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ABSTRACT   

For pattern cataloguing and regression issues, the support vector machine (SVM) is an eminent and computationally 

prevailing machine learning method. It’s been effectively addressing several concrete issues across an extensive gamut 

of domains. SVM possesses a key aspect called penalty factor C. The choice of these aspects has a substantial impact 

on the classification precision of SVM as unsuitable parameter settings might drive substandard classification outcomes. 

Penalty factor C is required to achieve an adequate trade-off between classification errors and generalisation 

performance. Hence, formulating an SVM model having appropriate performance requires parameter optimisation. The 

simulated annealing (SA) algorithm is employed to formulate a hybrid method for evaluating SVM parameters. 

Additionally, the intent is to enhance system efficacy to obtain the optimal penalty parameter and balance classification 

performance at the same time. Our experiments with many UCI datasets indicate that the recommended technique could 

attain enhanced classification precision. 
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1. Introduction 

Structural risk minimization (SRM) algorithm based, a new classification approach was presented by Cortes 

and Vapnik [1], generally known as Support vector machine (SVM).  The algorithm was quickly deployed for 

many cataloguing jobs because of its efficiency in identifying handwritten characters, wherein it outclassed 

accurately trained neural networks. SVMs carried out effective classification in other uses like time series 

estimation, bioinformatics and pattern classification. Burges (1998) issued an inclusive tutorial about the SVM 

classifier algorithm. SVM can process massive feature spaces since SVM training is performed so that classified 

vector dimensions do not exert undue influence on SVM performance compared to the influence of a typical 

classifier. Therefore, it is said to be particularly effective in bigger classification problems. Furthermore, SVM-

based classifier is said to have sound generalization attributes as against traditional classifiers, because SVM 

classifier training requires a systematic reduction in misclassification risk. On the other hand, conventional 

classifiers are typically trained to minimise empirical risk [2]. Numerous techniques have been proposed to 

address this SVM issue. Huang and Wang [3] recommended a genetic algorithm (GA) method for constraint 

refinement[4]. Ren and Bai [5] too offered twin methodologies for constraint refinement in SVM: particle 

swarm optimization (PSO) SVM and GA-SVM. A classifier using the hybrid ant colony optimisation (ACO) 

technique concurrently identifies the best possible feature subset and works on SVM parameter optimisation; 

this technique was formulated by Huang [6]. Also, Lin et al. [7] worked on parameter value computation and 

SVM feature selection using the Simulated Annealing concept. The simulated annealing algorithm optimises an 

SVM by addressing the issue of the system being stuck at local optima. It works by facilitating non-optimal 

steps to be selected based on probability values. The technique was outlined separately by Kirkpatrick et al. [8]. 

Simulated annealing chooses an explanation in each repetition via examining whether neighbour explanation is 

preferable to present scenario. If yes, the novel explanation would be acknowledged unreservedly. Nevertheless, 
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if the proximal solution is not better, acceptance relies on probability values considering its difference from the 

proximal solution; the present solution value is also considered. This paper assesses the combination of SVM 

and Simulated Annealing to determine optimal parameters for the betterment of SVM accuracy[9]. Our 

experimental outcomes have proved that the recommended technique has greater precision in comparison to 

SVM. The remainder of the paper is organised as follows. Sect. 2 contains a brief overview of the literature. 

Sect. 3 presents the proposed SA-SVM algorithm. The experimental results are presented in Section 4, and the 

findings are presented in Section 5. 

 

2. Related work 

This field has witnessed over two decades of continuous research; however, imbalanced data-based learning is 

still researched extensively. Initially, binary problems with skewed distributions were the focus of this domain. 

Over time, the concept has grown extensively. Advances in data mining, machine learning, and big data 

capabilities have provided insightful information concerning imbalanced learning. Such advances have also led 

to numerous challenges being discovered. Hybrid techniques are now getting increased attention, and algorithms 

are being continuously made better. Table 1 lists the associated research conducted for SVM parameter 

enhancement. 

Table 1. Optimization of SVM penalty parameter 

Authors Context of 

Study 

Method Contribution 

Kuo-PingWu 

[10] 

Classification Grid search 

and SVM 

Suggested the use of the distance between 

feature space and clusters to identify kernel 

parameters. 

Iwan Syarif 

[11] 

Classification Grid search, 

GA, and 

SVM 

Proposed the use of a combination of the Genetic 

Algorithm (GA) and the Grid Search Algorithm 

for SVM parameter optimisation. 

Yao Chang 

[12] 

Traffic sign 

recognition 

HOG-SVM 

and GS 

Concurrent use of grid search (GS) and HOG-

SVM is suggested. Subsequently, grid search is 

used for SVM parameter optimisation. 

Wu et al. 

[13] 

Multidimensional 

time series 

CPSO-g-

SVRM 

The e-insensitive loss function is replaced by the 

Gaussian loss function for SVR in order to 

reduce the influence of noise on regression 

values. The suggested g-SVRM technique is 

used, and its parameters are optimised using the 

chaotic PSO technique. 

Xueying 

Zhang [14] 

Speech 

recognition 

system 

PSO and 

SVM 

This research proposes using particle swarm 

optimisation to ascertain optimal parameters 

used for a speech recognition system based on 

SVM. 

Yaxiong 

Zhang 

[15][16] 

Classification GA and 

SVM 

SVM was used to augment a predictive 

modelling method that relied on identifying the 

right combination of training and test data by 

employing the sphere exclusion technique and 

SVM parameter optimisation using the GA. 

M.R. 

Gauthama 

Raman [17] 

Classification (HG - GA) 

and SVM 

A robust intrusion detection mechanism has been 

suggested using hypergraph-based Genetic 

Algorithm (HG - GA) for SVM feature 

identification and parameter regulation. 

 

3. Methodology 

This section outlined the recommended technique to categorise the imbalanced dataset by using Simulated 

Annealing and SVM. The dataset as well as the performance metrics utilised to corroborate the recommended 

technique are also deliberated. 
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3.1. Data set 

The datasets originate from the UCI Machine Learning Repository which is accessible at the link: 

http://www.ics.uci.edu/~mlearn/MLRepository.html. Thorough information comprising the number of 

attributes, data size, data attributes and class distribution can be observed in Table 2. Initially, just the ten data 

sets that comprise binary imbalanced data (Australian, heart C, heart-statlog, ionosphere, liver, Pima, hepatitis, 

breast cancer, kidney and German credit data) are utilised. However, the experimental outcomes indicate that 

our recommended approach has sound ability of dealing with imbalanced data. 

 

Table 2. Details of imbalanced dataset 

Dataset name Number of 

instances 

Attributes 

number 

Missing 

value 

Attribute characteristics 

Australian 690 14 Yes Categorical, Integer, Real 

Heart-statlog 270 13 No Categorical, real 

Heart C 303 14 Yes Categorical, Integer, Real 

Liver 345 7 No Categorical, Integer, Real 

Ionosphere 351 34 No Integer, Real 

Hepatitis 155 19 Yes Categorical, Integer, Real 

Pima N/A 20 N/A Categorical, Integer 

Breast cancer 286 9 Yes Categorical 

kidney 400 25 Yes Real 

German credit 

data 

1000 20 N/A Categorical, Integer 

 

3.2. Simulated annealing 

Simulated annealing (SA) is a universal search algorithm that first recommended by Metropolis et al. [18] and 

then made popular by Kirkpatrick et al. [8]. SA borrows its elementary understanding from metallurgy. Metal 

molecules slowly attain a low-energy state and witness gradual crystallisation with a reduction in temperature. 

Every grain is expected to ultimately have lowest energy if the metal is initially heated to an adequately high 

temperature and cooling is kept gradual. Metropolis proposed a technique that enhances search results and also 

prevents the local optima problem. Furthermore, the “cooling” process, similar to metal cooling, facilitates SA 

to ultimately converge to results that indicate global optima. Parameter optimisation is typically performed using 

techniques like analytical gradient, genetic algorithms, Monte Carlo, and numerical gradient. Global optima for 

parameters are identified using Simulated Annealing (SA). Though SA requires relatively more time, it 

determines more accurate solutions compared to other techniques. The present study uses SA for identifying 

optimal SVM parameter values. The present study suggests an SA-augmented SVM to assess the effectiveness 

association with every C value that corresponds to iterations conducted using parameter T. A novel technique 

has been proposed for minimising T so that a gradual convergence towards global optimality can be attained. 

Parameter T is multiplied by value V, which lies in the [0,1] range. The SA algorithm relies on the initial and 

subsequently probability state. The critical decision concerns retaining the present state or moving to the 

subsequent state (Cj) based on value comparisons. If the new state (Cj) has a fitness value greater than the 

present state, it is accepted. On the other hand, if the new state has relatively less fitness value, its acceptance is 

associated with a probability value based on the problem objective. Such probabilistic transitions gradually 

move the system to a close-to-optimal state. Individual iterations comprise random neighbour selection. If the 

chosen neighbour has accuracy higher than the present state, the neighbour is selected as the present state, and 

the parameters (C) are updated accordingly. SA accepts solutions (Cj) considering probability value P that is 

influenced by T. Figure 1. depicts the working of the SA technique. 

𝑃(𝑐𝑖 , 𝑐𝑗, 𝑇) = {
𝑐𝑗        𝑖𝑓 𝑓(𝑐𝑗) ≥ 𝑓(𝑐𝑖)

𝑒
𝑓(𝑐𝑖)−𝑓(𝑐𝑗)

𝑇   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 
                                                                                 (1) 

where T is the temperature and 𝑓(𝑐𝑗) and 𝑓(𝑐𝑖) are the fitness scores. The worst 𝑓(𝑐𝑖) and new solution 𝑓(𝑐𝑗) 

are depicted in Fig1. 
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Figure 1. Tuning parameter selection 

 

The primary objective is to provide the algorithm additional time to evaluate the search space using the 

“temperature” parameter. In high-temperature cases, the algorithm works like a random search where all 

transitions are accepted, notwithstanding their effect, facilitating better search.  

The proposed technique relies on SA to find the C factor value for the SVM classifier as well as for its training 

set. The search space is relatively better because of the use of a single parameter, C. 

3.3. Support Vector Machine 

Support vector machines (SVM) were initially proposed by [1] and [19] using the Vapnik-Chervonenkis (VC) 

framework augmented using structural risk minimisation (SRM) (Vapnik, 1995, 1998). The framework works 

by identifying the ideal balance between training set error reduction and margin maximisation. The model has 

optimal generalisation capability while also remaining free from overfitting. Another benefit of using SVM is 

convex quadratic programming, where the local minima trap is avoided because only global minima are 

reported.Consider a training set comprising input and output, where the input contains feature extraction aspects 

(𝑥1, 𝑥2, 𝑥3,…,𝑥𝑛) along with the output outcomes classes {(𝑦1,𝑦2,𝑦3, … , 𝑦𝑁), (𝑥𝑁 , 𝑦𝑁)}, where 𝑥𝑖 ∈

𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 and 𝑦𝑖 ∈ {𝑐𝑙𝑎𝑠𝑠 − 1, 𝑐𝑙𝑎𝑠𝑠 + 1}. The precise value of (y) can be computed using a set of 

weights wi. The present study uses margin maximisation to ascertain the hyperplane.  

𝑓(𝑥) = 𝑤𝑇 𝑥𝑖 + 𝑏 

𝑓(𝑥) = ∑ 𝜆𝑖𝑦𝑖(𝑖 𝑥𝑖
   𝑇 𝑥 + 𝑏)                                                                                       (2) 

𝑓(𝑥)  ≥ 1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 1 

𝑓(𝑥)  ≤ −1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 2 
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𝐻 =  
|𝑔(𝑥)|

∥𝑤∥
 = 

1

∥𝑤∥
 

 

𝑤𝑇  contains vector weights, while 𝑓(𝑥) denotes the features sets corresponding to the classes, 𝜆𝑖 denotes the 

dual function when the training condition 0 ≤ λ ≤ C is satisfied, 𝑥 denotes the training set, 𝑦 denotes the output 

classes, H denotes SVM hyperplanes, g(x) denotes feature count, 𝑏 denotes bias that belongs to omega 0. 

Originally, support vector machines (SVMs) were formulated for binary classification. The question of how to 

successfully extend it for multiclass grouping is still being researched. Multiclass SVM uses two different 

approaches. The first involves building and integrating multiple binary classifiers, while the second involves 

explicitly considering all data in a single optimisation formulation. Multiclass problems can be split into several  

binary problems, each of which can be addressed independently. Pseudocode for proposed method 

 

Algorithm 1: SA-SVM 

1 Input: 

2 C = ci ∈ N,i ∈ {1,2,...,N} – the start state of N samples of solutions; 

3 k = number of iterations. 

4 T = number of temperatures. 

5 f = fitness function 

6 v = value for reduce the temperature  

7 S = {(xi, yi)| xi ∈ Rn, yi ∈ m ,  i ∈ {1,2,...,N}} – the set of N training samples and class; 

8 Z = {zi | zi ∈ Rm,i ∈ {1,2,...,t}} – the set of t test samples; 

9 Begin:  

10 for k         1 to n – n the max number iterations  

9          C' ← neighbor(C): pick a random neighbor; 

10          If f(C') ≥ f(C): 

11               C ← C';  

12            f=SVM 

13         else 

14              C ← e
f(C)−f(C′)

T ; 

15         T ← T * V; 

16 Stack function← C 

17 Output: 

18 select best solution C 

19 Initialization 

20 Y         ∅ 

21 Computation: 

22 for zi ∈ Z do 

23 N ← the nearest k neighbours to zi from S according to; 

24 f ← the discriminant function of C trained on N find by SA;  

25 y ← the label predicted by applying f on zi; 

26 Y ← Y ∪ {y}; 

27 Output: 

28 Y = {yi| yi ∈ N i ∈ {1,2,...,l}} - the set of predicted labels for the test samples in Z. 

 

3.4. Evaluation metric  

Considering the unique characteristics of class-imbalanced problems, the traditional classifier specifically 

classifies minority class samples as majority and achieves a higher global precision score. However, the 

accuracy rating for minority-class samples is poor. The proposed strategy entails equating the class and deleting 

duplicates to work for class equalisation and eliminating duplicates that interfere with the classification process. 

For substantiating the efficacy and usefulness of the recommended approach, precision, recall, and F-score are 

utilised for evaluating the class-imbalanced classification which utilises the confusion matrix, as indicated by 

formulas (3) and (4).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃+𝐹𝑃
 𝑎𝑛𝑑 𝑅𝑒𝑐𝑎𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                            (3) 
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Precision and recall fail to offer significant information individually; and hence they should be utilised together. 

Essentially, the precision-recall breakeven point (BEP) is an assimilated efficacy indicator which is utilised 

coupled with the F1 measure. The below-mentioned expression for F1 is the harmonic mean of precision (P) 

and recall (R): 

𝐹1 = 2𝑃𝑅 (𝑃 + 𝑅)⁄                                                                                                               (4) 

Precision-recall BEP is that point where recall and precision are in equation. It is typically calculated by 

contrasting precision, and the arithmetic mean of recall. It is essential that the BEP performance indicator be 

computed separately for each class. The mutual efficacy of an approach, as gauged by taking into account all 

classes, could be ascertained by utilising the micro-average or macro-average BEP. In case of macro average, 

all groups are assigned equal weight. Conversely, the micro-average method renders similar weight to each 

document. 

4. Experiment results and assessment 

In order to assess the efficacy of our proposed procedure, we employed our methodology in a python, with a 

platform comprising Intel® Core™ i7 CPU @ 7GHz and 8.00 GB RAM along with Windows 10. For measuring 

the suggested approach’s performance, several benchmarks from the UCI machine learning repository were 

chosen, and the stated three sets of experiments were carried out. It is to be noted that we have divided the data 

as 70% for training and 30% for testing. This has been deployed for all original datasets for assessing the 

precision of every class, by utilising methods like precision, F-measure, overall accuracy, and recall for these 

original data sets. Table 3 shows the precision of the original data set for each class. Through imbalanced data 

sets, the evaluation metrics of the classifier’s performance are separately obtained with regards to the data 

distribution, ensuring that the apt metric is chosen for this type of issues. Table 3 depicts the average values for 

precision, wherein SVM is utilised for every original dataset for carrying out the average test of precision so as 

to warrant a pertinent statistical behaviour. This table shows the experiment outcomes for the original SVM 

minus execution of the recommended approach, wherein underperformance is seen in the outcomes for few of 

the datasets which pertain to the regular imbalanced assessment metrics. 

 

Table 3.  Recall, precision, F-score and accuracy rate for original dataset 

 

Dataset Precision Recall F-score Accuracy 

Australian 0.85 0.83 0.83 83.09 

Heart-statlog 0.77 0.77 0.76 76.54 

Heart C 0.87 0.86 0.86 86.23 

Liver 054 0.58 0.52 57.69 

Ionosphere 0.79 0.79 0.79 79.24 

Hepatitis 0.84 0.81 0.82 81.39 

Pima 0.48 0.69 0.57 69.26 

Breast cancer 0.68 0.71 0.68 70.93 

kidney 0.97 0.97 0.97 96.66 

German credit  0.70 0.73 0.70 73.0 

 

The experimental outcomes presented above indicate that learning without the suggested technique leads to 

lower performance specific to the assessment indicators for regular imbalanced data. Also, the SVM technique 

achieved poor recall and precision for all datasets tested during the study. 

To assess the efficacy of the suggested technique, the selected imbalanced dataset was experimented upon. 

Imbalanced data classification accuracy required computing the optimal value of the regulating parameter. The 

present study uses SA for parameter optimisation. Table 4 shows the particulars of the SA parameter. 

 

Table 4.  The best parameter (C) 

 

Dataset  T V iterations parameter C  

Australian 3 0.9 300 0.5 

Heart-statlog 3 0.8 100 1 

Heart C 4 0.7 120 1 
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Liver 2.5 0.9 10 0.013 

Ionosphere 2 0.8 5 0.01 

Hepatitis 3.5 0.8 300 0.1 

Pima 3 0.7 300 3 

Breast cancer 4 0.7 250  0.5 

kidney 1.5  0.8  20  0.1564994 

German credit  2.5  0.9  5 1 

 

Table 5. Classification accuracies for our approach 

 

Dataset Precision Recall F-score Accuracy 

Australian 0.86 0.86 0.86 86.091 

Heart-statlog 0.80 0.80 0.81 81.220 

Heart C 0.87 0.88 0.88 87.231 

Liver 0.65 0.61 0.65 65.194 

Ionosphere 0.80 0.80 0.80 80.00 

Hepatitis 0.77 0.90 0.88 85.744 

Pima 0.71 0.70 0.71 71.80 

Breast cancer 0.80 0.81 0.81 80.56 

kidney 0.99 0.98 0.97 97.52 

German credit  0.77 0.76 0.77 75.43 

 

In terms of imbalanced datasets, and to warrant the legitimacy of our recommended model, we have used it to 

determine the precision of every class, where a noteworthy enhancement with regards to estimation for every 

class and high precision was seen for every class as against when SVM was applied on the same data set. SVM 

exhibits a variable average precision for every class on the majority of the data sets. We observed an 

enhancement in classification precision, thus making the classifier competent enough to classify better 

compared to SVM. as can be seen in Table 5. The parameters cast a pronounced effect on efficacy and 

competence of SVM. Parameter adjustment not just pertains to the under fitting and over fitting of the training 

data but also has an impact on the outcomes of the validation sets. The best parameter pair (C) is then utilised 

for generating the model for training. Perform the prediction test on every test set; subsequently, the 

corresponding training set is expected to produce another optimal parameter value.  

5. Conclusion 

Viewed as amid the most prevalent machine learning algorithms, support vector machines (SVM) are 

extensively deployed for object recognition and dataset classification. Nevertheless, this technique has a 

problem-specific parameter and ascertaining its optimal value is a difficult task; this impacts the precision of 

the algorithm. In the present study, we suggested using an SA-augmented SVM algorithm. Hybridisation 

facilitates better results on SVM parameter optimisation. Experimental outcomes on UCI datasets with diverse 

sizes have shown that the algorithm has superior precisions as against the SVM algorithm whereas the time 

consumed for computation is judicious as well. 
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