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ABSTRACT   

Protein structure prediction is an important process that carries a lot of benefits for various areas of science 

and industry. Template modeling is the most reliable and most popular method, depending on the solved 

structures from the Protein Data Bank. An important part of it is template selection, using different methods, 

which is a challenging task that requires special attention because the proper selection of protein template 

can lead to a more accurate protein prediction. This study focuses on the relationships between predicted 

proteins, taken from the Swiss-model repository, and their templates, on a larger scale. Features of predicted 

proteins are taken into account, including protein length, sequence identity, and sequence coverage. Quality 

assessment scores are compared and analyzed between the predicted proteins and their templates. Overall, 

quality assessment scores of predicted proteins show a moderate positive correlation to the sequence identity 

with the templates. Moreover, based on our data, the level of template quality is noticeably correlated with 

the predicted protein structuers, because templates with higher quality scores will, on average, also allow for 

the modeling of predicted proteins with higher quality scores. 
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1. Introduction 

Proteins are one of the main components of living organisms and the main workers in cells [1]. Understanding 

their mechanisms of action is helpful for the understanding of many biological pathways and treatment of 

various diseases [1], [2]. Since protein function is closely related to its structure, focusing on structural biology 

is the key component in the overall study of proteins [3]. 

There are several methods of determining protein structure, but the two most important ones are the physical 

determination of structure through various methods, and prediction of protein structure through different 

algorithms. Physically, the structure is determined using different techniques, among which the most popular 

ones are X-ray crystallography, nuclear magnetic resonance (NMR), and cryogenic electron microscopy (cryo-

EM) [4]. These types of structures are generally made publicly available through Protein Data Bank (PDB) – 

an online repository of solved protein structures [5]. 

When it comes to protein structure prediction, it also has different methods, with the main ones being template-

based prediction and ab initio. The template-based uses uploaded protein structures available at the PDB, finds 

the most similar ones mostly by comparing the sequence of amino acids (although different tools have different 

methods), and builds/predicts the novel protein using the available template [6]. Ab initio, on the other hand, 

tries to independently predict the structure of a novel protein (although it can also use parts of the existing 

https://creativecommons.org/licenses/by/4.0/


 PEN Vol. 10, No. 1, February 2022, pp.481-490 

482 

templates) [7]. Template-based prediction is inherently more accurate, however, the accuracy of ab initio is 

improving, and there are also situations where it is more useful due to specific constraints, e.g. [8], [9]. 

In general, in silico study of protein structures is very popular since it can find potential targets for later research 

while using a fraction of the resources [10], which is why there has been a lot of development in computational 

biology and bioinformatics, especially in the area of structural biology, e.g. using machine learning (ML) in 

order to study various aspects of proteins including their structure [11]–[13], structural quality [14, p.], [15]–

[17], or classification [18], [19]. 

Validation of protein’s 3D structure is another important aspect, and there are different quality assessment (QA) 

tools developed for this purpose. 

The issue is that, with the prediction of proteins’ structure using template-based methods, structural properties 

of templates, including the quality, might be transferred onto the predicted structures. This is an important aspect 

to be considered since the selection of the best template for the prediction of the protein is a challenging task, 

with novel methods of template selection showing an improvement in the quality of the prediction of proteins 

[20], which indicates that there is a potential for further optimization of this process. 

The aim of this research is to assess whether there is a “transfer of characteristics”, namely the quality level, 

from the templates to predicted protein structures, and to what degree. In order to do this, the aim is also to 

assess the correlation of predicted proteins’ QA levels with their structural features and, if there is a connection, 

to group them into corresponding subgroups for the proper study and analysis. 

2. Materials and methods 

This study contains two databases – a database of template structures collected from the PDB, and a database 

of predicted proteins from Swiss-model (S-M) [21]. Both databases have been cross-referenced and filtered so 

that the analyses in this study have been done only on those predicted proteins which contain templates from 

the first database, and vice versa – on the templates which have predicted proteins in the second database. 

2.1. Sample collection and retrieval of the information  

The first database contains template proteins from the PDB solved with X-ray crystallography. From the total 

of 35,710 present, 6656 are used at least once in the second database containing predicted proteins. Additional 

details for the first database as well as QA results and descriptive statistics are found in the previous study done 

only on the protein templates [22]. 

The second database containing the predicted protein structures has been taken from the S-M repository 

available online [21]. It contained more than 400,000 proteins during the collection process, which have been 

cross-referenced with the first database, so the final database containing predicted protein structures contains 

49,000 proteins all of which have been predicted based on the templates that are in the first database. 

The online repository also contains two important parameters: percentage of sequence used from the template, 

and percentage of similarity to the template sequence which have been taken for further usage and analysis. 

Additionally, proteins in the online repository are grouped according to the organism from which the sequences 

have been taken, which has also been adapted to the database. 

The final list of protein features used in the second database is available in table 1. Moreover, all features from 

the first database (template database) can also be cross-referenced to the second database (database of predicted 

proteins). 

 

Table 1. Primary Experimental Information Retrieved from the PDB [23] 

Criteria Description 

Template PDB protein used for the prediction/homology modeling 

Organism Organism from which the protein sequence originates 

Residue Count The total number of residues in the protein model 

Sequence Identity Percentage of similarity between the template and the protein 

Sequence Coverage Percentage of residues from the template used during modeling 

2.2. Quality assessment  

The list of different methods used for the Quality assessment is in Table 2. These are all the same QA tools used 

for the assessment of database containing template proteins from the PDB. The main difference is that predicted 

proteins do not have R value, since it is the measurement obtained experimentally during the determination of 

the protein structure. 
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Table 2. Quality assessment methods performed on proteins 

Criteria Measurement 

Ramachandran Percentage of outliers in an atom model [24] 

Energy Total energy of a model normalized for the residue count [25] 

Verify3D Percentage of residues above 0.2 threshold [26], [27] 

PROCHECK Percentage of satisfactory evaluations [28] 

ERRAT Percentage of nonrandom distribution of atoms [29] 

PROVE Percentage of buried outlier protein atoms [30] 

QMEAN Feature scale 0-1 [31] 

DOPE Real numbers [32] 

VoroMQA Real numbers [33] 

2.3. Correlation between the first and the second database  

The features from the second database (organism of origin, protein length, sequence identity, and sequence 

coverage) have been analyzed against the QA scores using Pearson correlation and based on them, predicted 

proteins were adequately divided and compared. The comparison is done by taking into account the QA scores 

of template proteins and predicted proteins. 

The following correlation was made between the two databases: predicted proteins were first divided based on 

the sequence identity to the template into 20 distinct groups – 5 points in sequence identity is taken as a cut-off 

value, and since the identity goes from 0 to 100, the end result is 20 groups. 

From each of the group, proteins were filtered based on the number of predicted proteins having the same 

template - if there are at least 30 proteins with the same template - the mean of their quality scores is taken into 

account, otherwise, the sample is deemed too small and is excluded. 

Cross-comparison has then been performed with t-test - comparing the means of each of the protein samples 

among themselves, and analyzing the difference in the means of quality scores of predicted proteins with the 

difference in the quality scores of their templates, taking into consideration statistically significant differences. 

3. Results 

3.1. Descriptive statistics 

The total number of proteins in the 2nd database is 48523. The total number of templates from the 1st database 

used in the prediction of the proteins from the 2nd database is 6656. This means that most of the PDB proteins 

are not used as a template, others are used more than once, and some are very commonly used as templates. E.g. 

4UXV is the most common template – 1387 proteins are predicted from it. It is “Cytoplasmic domain of bacterial 

cell division protein EzrA”. 5XG2 is the second most common template – 1007 proteins are predicted from it. 

It is “Crystal structure of a coiled-coil segment (residues 345-468 and 694-814) of Pyrococcus yayanosii Smc”. 

Out of 6656 templates, 4392 (~66%) have been used for the prediction of only up to 3 proteins (inclusive). 

Table 3 includes the summary of descriptive statistics for protein features. 

 

Table 3. Descriptive statistics of protein features  
Length Sequence Identity Sequence Coverage 

Mean 287.60 35.11 73.27 

Std. Error 0.82 0.11 0.12 

Median 248.00 27.89 80.66 

Mode 127.00 100.00 100.00 

Std. Dev. 179.54 24.68 26.32 

Range 1534 97.31 179.85 

Minimum 16 2.69 2.08 

Maximum 1550 100.00 181.93 

 

Figures 1-3 show a visual representation of the distribution of protein characteristics across the sample collected. 
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Figure 1. distribution of proteins according to their length 

 

 

 
Figure 2. distribution of proteins according to the sequence coverage from the template 

 

 
Figure 3. distribution of proteins according to the sequence identity with the template 
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3.2. Quality assessment 

Table 4 shows descriptive statistics of QA scores for all of the proteins in the dataset. Energy, Prove, and Dope 

have the inverted scale, with lower scores indicating better quality, while other QA tools have the positive scale. 

 

Table 4. Descriptive statistics of QA scores  
Energy Ramach. Verify3D Prove Errat Procheck Qmean Dope VoroMQA 

Mean -2.10 98.15 64.87 5.62 86.77 55.62 66.03 -0.67 35.22 

Std. Error 0.00 0.01 0.13 0.01 0.05 0.09 0.03 0.00 0.06 

Median -2.13 98.41 73.33 5.70 89.03 50.00 65.00 -0.67 37.40 

Mode -1.85 100.00 0.00 5.70 100.00 44.00 65.05 -0.73 45.98 

Std. Dev. 0.32 1.65 28.27 1.83 10.36 18.78 7.27 0.78 12.13 

Range 9.90 45.00 100.00 25.70 100.00 89.00 98.97 8.80 61.73 

Minimum -10.36 55.00 0.00 0.00 0.00 11.00 1.03 -4.31 1.53 

Maximum -0.46 100.00 100.00 25.70 100.00 100.00 100.00 4.49 63.26 

 

 

3.3. Correlation between the first and the second database 

Figure 4 shows correlation coefficients between each of the three main protein features (length, sequence 

identity, and sequence coverage) and QA scores. The last column shows the average of all scores. The values 

shown are absolute since some QA tools have inverted scales. Due to sequence identity showing the highest 

mean correlation across all QA scores, it has been chosen as a reference value to divide proteins into groups for 

proper comparison, removing possible influence on the results. 

 
Figure 4. Correlation between protein features and QA scores 

 

Figure 5 (a and b) shows, in details, the correlation between sequence identity and different QA methods. 

Quality assessments for each protein characteristic have been merged into two groups/figures, based on the 

similarity of the output score, and with the intention to simplify the presentation of the data. The first part of the 

figure (a) contains the results from the following quality assessments: Dope, Energy, and Prove, while the 

second part of figure (b) contains the results from the following quality assessments: Ramachandran (allowed 

percentage), Errat, Procheck, Qmean, Verify3D, and VoroMQA. 
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Figure 5a. Quality assessment scores based on the sequence identity between the predicted protein and the 

template 

 
Figure 5b. Quality assessment scores based on the sequence identity between the predicted protein and the 

template 

 

After organizing the predicted proteins into 20 groups based on the sequence identity with the template (since 

that feature of predicted proteins has been shown to have a consistent correlation with the quality scores of 

predicted proteins), they were filtered so that there are at least 30 proteins with the same template per subgroup. 

Then, a total of 498 cross-comparisons have been made and the end result is that the difference in quality scores 

between the predicted proteins is consistent with the difference in quality scores between the templates 82% of 

the time. This means that, if two protein templates are compared, when one template has higher QA scores than 

the other, e.g., it can also be expected that the proteins predicted from that template will also have higher QA 

scores, than the proteins predicted from the template with the lower QA scores. This relation is illustrated in 

Figure 6, which does not contain actual data but simply a representation of the relationship. T1 (blue) represents 
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the QA scores of template 1, with QA scores of its predicted proteins shown below it, while the template 2 (T2) 

with its predicted proteins is shown in yellow. Dashed lines represent the average QA scores of predicted 

proteins. Note that the templates have been positioned higher on the Y-axis for the ease of representation – this 

does not necessarily indicate that the templates have higher QA scores than the predicted proteins, however, the 

analysis does show that template proteins have higher QA scores, on average, when compared to the predicted 

proteins (results shown in the discussion part). 

 

 
Figure 6. The relation of the QA scores between templates and predicted proteins 

 

4. Discussion 

When the relationship between the templates and the predicted proteins is analyzed, it is interesting to see the 

large disparity in the number of proteins being used as templates – out of 35710 experimentally determined 

proteins from the sample (first database), only ~18% (6656) have been used as templates for the prediction of 

48523 proteins from the second database. Two of them have been used as a template for the prediction of more 

than 1000 other proteins each, while two-thirds of them (~66%) have been used as a template only 1, 2, or 3 

times. 

The sequence identity of predicted proteins to their templates is low on average (35.11%), which is also visible 

from figure 3, but it is still reasonable since it has been shown that proteins with sequence identity as low as 

20% can actually be homologous in terms of structure and function [34]. 

Sequence coverage, on the other hand, is larger, with mean value of 73.27, indicating that S-M tends to include 

a bigger portion of the protein template during the prediction. This is also visible from figure 2, showing that 

the largest proportion of predicted proteins from the database have between 95% and 100% sequence coverage. 

This is expected due to the fact that some amino acids have similar physiochemical properties and even though 

they might differ between the template and the prediction, the end effect on the structure might be similar [1]. 

Most of the proteins fall into the shorter group, visible from figure 1, with an average length of 287.60, but this 

is expected since the first database, containing templates, contains only monomeric proteins.  

Regarding the QA, it is interesting to note that the quality assessment software could be divided into two 

categories with respect to the quality scores – those which give similar quality score to templates and predicted 

proteins, and those which give significantly lower scores, on average. The results for the templates are shown 

in the separate study [22], however they are briefly mentioned here where necessary. 

Negative energy and Ramachandran assessment give very similar average scores to templates and predicted 

proteins (Energy standardized: -2.08 vs -2.10: Ramachandran: 99.53 vs 98.15). This shows that modeling of the 

proteins is generally performed in such a way that the protein model is optimized in terms of packing and phi/psi 

angles. It is interesting to note here that Ramachandran scores seem to be very good, most of the time, which 

would put Ramachandran as the least reliable method for the determination of structural quality, on its own. 

Other tools show large differences between the mean QA scores of templates and predicted proteins (Verify3D: 

83.47 vs 64.87; Prove: 1.48 vs 5.62; Errat: 92.84 vs 86.77;  Procheck: 81.33 vs 55.62; Qmean: 88.14 vs 66.03; 

DOPE: -1.9 vs -0.67; VoroMQA: 51.21 vs 35.22), as expected since experimental structure determination is a 
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more reliable method. Moreover, QA tools are trained on the solved structures, which introduces a bias into the 

scoring process. 

Regarding the features of predicted proteins: sequence length and coverage of template sequences do not show 

a consistent correlation with the quality scores, and their average correlation is very low and low, respectively. 

However, it is visible that certain QA tools might be “susceptible” to the length of the protein, with Verify3D 

and VoroMQA showing a moderate correlation between the QA scores and protein lengths, which is consistent 

with the previous study done only on the protein templates [22]. 

The characteristic of predicted proteins which showed a consistent correlation with the quality scores is 

sequence identity to the template –a consistent increase in the quality of predicted proteins that have higher 

sequence identity to the template is visible, compared to those with lower sequence identity. This is the reason 

why the predicted proteins have been divided according to the sequence identity in the last part of the analysis. 

The average Pearson correlation coefficient is moderately positive – 0.41, and these results are partially 

expected. The higher the sequence identity, the closer the two proteins are structurally (template and predicted 

protein), which would, as a consequence, result in their QA scores being more similar as well. This is consistent 

with other studies which have shown that it is possible to predict protein model QA scores from the sequence 

alignment – a step necessary for the prediction [35]. 

Finally, this study shows that the quality scores of predicted proteins are generally consistent with the quality 

scores of their templates in more than 80% of the cases. Comparing predicted proteins based on two templates, 

average quality scores of predicted proteins are higher if the corresponding template has a higher quality score, 

and vice versa (with the adjustment to the sequence identity). Although correlation doesn’t necessarily mean 

causation, relatively high number (82%) indicates that there is “a transfer of property” between the templates 

and predicted proteins, when it comes to the QA scores, even with the adjustment for the possible sequence 

identity bias by making the comparison only between the proteins of similar sequence identities. 

5. Conclusion 

Analyzing the relationships between predicted proteins (from S-M repository) and their templates (from the 

PDB) on a larger scale, certain trends are visible. Sequence identity can play an important role on the QA scores 

of predicted proteins, with most of the QA results showing moderate positive correlation to it. Sequence 

coverage and protein length do not show the same level of correlation, although it is moderate in some instances, 

indicating that certain QA tools can be biased towards the protein length, with longer proteins having better QA 

scores. Correlating the QA scores between the predicted proteins and their templates, a significant link can be 

noticed between the predicted proteins having higher QA scores on average. This occurs if the template they 

are predicted from also has a higher QA score, when compared to the predicted proteins and templates of lower 

QA scores. This is an important aspect that should be taken into consideration during the protein prediction 

process and template selection. Further analysis of QA scores on a local level might give additional insights 

into the trends of QA tools when scoring protein 3D structures. 

References 

[1] “Introduction to Proteins: Structure, Function, and Motion, Second Edition,” CRC Press. 

https://www.crcpress.com/Introduction-to-Proteins-Structure-Function-and-Motion-Second-

Edition/Kessel-Ben-Tal/p/book/9781498747172 (accessed Oct. 02, 2019). 

[2] R. A. Chica, “Protein Engineering in the 21st Century,” Protein Sci. Publ. Protein Soc., vol. 24, no. 4, pp. 

431–433, Apr. 2015, doi: 10.1002/pro.2656. 

[3] C. A. Orengo, A. E. Todd, and J. M. Thornton, “From protein structure to function,” Curr. Opin. Struct. 

Biol., vol. 9, no. 3, pp. 374–382, Jun. 1999, doi: 10.1016/S0959-440X(99)80051-7. 

[4] “Comparison of Crystallography, NMR and EM - Creative Biostructure.” https://www.creative-

biostructure.com/comparison-of-crystallography-nmr-and-em_6.htm (accessed Oct. 30, 2019). 

[5] R. P. D. Bank, “RCSB PDB: Homepage.” https://www.rcsb.org/ (accessed Oct. 02, 2019). 

[6] A. Fiser, “Template-based protein structure modeling,” Methods Mol. Biol. Clifton NJ, vol. 673, pp. 73–

94, 2010, doi: 10.1007/978-1-60761-842-3_6. 

[7] J. Lee, P. L. Freddolino, and Y. Zhang, “Ab Initio Protein Structure Prediction,” in From Protein Structure 

to Function with Bioinformatics, D. J. Rigden, Ed. Dordrecht: Springer Netherlands, 2017, pp. 3–35. doi: 

10.1007/978-94-024-1069-3_1. 

[8] S. Vangaveti, T. Vreven, Y. Zhang, and Z. Weng, “Integrating ab initio and template-based algorithms 

for protein–protein complex structure prediction,” Bioinformatics, doi: 10.1093/bioinformatics/btz623. 



 PEN Vol. 10, No. 1, February 2022, pp.481-490 

489 

[9] S. Abeln, J. Heringa, and K. A. Feenstra, “Strategies for protein structure model generation,” 2017. 

[10] Y. Zhang, “Protein Structure Prediction: Is It Useful?,” Curr. Opin. Struct. Biol., vol. 19, no. 2, pp. 145–

155, Apr. 2009, doi: 10.1016/j.sbi.2009.02.005. 

[11] J. Cheng, A. N. Tegge, and P. Baldi, “Machine Learning Methods for Protein Structure Prediction,” IEEE 

Rev. Biomed. Eng., vol. 1, pp. 41–49, 2008, doi: 10.1109/RBME.2008.2008239. 

[12] M. Gao, H. Zhou, and J. Skolnick, “DESTINI: A deep-learning approach to contact-driven protein 

structure prediction,” Sci. Rep., vol. 9, no. 1, pp. 1–13, Mar. 2019, doi: 10.1038/s41598-019-40314-1. 

[13] S. Wang, J. Peng, J. Ma, and J. Xu, “Protein Secondary Structure Prediction Using Deep Convolutional 

Neural Fields,” Sci. Rep., vol. 6, p. 18962, Jan. 2016, doi: 10.1038/srep18962. 

[14] S. P. Nguyen, Y. Shang, and D. Xu, “DL-PRO: A novel deep learning method for protein model quality 

assessment,” in 2014 International Joint Conference on Neural Networks (IJCNN), Jul. 2014, pp. 2071–

2078. doi: 10.1109/IJCNN.2014.6889891. 

[15] R. Cao, B. Adhikari, D. Bhattacharya, M. Sun, J. Hou, and J. Cheng, “QAcon: single model quality 

assessment using protein structural and contact information with machine learning techniques,” 

Bioinformatics, vol. 33, no. 4, pp. 586–588, Feb. 2017, doi: 10.1093/bioinformatics/btw694. 

[16] K. Uziela, D. Menéndez Hurtado, N. Shu, B. Wallner, and A. Elofsson, “ProQ3D: improved model quality 

assessments using deep learning,” Bioinformatics, vol. 33, no. 10, pp. 1578–1580, May 2017, doi: 

10.1093/bioinformatics/btw819. 

[17] R. Cao, Z. Wang, Y. Wang, and J. Cheng, “SMOQ: a tool for predicting the absolute residue-specific 

quality of a single protein model with support vector machines,” BMC Bioinformatics, vol. 15, no. 1, p. 

120, Apr. 2014, doi: 10.1186/1471-2105-15-120. 

[18] C. L. P. Gupta, A. Bihari, and S. Tripathi, “Protein Classification using Machine Learning and Statistical 

Techniques: A Comparative Analysis,” ArXiv190106152 Cs Q-Bio Stat, Jan. 2019, Accessed: Oct. 02, 

2019. [Online]. Available: http://arxiv.org/abs/1901.06152 

[19] A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, “ECPred: a tool for 

the prediction of the enzymatic functions of protein sequences based on the EC nomenclature,” BMC 

Bioinformatics, vol. 19, no. 1, p. 334, Sep. 2018, doi: 10.1186/s12859-018-2368-y. 

[20] A. Runthala and S. Chowdhury, “Refined template selection and combination algorithm significantly 

improves template-based modeling accuracy,” J. Bioinform. Comput. Biol., vol. 17, no. 02, p. 1950006, 

Nov. 2018, doi: 10.1142/S0219720019500069. 

[21] S. Bienert et al., “The SWISS-MODEL Repository-new features and functionality,” Nucleic Acids Res., 

vol. 45, no. D1, pp. D313–D319, 04 2017, doi: 10.1093/nar/gkw1132. 

[22] M. Adilović and A. Hromić-Jahjefendić, “Feature Importance in the Quality of Protein Templates,” 

Period. Eng. Nat. Sci. PEN, vol. 9, no. 2, Art. no. 2, Apr. 2021, doi: 10.21533/pen.v9i2.1830. 

[23] “PDB101: Learn: Guide to Understanding PDB Data: Introduction,” RCSB: PDB-101. 

http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction (accessed Oct. 02, 2019). 

[24] G. J. Kleywegt and T. A. Jones, “Phi/psi-chology: Ramachandran revisited,” Struct. Lond. Engl. 1993, 

vol. 4, no. 12, pp. 1395–1400, Dec. 1996, doi: 10.1016/s0969-2126(96)00147-5. 

[25] H. Zhou and Y. Zhou, “Distance-scaled, finite ideal-gas reference state improves structure-derived 

potentials of mean force for structure selection and stability prediction,” Protein Sci., vol. 11, no. 11, pp. 

2714–2726, 2002, doi: 10.1110/ps.0217002. 

[26] R. Lüthy, J. U. Bowie, and D. Eisenberg, “Assessment of protein models with three-dimensional profiles,” 

Nature, vol. 356, no. 6364, pp. 83–85, Mar. 1992, doi: 10.1038/356083a0. 

[27] J. U. Bowie, R. Lüthy, and D. Eisenberg, “A method to identify protein sequences that fold into a known 

three-dimensional structure,” Science, vol. 253, no. 5016, pp. 164–170, Jul. 1991, doi: 

10.1126/science.1853201. 

[28] R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check 

the stereochemical quality of protein structures,” J. Appl. Crystallogr., vol. 26, no. 2, Art. no. 2, Apr. 1993, 

doi: 10.1107/S0021889892009944. 

[29] C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic 

interactions,” Protein Sci. Publ. Protein Soc., vol. 2, no. 9, pp. 1511–1519, Sep. 1993, doi: 

10.1002/pro.5560020916. 

[30] J. Pontius, J. Richelle, and S. J. Wodak, “Deviations from standard atomic volumes as a quality measure 

for protein crystal structures,” J. Mol. Biol., vol. 264, no. 1, pp. 121–136, Nov. 1996, doi: 

10.1006/jmbi.1996.0628. 



 PEN Vol. 10, No. 1, February 2022, pp.481-490 

490 

[31] P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual 

protein structure models,” Bioinforma. Oxf. Engl., vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 

10.1093/bioinformatics/btq662. 

[32] M. Shen and A. Sali, “Statistical potential for assessment and prediction of protein structures,” Protein 

Sci. Publ. Protein Soc., vol. 15, no. 11, pp. 2507–2524, Nov. 2006, doi: 10.1110/ps.062416606. 

[33] K. Olechnovič and Č. Venclovas, “VoroMQA: Assessment of protein structure quality using interatomic 

contact areas,” Proteins Struct. Funct. Bioinforma., vol. 85, no. 6, pp. 1131–1145, 2017, doi: 

10.1002/prot.25278. 

[34] W. R. Pearson, “An Introduction to Sequence Similarity (‘Homology’) Searching,” Curr. Protoc. 

Bioinforma. Ed. Board Andreas Baxevanis Al, vol. 0 3, Jun. 2013, doi: 10.1002/0471250953.bi0301s42. 

[35] X. Deng, J. Li, and J. Cheng, “Predicting Protein Model Quality from Sequence Alignments by Support 

Vector Machines,” J. Proteomics Bioinform., vol. Suppl 9, Nov. 2013, doi: 10.4172/jpb.S9-001. 

 


