spatial autocorrelation , (𝐻𝑜: 𝜆 =o), and that the hypothesis is accepted or rejected by 

comparison with the standard value of (Z) as in equation (4). 

According to Table 2, the results obtained indicate that the value of the calculated test (1- test) is higher than 

the standard value of (Z) and therefore we reject the null hypothesis and accept the existence of a spatial 

autocorrelation of the variable (Yn) for the eighteen governorates , that is , the number of infections (Yn) 
interacts spatially with cross-section represnting the governorates of Iraq during the period under study. 

   Table 2. The results of the spatial autocorrelation test  

Year Moran's I test* Z-statistics* Null Hypothesis 

(2/ Feb /2020)  

(1/ Oct /2020 )  

2.3368 0.75265 Reject 𝐻𝑜 

• This results were obtained by the researcher using Eviews- 9 



 PEN Vol. 9, No. 3, July 2021, pp.363-373 

371 

Table 3. The estimation of the model parameters for spatial autocorrelation (SAR) by GMM method. 

Estimator 
Parameters 

T-test Estimate 

0.02258 2.0252 𝜆 

1.0254 0.5852-  𝛽  

 

Sig. level: 5%(|𝑡 − 𝑠𝑡𝑎𝑡. | > 1.64) 
According to Table 3 , the value of the autocorrelation parameter (λ) is positive and this indicates the increase 

in the number of Covid- 19 infections at the level of the eighteen governorates due to the presence of spatial 

autocorrelation resulting from the obsence of natural or administrative obstacles between the governorates. 

As for the explanatory variable (X) that represents the number of health institutions, it adversely affects the 

variable of the number of infections with covonovirus , as an incrase of one unit in the number of health 

institutions reduces the number of infections by (0.5852). 

 

12. Conclusions 

1- The GMM method has a number of advantages when it is used to estimate model 

parameters. The most important of these advantages is achieving the least variance , 

approaching zero, and least bias, approaching the true value of the parameter. 

2- The explanatory variable (number of health institutions) affects positively and effectively in 

medically controlling Covid-19 disease. The results showed that increasing one unit in 

health institutions reduces the number of cases of the disease. 

3- The autoregression variable (Yn)  causes a significant increase in the number of infections 

at the level of the eighteen governorates. 

13.  Recommendations 

1- It is preferable to use GMM in estimation the spatial autoregression model because of its 

effectiveness in treating Endogenity in the model and in providing consistent specifications 

for the estimated parameters. 

2- It is necessary to test the use of other methods for parameters estimation in the spatial 

autoregression model such as Two stage least square method (2SLS) and Three stage least 

square method (3SLS)   

3-  It is important to choose other variables to detect their effects on increasing the infections 

of Covid- 19 disease in Iraq and how to reduce them. 
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Province Cases* Deaths* Recovered* health institutions** 

Baghdad 94,187 1,650 29,115 480 

Basra 29,055 318 4,463 246 

Wasit 19,816 160 4,154 159 

Karbala 19,068 187 4,194 121 

Dhi Qar  17,565 460 6,005 294 

Najaf 16,634 113 4,453 183 

AL-Sulaimaniya 16,430 415 5,914 546 

Erbil 15,814 97 2,699 390 

Al Qadisiyah 13,246 169 2,817 110 

Babil 13,149 33 2,308 239 

Maysan 12,723 195 4,192 121 

Kirkuk 12,348 204 2,434 221 

Duhok 10,194 0 299 249 

Muthanna  9,367 62 725 110 

Diyala 8,752 131 2,983 121 

Nineveh 7,262 37 549 317 

Salah Al-Deen 6,667 83 1,497 208 

Al Anbar 3,924 45 726 276 

Total 326,201 4,741 87,434 4391 

Source: 

  * The Iraqi Ministry of Health / daily update until 1/10/2020. 

** Ministry of Planning / Central Statistical Organization / Annual Statistical Abstract 2017 pg. 

433. 
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