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ABSTRACT   

In this paper, the methods described the calculation of thermally stimulated depolarization currents in 

materials of the HBC class. In the identification of nonlinear processes of thermally stimulated 

depolarization, at this stage of the research, as defining criteria the authors consider the calculation of the 

dielectric initial polarization in the infinite approximation of perturbation theory (at the fundamental 

frequency fields) and calculation of kinetic coefficients in functions of the polarizing field intensity. 

Generalized nonlinear expressions for the complex dielectric constant and polarization are formulated, which 

are performed at the fundamental frequency of the alternating polarizing field. The generalized equations 

that are nonlinear by the field for kinetic coefficients of the kinetic equation are formulated. The obtained 

theoretical results are of current interest from the perspective of further development of analytical and 

computer methods of research and prediction of HBC properties as perspective nonlinear materials for a 

number of branches of modern industry. 
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1. Introduction 

When studying the electrophysical properties of various semiconducting and dielectric materials with a complex 

crystal structure (ceramics; layered crystals (mica, crystalline hydrates); perovskites; vermiculites, etc.), the 

most effective method is dielectric spectroscopy, which is reduced to precision measurements and calculations 

of the parameters of dielectric loss spectra and thermally stimulated polarization (TSP) and depolarization 

currents [1-4]. The results of these studies are relevant for modern electric materials science, which constitutes 

the theoretical basis for the development and search for the most effective methods and schemes for the use of 

solid-state composite materials (MIS, CPM-structures, etc.) as functional elements of electrical circuits of 

https://creativecommons.org/licenses/by/4.0/
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various installations and systems (control-and-measuring, electronically-controlled, electronic-computing, 

diagnostic), operating in real industrial production. 

As an object of research, the authors have selected widely used in modern technologies (microelectronics and 

radio electronics; optoelectronics and laser technology; insulation and cable technology; electrochemical 

technologies and hydrogen energy, etc.) hydrogen-bonded crystals (HBC), classified as proton semiconductors 

and dielectrics. The theoretical concepts of the mechanism of thermally stimulated depolarization, at the present 

time, are based on the phenomenological kinetic theory built on the solution of the system of Fokker-Plack and 

Poisson equations for a given model of electrodes, in the linear approximation of the perturbation theory in a 

small parameter [1; 4]. According to M. P. Tonkonogov as a physical relaxation oscillator (the most mobile 

particle that relaxes the electric field) in the HBC, far from the breakdown, a hydrogen ion (proton) is picked, 

moving with the activation energy determined in the vicinity of the temperature of the experimental maximum 

of the thermally stimulated current. Measurements of temperature density spectra of TSP in the work of M.P. 

Tonkonogov [1] were carried out at the polarizing field strengths and temperature ( )65

0 1010E 
м

В
 and 

temperature T = 50-550 K. From the results of studies carried out in [5-7], it is obvious that expanding the 

experimental range of variation of field and temperature parameters will deepen the theoretical understanding 

of the mechanism of thermally stimulated polarization and depolarization, especially in the region of 

anomalously high nonlinearities. These nonlinearities are exhibited in the range of weak fields (100-1000 kV/m) 

at ultra-low temperatures (1-10 K) and strong fields (100-1000 kV/m) at ultra-low temperatures (1-10 K). 

Mensionless parameter [6; 8; 9] on the kinetics of bulk-charge polarization and conductivity in the area of 

abnormally high polarization nonlinearities [4; 5]. Quantum-mechanical nonlinearities associated with proton 

tunneling transitions will be reflected in the calculation of the generalized diffusion and mobility coefficients, 

also in an infinite approximation at a small dimensionless parameter, which has the meaning of the ratio of the 

potential energy in an electric field to the energy of its thermal motion. The developed methodology for 

calculating the depolarization (TSDC) density spectra is associated with the procedure for optimizing the 

calculated values of the parameters of relaxers performed by method of comparison function minimization. 

In this paper, the methods described in works of V.A. Kalytka [10], will be applied to the calculation of 

thermally stimulated depolarization currents in materials of the HBC class. Issues related to categorization, 

practical application and analysis of electrophysical properties of HBC are considered in publications of 

V.A. Kalytka [10], et al., a comparative analysis of different models of thermally stimulated depolarization 

currents in HBC was performed from the perspective of comparability of the results of theoretical and 

experimental studies. 

In the identification of nonlinear processes of thermally stimulated depolarization, at this stage of the research, 

as defining criteria the authors consider the calculation of the dielectric initial polarization in the infinite 

approximation of perturbation theory (at the fundamental frequency fields) and calculation of kinetic 

coefficients in functions of the polarizing field intensity. 

2. Materials and methods 

In this paper, the study of polarization processes of a model crystal of the HBC class will be conducted by the 

methods of quasi-classical kinetic theory [4; 6; 10; 11], using the results of analytical solutions of system of 

nonlinear equations of the phenomenological proton conductivity model that was previously constructed by 

methods of perturbation theory and Fourier transform methods [4; 6]. The Fokker-Planck kinetic equation is 

assumed to be linearized, i.e. it does not contain nonlinear degrees of the sought-for concentration of charge 

carriers (protons). The electrodes are blocking. The external perturbation is reduced to the effect on the dielectric 

of a harmonically time-varying uniform electric field: 

 

( ) ( ).iωexpEE 0 tt =       (1) 

 

In order to reduce the bulkiness of mathematical transformations, we will operate on the first approximation on 

the frequency of the alternating field. Based on the results of the research of [6], we assume the polarization of 

the crystal in an infinite approximation at a small parameter of the perturbation theory, at the fundamental 

frequency of the alternating field: 
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In (2) the complex dimensionless parameter (3): 
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is determined by a number of other fundamental parameters of the kinetic theory of proton relaxation (4) [6]: 
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is a value having the dimension that is inverse of the equilibrium concentration of relaxers (protons) 0n : 
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(5) is a small dimensionless parameter of the perturbation theory: 

 
( ) ( )020D Wadiff = ,  (6) 
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(6), (7) is diffusion and mobility coefficients for protons calculated by the “zero” approximation of the theory 

of successive approximations [6]. The small dimensionless parameter (8): 
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has the meaning of the parameter of comparison of potential (in an electric field) energy and energy of proton 

thermal motion: 
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(9) is a parameter of interaction of relaxation modes, at the fundamental frequency ω  [6; 11]. The dimensionless 

relaxation time (10): 
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corresponding to the nth relaxation mode of the bulk charge density is revealed through the diffusion relaxation 

time of the nth mode (11): 
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 =  (11) 

 

and the Maxwell relaxation time (12) [6]: 
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where (13): 
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is determined by the crystal thickness d and the lattice parameter a; −ε is the high-frequency dielectric 

permittivity; q – is the proton charge. 

The kinetic coefficients are calculated in the approximations l=0, l=1, at a small parameter (14): 
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with regard to both thermally activated (classical) and tunneled (quantum) proton transitions through the 

parabolic potential barrier (15)-(18) [11]: 
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m – is the mass of the proton; −
0

U is the height of the potential barrier (the hydrogen-bonded proton activation 

energy); −
0
δ  is the width of the potential barrier; −

0
ν  is the linear frequency of the self-oscillations of the proton 

in the potential well [11]. Noticing that: 
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M = , (20) 

 

where: 
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and taking 
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and then moving on to dimensional relaxation time: 
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and given equality: 

 

( )0

n
n

W
T


= , (25) 

 

we rewrite (2) as: 
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In (15)-(16) the complex function is introduced: 
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Take (26) as 

 
( ) ( ) ( )ω

2

ω
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ω iΓΓΓ −=  (28) 

 

and denote (29)-(30): 
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Presenting the polarization of the dielectric in the general form (31): 
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according to (26), we write the complex dielectric constant (32): 
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Combining (31) and (32) we have (33): 
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Equations (32), (33) are the most generalized at the fundamental frequency of the alternating field and can be 

further used in detailed studies of the properties and behavior of the spectra of complex dielectric constant in a 

wide range of field frequencies and temperatures [10]. At a certain level, this issue has already been solved in 

the study of V.A. Kalytka [6], which describes a scheme for calculating the polarization up to the second odd 

harmonic multiple of , constructs approximate equations for polarization on an arbitrary frequency harmonic of 

r multiplicity. However, components of complex dielectric constant were not explicitly calculated in the above 

work [6], which is the subject of a separate theoretical study based on rather cumbersome mathematical 

transformations, the result of which is relevant for areas of abnormally high polarization nonlinearities (ultra-

low temperatures and strong electric fields) [4; 6; 11]. 

Now we proceed to the calculation of dielectric constant (32) and polarization (33) in a static uniform electric 

field. Then, noticing that 
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and, owing to (35): 
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On the basis of equality (40): 

 



































−=









+

−−



=

M

D

M

D

M

D

2

1n

M

D22

n

2

π

2

π
th

1
1

4

π

nn

)1)((1

T

T

T

T

T

T

T

T

, (40) 

 

from (39) and (33) we obtain static equations: 
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From the identity (45): 
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we compute the Debye’s shielding radius (46): 
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Then, in the relaxation of the mixed type ( )DM TT  we have (48): 
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In the area of diffusion relaxation, taking MD TT  , when (49): 

 

1
r2

πd
x

D

MD, = , (49) 

 

due to an approximate equation (50): 
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from (41), (42) we obtain the approximated equations (51)-(52): 
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Here, in the numerical evaluation of temperature effects on the Debye’s shielding radius ( )TrD
 , the equation 

(48) is used, in which, at the microscopic level, both thermally activated and tunneling proton transitions are 

taken into account. At the same time, at the macroscopic level, the type of proton relaxation, due to the large 

values of the Maxwell relaxation time (owing to small concentrations of protons), is taken as diffusion one. In 

the case of an infinitesimal ratio of (53): 
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according to the limit (55): 
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the dielectric constant tends to high-frequency permeability and the polarization tends to zero. In the area 
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according to (58): 
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and (59): 

 

( ) xxcthx  , (59) 

 

we have approximately (60), (61): 
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in the case. It is obvious that the Maxwell relaxation caused by high proton concentrations provides abnormally 

small values of the Debye shielding radius . At the same time, as in the case of diffusion-relaxation 

polarization, both the classical and quantum mechanism of proton transfers through the potential barrier is 

equally taken into account. 

Regarding the effect that microscopic mechanism of proton transitions in the potential relief has on the Debye 

shielding radius, it is easy to see from (48) that in the temperature area (zone) of classical transitions, at 

temperatures much higher than the critical (62) [10]: 
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that is consistent with the representations of the classical statistical theory and, near the temperature of absolute 
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movcr,TT  , 1

X

Λ
  

and (67): 

 

( )( ) ( ) ( ) ( )ll

tunnel

l WW D
2

ν
TT 0=→ , (67) 

 

from (68): 

 

( )
( )

( )1

0

0

B0
D

D

DTkεε

q

π
Tr = 

n
. (68) 

 

In the case of 
movcr,TT  , 1

X

Λ
 , when (69): 

 

( )

( )

X

Λ
1

Λexp
X

Λ

D

−

−










l

l , (69) 

 

we obtain the limit equation (70): 

 

( )
mπδ

U2εε

q

π

Λ

XTkεε

q

π
Tr

00

00

0

B0
D

nn

 =
. (70) 

 

The identity (71): 

 

mТδπk

U2

Λ

X

0B

0
=  (71) 
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was used here. It is easy to see that, taking into account the quantum effects reflected in the expression (72): 

 

( ) ( )0D
X

Λ
D

l

l








 , (72) 

 

where 

 

( ) ( )Λexp
X

Λ
1D

1

0 −







−

−

, (73) 

 

in contrast to the classical theory, causes a non-zero value of the Debye shielding radius near the temperature 

of absolute zero. In this case, assuming 0
X

Λ
→ , 

( ) ( )ΛexpD 0 −→ : 

 

( ) ( )01 D
X

Λ
D  , (74) 

 

we obtain the same result as above: 

 

( )
mπδ

U2εε

q

π
0r

00

00

D
n


→ . (75) 

 

3. Results and discussion 

A detailed analysis of the effects of various external factors (variation of the amplitude of the electromotive 

force (EMF) of the voltage source; alloying; calcination; negative currents) makes it possible to reveal the 

physical nature of each type of relaxation oscillators (charged structural defects), activated near temperatures 

corresponding to the experimental maximum density of the TSP
( )Texp,depolJ−

, or dielectric loss tangent 

( )Ttgexp−
. Of greatest theoretical and practical interest are the anomalously high nonlinearities exhibited 

during the polarization of ionic dielectrics in the region of strong electric fields (10-1000 MV/m) [5-7; 11], 

when, as a result activation of two or more types of relaxation oscillators, against the background of sufficiently 

high conduction currents, the amplitude of the high-temperature (500-1500 K) current density maximum begins 

to depend significantly on the intensity of the polarizing field [2; 9]. 

An important issue is the study of the processes of charge accumulation and relaxation in nanoscale surface 

plastic deformations (low-temperature electret effect) in the development of fuel cells for hydrogen energy [12-

15] in the field of space technology and for electrochemical technology [16-21]. 

Mathematical modeling of the quantum transfer of protons in systems from thin potential barriers with potential 

wells containing quantum-well energy levels is relevant in the development of physical principles and schemes 

of operation of resonant tunneling diodes (RTD) and quantum field effect transistors (FETs) based on proton 

semiconductors and dielectrics, for microelectronics, radio electronics and quantum electronics [22-28]. 

Anomalously high transparency of potential barriers of the transverse voltage pattern [29], against the 

background of sufficiently high frequencies of proton vibrations in transverse potential wells (around 
-113 с10

) 

[2-4; 6; 9], make it possible to use the effects of the nanoscale state of the HBC [29] and some other quantum 

size effects to create ultrafast digital or microwave devices with operating frequencies of more than 1 THz [24; 

30-32]. Devices of this type include optical interferometers, interference filters, monochromators, thin-film 

systems such as resonant tunneling diodes, triodes, etc. [33-36]. The main directions of further studies of the 

kinetics of low-temperature proton relaxation in crystals with hydrogen bonds (HBC) will be reduced to the 

construction and development of schemes for analytical solutions of quantum-mechanical kinetic equations, 

taking into account the effect of proton-phonon interactions on proton-relaxation polarization and conductivity.  
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At the same time, the methods of the semiclassical kinetic theory of space-charge polarization and 

depolarization are effective from the point of view of comparative estimates of the effects of various kinds of 

quantum nonlinearities on the spectra of depolarization currents and on the values of the characteristic 

parameters of relaxers. It is obvious that the dynamics of interactions in the systems "electron and phonons in a 

dielectric" and "protons and phonons in a dielectric" [37-39], is not absolutely identical, even if this dielectric 

is a HBC, due to a number of differences in the conditions of motion of the major charge carriers and in the 

specifics of their interaction with phonons. The same applies to the mathematical apparatus describing these 

models [40-58]. In fact, vibrations of a proton, in a certain range of field and temperature parameters (close to 

breakdown), themselves can generate phonons that affect conduction electrons. In this case, far from 

breakdown, when the effects of proton relaxation dominate in the dielectric, and electrons are distributed deep 

in the valence band, the proton already becomes a light mobile particle, and the vibrations of more massive 

sedentary anions generate phonons for protons and the proton-phonon interaction is activated [59-75]. All these 

issues can be investigated only in combination with the results of preliminary detailed theoretical studies of the 

effects of the tunneling motion of protons on the theoretical spectra of the complex permittivity (CDP), 

polarization and depolarization currents in the HBC, within the framework of the nonlinear quasi-classical 

kinetic theory, taking into account the transparency of the potential barrier so far only in as a term in the kinetic 

coefficients of the Fokker-Planck equation, which also determines the scientific significance of the studies 

carried out in this paper [76-95]. 

Note that due to the similarity of the diffusion mechanisms of high-temperature proton conductivity in HBC [4; 

6; 10] and ionic conductivity in YSZ crystals [96-100], constructed in [4-6] equations of diffusion transfer of 

protons in an electric field, after some model upgrades, can be used in the mathematical description of the 

kinetics of transfer of oxygen ions during the polarization of dielectrics such as zirconium dioxide [101-123]. 

In the study of Yu.M. Annenkov experimentally, in samples of corundum-zirconium ceramics, or CZC (ZrO2 – 

Y2O3) – n(Al2O3), at a frequency of an alternating field of 1 kHz, at the point T = 1250 K, anomalously high 

dielectric constants ε=5∙106 were found, due to, according to the authors (Annenkov et al., 2005), structural 

rearrangement of the oxygen sublattice in the CZC, near the critical temperature (quasi-ferroelectric effect) 

[124]. The equations of high-temperature (550 – 1500) space-charge polarization of the HBC – nonlinear 

equations of the Fokker – Planck type [4; 6], can also be applied to the CZC, when describing the mechanism 

of relaxation motion (transfer) oxygen ions and, accordingly, to the study of the spectra ε (T), near the phase 

transition temperature, which is important when constructing theoretical methods for predicting the nonlinear 

electrophysical properties of high-temperature ionic superconductors [125-146]. 

This class of materials also includes magnesium-doped ceramic crystals of the copper (I) chromite type with 

hopping hole conductivity [147-149]. 

Studies of the mechanism of proton relaxation in thermally stimulated depolarization in HBC should be 

conducted on the basis of the kinetic equation describing the transfer of protons in the field of destructive electret 

charge accumulated in the dielectric volume for the period of polarization during the time of the order of 

relaxation time. The value of the polarization relaxation time, as established from the solutions of the nonlinear 

Fokker-Planck equation, is a discrete value calculated separately for each number n of the relaxation mode. The 

temperature of the crystal is assumed to be constant and equal to the polarization 
polT . In this case, the ratio 

( )
( )

pol

pol

T

T

T

T

M

D
 determines the mechanism of formation of the volume-charge distribution in the space between the 

capacitor plates at the field strength 
polE  and the type of temperature dependence of the Debye shielding radius 

of the charge ( )polTrD . 

Thus, the study of relaxation time spectra ( )polT Tn
 is an important component of the polarization problem and 

ultimately determines the asymptotics of polarization established in the dielectric during the polarization time 

polt . Then, the calculation of the initial polarization of the dielectric, according to the traditional scheme of 

measuring the thermally stimulated depolarization current, will be conducted at the temperature 
polT  and 

intensity of a uniform static polarizing field 
polE . In this case, the initial polarization of the experimental sample 

(76): 
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( ) ( ) ( )( )( ) polpolpoldepolP E1TxcthTxεε0 MD,MD,0 −= 
. (76) 

 

Here (77): 

 

( ) polpol 
2

π
Tx MD, = , (77) 

 

where (78): 

 

( )
( )

( )( )
( )( )pol

pol

polpol

pol

pol
W

Wn

T

T

T

T

Tkεεπ

qd

T

T
0

1

B0

2

2

0

2

M

D
==



 . (78) 

 

The kinetic equation for the process of thermally stimulated depolarization describes the processes of relaxation 

motion of charge carriers (protons) in the absence of an external electric field ( ) 0E =t , when the linear heating 

of the crystal (79): 

 

( ) ctt += 0TT , (79) 

 

where const=с , −0T  is the initial depolarization temperature, causes the destruction of the polarized state 

( )0depolP , and the current polarization of the dielectric in the process of thermally stimulated depolarization, as 

a function of time ( )tPdepol
, should asymptotically tend to zero ( )( ) 0lim =

→
tPdepol

t
. 

The structure of the kinetic equation of proton-relaxation depolarization [5; 6] depends, firstly, on a number of 

properties of the physical model, under given conditions of the process (laws of temperature change and the 

intensity of the external electric field in time, the type of electrodes, the effect of strains and mechanical stresses 

on polarization processes, etc.) and, secondly, on the pre-predicted degree of accuracy of the final analytical 

solutions. 

In this regard, within the phenomenological model of proton conductivity and relaxation in HBC [4-6; 10; 11], 

two main variants of the choice of this kinetic equation are possible: 

1) on the basis of the quasi-classical Fokker-Planck equation for depolarization, with kinetic coefficients (15)-

(18) being functions of temperature. In this case, the initial distribution of the bulk charge will be determined 

by the sum of the distributions of the hetero-charge (associated with the distribution of protons along the 

dielectric thickness) and homo-charge (associated with the injection of charges from the near-surface area of 

the electrodes deep into the crystal) [2]; 

2) on the basis of a general kinetic equation based on the model of a double symmetric potential well perturbed 

by a uniform electric field ( )tE  [9]. In depolarization, the field strength is assumed to be zero. The effect of 

spatially inhomogeneous homo-charge distribution is not taken into account. 

Since in this paper the factor determining the degree of rigor of the mathematical model is, in continuation of 

the linear kinetic theory [2; 3; 9], the focus on the effects of the interaction of relaxation modes n on the initial 

polarization (76) inherent in parameter (27), then, to describe the kinetics of depolarization, we choose the 

second version of the kinetic equation (80) [9]: 

 

( )
( ) ( )tnnt

n
Ξ

3

1
ΔΩ2

dt

Δd
0 =+  (80) 

 

Next, we present the average velocity of the probability of proton transitions between potential wells (81): 

 

( )
( )( ) ( )( ) ( )

2

D

2
Ω

a

ttWtW
t

diff
=

+
=

+−

 (81) 

 



 PEN Vol. 9, No. 3, July 2021, pp.195-217 

208 

and the excess velocity of the probability of diffusion transport of protons across the field (82) [11]: 

 

( ) ( )( ) ( )( )
( )

a

t
tWtWt mobv

Ξ =−= +−
, (82) 

 

taking into account (15)-(18), as: 

 

( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )


















−

−−−
+−=

X

Λ
1

XexpchΛexpηch
Xexpch

2
0νΩ

tt
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


, (83) 

 

( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )


















−

−−−
+−=

X

Λ
1

XexpshΛexpηsh
XexpshνΞ 0

tt
tt


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. (84) 

 

Here (85), (86) [6]: 

 

( )
( ) ( )

Tk2

qE

Tk

ΔU

BB

att
t = , (85) 

 

( )
( ) ( )

0B0 TUk2

ΛqE

U

ΔU
Λη

att
t = . (86) 

 

Also we should note the ratio (87): 

 

 

Obviously, at the critical temperature 
movcr,T , the equation (88): 

 

( ) ( )tt η=  (88) 

 

is performed. In the case of ( ) 0E =t , assuming ( ) ( )( )tWt 0Ω = , ( ) 0Ξ =t , rewriting (80) as (89): 

 

( ) ( )( ) 0Δ2
t

Δ 0 =+



ntW

n
 (89) 

 

and introducing the coordinate averaged polarization (90): 

 

( ) ( )dxx,Δ
d

q
d

0

= tntPdepol
, (90) 

 

we formulate a differential equation (91): 

 

( ) ( )( ) ( ) 02
d

d
0 =+ tPtW

t

tP
depol

depol
, (91) 

 

solved with regard to the initial condition (76). Then (92): 

 

( ) ( ) ( )( ) ttWPtP

t

depoldepol d2exp0
0

0














−=  . (92) 
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Calculation of the current density of the thermally stimulated depolarization (93): 

 

( )
( )

t

tP
tJ

depol

depol



−= , (93) 

 

taking into account (94): 

 

( )
t

t
c

d

dT
= , (94) 

 

finally gives (95): 

 

( ) ( ) ( )( ) ( )( ) dTT
2

expT02T

T

T

00

0














−= Wc

WPJ depoldepol
. (95) 

 

Equation (95) formally coincides with the Bucci-Riva formula known from thermal depolarization analysis [9], 

however, the obtained result contains a number of fundamental model differences and additions. First, the 

kinetic coefficients ( )( )T0W  are calculated as a function of temperature, taking into account the tunnel 

transitions of relaxers (protons) through the parabolic potential barrier and, secondly, the initial polarization is 

quite complex in structure and informative function, reflecting the influence of nonlinear polarization effects 

(interaction of relaxation modes; nonlinear bulk-charge polarization of mixed type; electret effect, etc.) on the 

kinetics of depolarization. At the same time, the expression (76) works in a sufficiently wide theoretical range 

of field parameters (100 kV/m-1000 MV/m) and temperatures (0-1500 K) and allows to reveal at the theoretical 

level the polarization nonlinearities occurring in the area of ultra-low temperatures (1-10 K) and strong fields 

(100-1000 MV/m). The phenomenological Bucci-Riva formula, according to the results of numerical 

calculations, is limited to the experimental range of variation of the macroscopic parameters of the process [150]

( )65 1010E pol
 
m

V
, ( )45070T pol

K. Studies of the integral (96): 

     ( ) ( )( )=

T

T

0

0

dTTT WB       (96) 

 

are conducted by numerical methods [151]. A condition 
polTT0  is imposed on the initial depolarization 

temperature. As a rule, when measuring the temperature spectra of TSDC density, experimental values 0T  are 

taken near the nitrogen temperature (50-70 K), and the polarization temperature is set within polT

( )350300  K. The rate of linear heating of the crystal с ( )11,0 
s

K
. 

The analytical equation (95) enables to construct theoretical spectra of the density of the thermally stimulated 

depolarization current ( )Tth,depolJ  and, on this basis, by minimizing the comparison function of the theory with 

the experiment (97) [7]: 

 

 

( ) ( )  ( )   minTζ
2

ζ;

expmax,

ζT;

thmax,max
0expth, →−=


TJJ depol,depol T , (97) 

 

by programmable computer enumeration of the theoretical values of the characteristic parameters (98): 
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 thththth an ,0,0,0th0, ,,,,Uζ =


, (98) 

 

in the vicinity (on the set of continuum) temperature of the experimental maximum 
expmax,T , to determine the 

optimized against the experimental values (99): 

 

 
exp,0exp0,exp0,exp0,0

δ;;ν;ζ nU=


, (99) 

 

the theoretical values of these parameters for the temperature 
thmax,T , as a vector (100): 

 









=
optmax;th,,0

optmax;th,0,optmax;th,0,optmax;th,0,optmax;

δ;;ν;Uζ n


 (100) 

4. Conclusions 

Generalized nonlinear expressions for the complex dielectric constant (32) and polarization (33) are formulated, 

which are performed at the fundamental frequency of the alternating polarizing field. In the case of a stationary 

homogeneous electric field, the formulas (32), (33) are reduced to the analytical dependences (41), (42), more 

illustrative and convenient for comparison with the experiment, in comparison with the results of the linear 

kinetic theory. 

From the solution of the general quzasi-classical kinetic equation (91), an expression for the current density of 

thermally stimulated depolarization (95) is formulated, with regard to the nonlinear polarization effects due to 

the interaction of relaxation modes of the bulk charge density, which is reflected in (76). The generalized 

equations that are nonlinear by the field for kinetic coefficients (83), (84) of kinetic equation (80) are formulated. 

A significant impact of quantum effects on the kinetic coefficients (83), (84) at temperatures much lower than 

the critical temperature (in the area of nonlinear quantum diffusion polarization) is established. 

The proposed scheme of numerical calculation of the characteristic parameters of the relaxers limited to the 

study of current density of thermally stimulated depolarization (91) by minimization of theory and experiment 

comparison function (97), by computer enumeration of parameters of relaxers at a set of points of the continuum 

in the vicinity of the temperature of each mono-relaxational maximum of TSDC density. 
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