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ABSTRACT   

Our main interest in this work is to study on topological group and topological groupoid spaces. We give 

new some results of certain types for topological group which are source proper group space denoted by 

(SPHΓ-Space), for topological groupoid are source proper topological groupoid denoted by (SPHG-Space) 

and for H-Space (H,𝜋, D) are source proper groupoid space, denoted by (SPHH-Space). The important point 

is to get relationship of SPHΓ, SPHG-Space and SPHH-Space. 
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1. Introduction 

 In this paper, we study SPHΓ-Space, SPHG-Space and SPHH-Space and they properties for this purpose, we 

divide this work into section: In section one, we give the definition topological group, topological groupoid and 

study the properties of these spaces. In section two, we provided with several proposition about the relationship 

of SPHΓ-Space, SPHG-Space and SPHH-Space respectively. Finally, propositions in this project are presented 

and debated.  

2. Topological group space 

 In this section, we give primary concepts of this research, Let (H,D) be a topological groupoid, M be a 

topological Space, 𝜋:𝑀 → 𝐷 be a continuous map and Let 𝐻 ∗ 𝑀 denote the fiber product of 𝛼 and 𝜋 over D. 

A left action of H on (𝑀, 𝜋, D) is a continuous map 𝜃∗: 𝐻 ∗ 𝑀 → 𝑀 such that (i) 𝜋(𝜃∗(ℎ, 𝑧)) = 𝛽(ℎ) for each 

(ℎ, 𝑧) ∈ 𝐻 ∗ 𝑀. (ii) 𝜃∗(𝑤(𝜋(𝑧)), 𝑧) = 𝑧  for each 𝑧 ∈ 𝑀.(iii) 𝜃∗ (ℎ(𝜃∗(ℎ, 𝑧))) = 𝜃∗(𝛾(ℎ, ℎ́), 𝑧) for each 

(ℎ, ℎ́) ∈ 𝐻 ∗ 𝐻 and (ℎ, 𝑧) ∈ 𝐻 ∗ 𝑀 . the bundle (𝑀, 𝜋, 𝐷) together with action 𝜃∗ is called groupoid space and 

is denoted by H-space. [5], [6]. Let (𝑀, 𝜋, 𝐷) be a H-space then: The subset 𝐻(𝑍) = {𝜃∗(ℎ, 𝑧)|ℎ ∈ 𝐻𝜋(𝑧)} is the 

orbit of z under H. The action of H on (𝑀, 𝜋, 𝐷) is free if for each(ℎ, 𝑧) ∈ 𝐻 ∗ 𝑀 the relation 𝜃∗(ℎ, 𝑧) = 𝑧 

implies his unity. The action of H on (𝑀, 𝜋, 𝐷) is a transitive if for each , 𝑧́) ∈ 𝑀 ×𝑀 , there is ℎ ∈ 𝐻 such that 

𝑧́ = 𝜃∗(ℎ, 𝑧) [3]. Let (𝑀, 𝜋, 𝐷) be a H-space then: We say that (𝑀, 𝜋, 𝐷) is free H-space if the action of H on 

(𝑀, 𝜋, 𝐷) is free. We say that (𝑀, 𝜋, 𝐷) is transitive H-space if the action of H on (𝑀, 𝜋, 𝐷) is transitive. [2]. A 

topological groupoid (H,D) is called source proper groupoid (SPHG-Space) if: The source map 𝛼:𝐻 → 𝐷 is a 

proper. The base space D is a Hansdorff. [4] , [3]. A Γ − Space M is called source proper group space (SPH Γ-

Space) if: The action groupoid (𝑀 × Γ,M) is SPH-Space. M is free Γ − Space. [7], [1]. Let (H,D) be an 

SPH-Space then the 𝛼 − fiber space 𝐻𝑥 is 𝑆𝑃𝐻𝑥 𝐻𝑥 −space for every 𝑥 ∈ 𝐷. A H-space (𝑀, 𝜋, 𝐷) is called 

source proper topological groupoid space(SPHH-Space) if: The action groupoid (𝐻 ∗ M,M) is SPH-Space. 

(𝑀, 𝜋, 𝐷) is free and transitive H-Space.  

https://creativecommons.org/licenses/by/4.0/
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3.  The main results of SPH𝚪-Space, SPHG-Space and SPHH-Space 

In this part, we give several properties about the relationship of  SPHΓ-Space, SPHG-Space and SPHH-Space. 

Proposition (1): 

Let (M,π,D) be H-Space and (𝑔 ∘ 𝑓 , 𝑔∘ ∘ 𝑓∘ ): (𝐻́,
́ 𝐷́) → (𝐻,𝐷) be a morphism of groupoid then (𝑀 × 𝐷́,́  𝜋́ =

𝑃2, 𝐷)́  
́ is 𝐻́́ −Space where 𝑀 × 𝐷́ ́ is the fiber product of 𝜋 and 𝑔∘ ∘ 𝑓∘ 𝑜𝑣𝑒𝑟 𝐷, 𝑃2: 𝑀 ×𝐷 𝐷́́ → 𝐷́ 

́ . 

Proof :  

Let  𝐻́ ́ ∗ (𝑀 × 𝐷́́) denoted the fiber product of  𝛼́́ and 𝜋́́ = 𝑃2 and define: 𝜓: 𝐻́ ́ ∗ 𝑀 ×𝐷 𝐷́́ →

𝑀 ×𝐷 𝐷́́ by 𝜓(ℎ́ ́ , (𝑧, 𝛼́́ (ℎ́́)) = 𝜃∗ (𝑔 ∘ 𝑓 (ℎ́́) , 𝑍) , 𝛽́́ (ℎ́́)) ∈ 𝑀𝐷 × 𝐷́ 
́  since 𝜋(𝜃∗ (𝑔 ∘ 𝑓 (ℎ́́) , 𝑍) = (𝑔 ∘

𝑓(ℎ́)) = (𝑔 ∘ 𝑓)∘(𝛽́́ (ℎ́́)) and 𝜃∗ is a low of action of H on (M,π,D), 𝜓 is continuous action of 𝐻́́ on 

(𝑀𝐷 × 𝐷́ 
́ , 𝜋́́, 𝐷́ ́ ) since: 𝜋́́(ψ(ℎ́́, (𝑧, 𝛼́́(𝑔́́)) = 𝑃2(𝜃

∗ (𝑔 ∘ 𝑓 (ℎ́́) , 𝑍) , (𝛽́́ (ℎ́́)) 

=𝛽́́ (ℎ́́)  ,   ψ(𝑤́́  (𝜋́́(𝑧, 𝑏́́))) , (𝑧, 𝑏́́) = (𝜃∗ (𝑔 ∘ 𝑓)𝑤́́ (𝑏́́) , 𝑍),𝛽́́ (𝑤́́ (𝑏́́)) = 𝜃∗ (𝑔∘ ∘ 𝑓∘) (𝑏́́) , 𝑍), 𝛽́́ (𝑤́́ (𝑏́́)) =

(𝑧, 𝑏́́) ψ(ℎ́́, ψ(ℎ́́, (𝑧, 𝛼́́ (𝑔́́́)) = ψ(ℎ́́, 𝜃∗ (𝑔 ∘ 𝑓 (ℎ́́
́
) , 𝑍) , 𝛽́́ (ℎ́́

́
)   = ψ(ℎ́́, 𝜃∗ (𝑔 ∘ 𝑓 (ℎ́́

́
) , 𝑍) , 𝛼́́ (ℎ́́

́
)) =𝜃∗ (𝑔 ∘

𝑓 (ℎ́́
́
))   , 𝜃∗(𝑔 ∘ 𝑓) (ℎ́́

́
) , 𝑍)),𝛽́́ (ℎ́́)  =(𝜃∗(𝛾(𝑔 ∘ 𝑓 (ℎ́́) , 𝑔 ∘ 𝑓 (ℎ́́

́
)) , 𝑍, 𝛽́́ (ℎ́́)=(𝜃∗(𝑔 ∘

𝑓(𝛾́ (ℎ́́, ℎ́́
́
 )) , 𝑍) , 𝛽́́ (ℎ́́)=(𝜃∗(𝑔 ∘ (𝛾 (ℎ́́, ℎ́́

́
 )) , 𝑍) , 𝛽́́ (𝛾́́ (ℎ́́, ℎ́́

́
 ))) = 𝜓(𝛾́́ (ℎ́́, ℎ́́

́
 ) , (𝑍, 𝛼 (𝛾́́ (ℎ́́, ℎ́́

́
 )).  

Consider the   following diagram in Figure 1:     

 

Figure 1. Diagram of Proposition (1) 

In which 𝜋 ∘ 𝜃∗ ∘ (𝑔 ∘ 𝑓) × 𝑃2) (ℎ́́, (𝑧, 𝛼́́ (ℎ́́)) = (𝑔∘ ∘ 𝑓∘) ∘ 𝐷́́ ∘ 𝑃1(ℎ́́, (𝑧, 𝛼́́ (ℎ́́)) since 𝜋 (𝜃∗(𝑔 ∘ 𝑓) (ℎ́́) , 𝑧) =

𝛽́ (𝑔 ∘ 𝑓 (ℎ́́)) = (𝑔∘ ∘ 𝑓∘)(𝛽́́ (ℎ́́)). ((𝑀, 𝜋, 𝐷)𝑖𝑠 𝐻 − 𝑆𝑝𝑎𝑐𝑒) . Hence, there exists a unique morphism 𝜃 =

𝜓: 𝐻́́ ∗ (𝑀 ×𝐷 𝐷́́) → (𝑀 ×𝐷 𝐷́́) given by: 𝜃∗ (ℎ́́ , (𝑧, 𝛼́́ (ℎ́́)) = 𝜃∗(𝑔 ∘ 𝑓) (ℎ́́) , 𝑧) , 𝛽́́ (ℎ́́)) making the whole 

diagram commutative in M by the universal property of fiber product. 

Proposition (2) Let M be an SPH Γ − Space then (𝑀, 𝜋,𝑀/Γ) is SPHG ((𝑀 ×𝑀/Γ) ∗ M,M) 
[where((𝑀 ×𝑀/Γ) ∗ M,M)] is action groupoid.  

Proof: Let 𝐻 = 𝑀 ×𝑀/Γ  and H ∗ M denote the fiber product of 𝛼 and 𝜋 = 𝑀 → 𝑀/Γ over 𝑀/Γ which is the 

subset of 𝐻 ×𝑀 of element ([(𝑧́, 𝑧)], 𝑧́́), with 𝑧́́ = 𝜃(𝑧, 𝑟) , where 𝜃 is a law of action of Γ on M. Define 𝜓:𝐻 ∗

𝑀 → 𝑀 by:  𝜓(([𝑧́, 𝑧)], 𝑧́́)) = 𝜃(𝑧́, 𝛿∗(𝑧, 𝑧́́)), where 𝛿∗ is the map  𝛿∗: (𝑀 ×𝐷 𝐷́́) → Γ is continuous where M 
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be SPH Γ − Space. 𝜓 is free and transitive continuous action of H on (𝑀, 𝜋,𝑀/Γ) since: 𝜋(ψ([(𝑧́, 𝑧)], 𝑧́́)) =

𝜋(𝜃 (𝑧,́ 𝛿∗(𝑧, 𝑧́́)) = 𝜋(𝑧́) = 𝛽([(𝑧,́ 𝑧́)]). ψ(𝑤(𝜋(𝑍)), 𝑍) = ψ([(z, z)], z) = 𝜃(𝑧, 𝛿∗(𝑧, 𝑧)) =  𝜃(𝑧, 𝑒) = 𝑧. 

(i)  ψ[(𝑧́, 𝑧)], ψ([𝑧́́, 𝑧́́)] = ψ([(𝑧́, 𝑧)], 𝜃 (𝑧́́, 𝛿∗(𝑧́́, 𝑧1)) , 𝜃(𝑧́, 𝛿
∗(𝑧, 𝜃 (𝑧́́, 𝛿∗(𝑧́́, 𝑧1)) 

= 𝜃(𝑧́, 𝛿∗ (𝑧, 𝑧́́́ ))  = ψ(γ[(𝑧́, 𝑧)], [(𝑧́́, 𝑧́́́)])), 𝑧1) 

 Since 𝜋(𝑧) = 𝜋(𝑧́́). 𝛹 is a free action since if ψ([(𝑧́, 𝑧)], 𝑧) = 𝑍 then 𝜃 (𝑧́, 𝛿∗(𝑧́́, 𝑧)) = 𝑍 and 𝜃(𝑧́́, 𝛾) =

𝑍 𝑎𝑛𝑑 𝜃(𝑧́, 𝛾) = 𝑍 ⟹ 𝜃(𝑧́́, 𝛾) = 𝜃(𝑧́, 𝛾) ⟹ 𝑧́ = 𝑧́́ and then [(𝑧́, 𝑧́)] is unity.Ψ is transitive action since if 

(𝑧́, 𝑧) ∈ 𝑀 ×𝑀 then 𝜓([(𝑧́, 𝑧)] = 𝜃(𝑧́, 𝛿∗(𝑧, 𝑧)) = 𝜃(𝑧,́ 𝑒) = 𝑧́. Now to show that (𝐻 ∗ 𝑀,𝑀) is SPH-

groupiod: The base space M is Hausdorff. 𝐻 ∗ 𝑀 = (𝛼 × 𝜋)−1(∆ 𝑀/Γ). The source map 𝛼 is proper since 

(𝑀 ×𝑀/Γ) ,𝑀/Γ) is SPH- groupiod, since 𝑀/Γ is compact. Hence ∆ 𝑀/Γ is compact in 𝑀/Γ ×𝑀/Γ (closed 

subspace of compact space) and the map 𝜋:𝑀 → 𝑀/Γ is proper. Therefore 𝐻 ∗𝑀 is compact since 𝛼 × 𝜋 is 

proper map and then it's source map is proper. 

Proposition (3): Let 𝑀 ×𝑀/Γ,𝑀/Γ be on SPH Γ – space then M is 𝑆𝑃𝐻𝐻𝜋(𝑍) 𝐻𝜋(𝑍) −Space , for all 𝑧 ∈ 𝑀. 

Where  𝜋:𝑀 ×𝑀/Γ → 𝑀/Γ. 

Proof: The map 𝜂𝑍: 𝐻𝜋(𝑍) → 𝑀, 𝜂𝑍(ℎ) = 𝜃
∗(ℎ, 𝑍) where 𝜃∗ is the law of action of H-space and 𝜂𝑍 is closed 

map since for every closed subset A of  𝐻𝜋(𝑍) then A is compact (𝐺𝜋(𝑍) is compact) and then 𝜂𝑍(𝐴) is compact 

and consequently 𝜂𝑍(𝐴) is closed (M is Hausdorff since (𝐻 ∗ 𝑀,𝑀) is SPHH-space). Hence 𝜂𝑍 is 

homeomorphism, now define  , 𝜙𝑧 = 𝑀𝑋𝜋(𝑍) 𝐻𝜋(𝑍)
𝜂𝑍
−1×𝐼
→   𝐻𝜋(𝑍)𝑋𝜋(𝑍)𝐻𝜋(𝑍)

𝛾́
→𝐻𝜋(𝑍)

 𝜂𝑍
→ 𝑀, by:𝜙𝑧(𝑧́, 𝑟) =

𝜂𝑍(𝛾(ℎ, 𝑟)) where h is a unique element such that ℎ = 𝜂𝑍
−1(𝑧́) and 𝛾́ = 𝛾|𝐻𝜋(𝑍)𝑋𝜋(𝑍)𝐻𝜋(𝑍) M is 

𝑓𝑟𝑒𝑒𝜋(𝑍)𝐻𝜋(𝑍) −Space by 𝜙𝑧 since: 𝜙𝑧(𝑧́, 𝑤(𝜋(𝑍)) = 𝜙𝑧(𝜂𝑍(ℎ),𝑤(𝜋(𝑍))) = 𝜂𝑍(𝛾(ℎ, 𝑤(𝜋(𝑍)) =

𝜂𝑍(𝛾(ℎ, 𝑤(𝛼(ℎ))) = 𝜂𝑍(ℎ) = 𝑧́  where 𝑤(𝜋(𝑍)) is unity 𝑖𝑛𝜋(𝑍)  𝐻𝜋(𝑍) 𝜙𝑧(𝑧́, 𝛾(𝑟1, 𝑟2)) = 𝜙𝑧(𝜂𝑍(ℎ), 𝛾(𝑟1, 𝑟2))                                        

= 𝜂𝑍(𝛾(ℎ, 𝛾(𝑟1, 𝑟2)) 
 = 𝜂𝑍(𝛾(ℎ, 𝑟1), 𝑟2)  = 𝜙𝑧(𝜙𝑧(𝜂𝑍(ℎ), 𝑟1), 𝑟2)                                                                                                      =
𝜙𝑧(𝜙𝑧(𝑧́, 𝑟1), 𝑟2).   If 𝜙𝑧(𝑧́, 𝑟) = 𝑧́ then 𝜙𝑧(𝜂𝑍(ℎ), 𝑟) = 𝜂𝑍(ℎ)  ((𝜂𝑍 injective)) and then 𝛾 is unity𝜙𝑧 is 

continuous since it is the composition of continuous map. Now to show the action groupoid 

(𝑀 ×𝜋(𝑍)  𝐻𝜋(𝑍) , 𝑀) is SPHG-Space: M is Housdorff space since (𝑀, 𝜋 , 𝑀/Γ) is SPHG-Space. (a)The Source 

map 𝛼𝑍: 𝑀 ×𝜋(𝑍)  𝐻𝜋(𝑍) → 𝑀,𝛼𝑍(𝑧́, 𝑟) = 𝑧́ is a proper map by using the following commutative diagram: 

 
Figure 2. Diagram of Proposition (3) 

Where 𝛼́𝑍 is a Source map of the action groupoid (𝐻𝜋(𝑍)  ×𝜋(𝑍)   𝐻𝜋(𝑍)) which is  proper map and then we have 

 𝛼𝑍 is proper map. 

 

Proposition (4):  

 Let M be an SPHG-Space then      
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 (𝑀 ×𝑀 /𝜋(𝑍) 𝐻𝜋(𝑍)  , 𝑀 /𝜋(𝑍)𝐻𝜋(𝑍)) is SPH-Space for every 𝑧 ∈ 𝑀 . 

Proof: 

M is 𝑆𝑃𝐻𝜋(𝑍) 𝐻𝜋(𝑍) – Space for every 𝑧 ∈ 𝑀 we have Ehressman groupoid  (𝑀 ×

𝑀 /𝜋(𝑍) 𝐻𝜋(𝑍)  , 𝑀 /𝜋(𝑍)𝐻𝜋(𝑍)) is SPHG-Space for every ∈ 𝑀 . 

Proposition (5): 

 Let (𝐻, 𝐷) be an SPH- groupoid   and (𝑀 ×𝑀 /𝜋(𝑍)𝐻𝜋(𝑍)) be SPHG-Space then the map 𝜋:𝑀 → 𝐷 is proper 

map. 

Proof: 

Consider the following commutative diagram in M as in Figure 3. 

 
Figure 3. Diagram of Proposition (4) 

 

In which 𝜂𝑍 is an homeorphism given proposition (4.1.10) and 𝛽𝜋(𝑍) = 𝑤|𝜋(𝑍)𝐻𝜋(𝑍)  is proper map since (H,D) 

is SPHG-Space then 𝜋 ∘ 𝜂𝑍 is proper map and then 𝜋 is proper map. 

 

4. Conclusion 

New findings from certain topology groups in this paper were given, the proper grouping space denoted by 

(SPHΓ-Space), the proper topological groupoid source is denoted by (SPHG space), and H-space (H,𝜋, D),  the 

correct groupoid source denoted by groupoid source, indicates the correct topological groupoids (SPHH-Space). 

The point is to have SPHΓ, SPHG-Space and SPHH-Space associations that are mathematically important. 
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