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ABSTRACT   

The revolution in prosthetic hands allows the evolution of a new generation of prostheses that increase 

artificial intelligence to control an adept hand. A suitable gripping and grasping action for different shapes 

of the objects is currently a challenging task of prosthetic hand design. The most artificial hands are based 

on electromyography signals. A novel approach has been proposed in this work using deep learning 

classification method for assorting items into seven gripping patterns based on EMG and image recognition. 

Hence, this approach conducting two scenarios;  

The first scenario is recording the EMG signals for five healthy participants for the basic hand movement 

(cylindrical, tip, spherical, lateral, palmar, and hook). Then three time-domain (standard deviation, mean 

absolute value, and the principal component analysis) are used to extract the EMG signal features. After that, 

the SVM is used to find the proper classes and achieve an accuracy that reaches 89%. 

The second scenario is collecting the 723 RGB images for 24 items and sorting them into seven classes, i.e., 

cylindrical, tip, spherical, lateral, palmar, hook, and full hand. The GoogLeNet algorithm is used for training 

based on 144 layers; these layers include the convolutional layers, ReLU activation layers, max-pooling 

layers, drop-out layers, and a softmax layer. The GoogLeNet achieves high training accuracy reaches 99%.  

Finally, the system is tested, and the experiments showed that the proposed visual hand based on the 

myoelectric control method (Vision-EMG) could significantly give recognition accuracy reaches 95%.  
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1. Introduction 

Physical therapy plays a significant role in the rehabilitation stage for the people who suffer from an amputee. 

Thus, many efforts are made to elucidate the leverage of medical/ clinical and human-machine interface (HMI) 

applications [1]. Therefore, robotic has the effectiveness to increase the independence of the individuals living 

lifestyle with their disabilities. This work aims to improve life quality by empowering people to achieve a wide 

range of daily responsibilities within few minutes. The most widely used are robotic hands and arms because 

the robotic hands would have the ability to achieve the primary skills, like grasping and transferring objects 

from one place to another, similar to what non-amputees individuals do [2].  

At present, designing a prosthetic hand-based myoelectric control plays a dominating role in the re-habitation 

side. This requires recording for surface electromyography (EMG) signals; this technique follows up electrical 

activity associated with skeletal muscles [3]. The muscles contain some motor unit action potentials (MUAPs) 

to record grasping and clipping actions [4]. The combination of muscle fiber action potentials from all the 

muscle fibers of a single motor unit is called the MUAP [5]. 

https://creativecommons.org/licenses/by/4.0/
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During clipping or grasping; the tactical information, electromyography information and visual information are 

involved, where the visual part occupies 83% of all information [6]. The visual feedback helps the people 

compare the size of the hand and the target object. In that way, adjusting occurs when the grasping gestures and 

the aperture size match the target object. For this reason, the visual information is achievable to obtain the 

necessary control parameters for the artificial prosthetic hand [7]. Also, the technology of combining more than 

one information source will provide an efficient way for the control of smart prostheses [8], [9]. For increasing 

human-machine interaction, the visual control system is used to fill the gaps of designing prostheses based on 

EMG signals. The artificial vision system based on image recognition can obtain the features of the object, for 

example, the shape and the size of the required item [10].  

After collecting the information, EMG or visual information, the artificial intelligence (AI) is used to extract 

the main feature and classify it using the Machine Learning algorithms (ML) or Deep Learning (DL) algorithms 

[11].  

ML is a learning algorithm to train random data in an intelligent way [12]. The learning algorithms are classified 

into supervised and unsupervised. Supervised learning occurs when a group of known data and the algorithm is 

trained for a specific function. Meanwhile, unsupervised learning occurs when the inputs are given, and the 

algorithm learns to find features or patterns to produce the output [13]. 

Meanwhile, DL is the trending algorithm due to the algorithm structure that contains a deep network (multiple 

hidden layers) that learns different features with multiple levels [14]. DL problem is summarized in the hierarchy 

of concept, where each concept is constructed on top of the others. Therefore, the lower layers are considered 

as the primary representation of the problem [15]. Besides, the consecutive layers can be learned via sub-models 

that are organized in layers stacked. The main problem in the ML is the feature extraction; this problem has 

been solved in DL due to DL's capability to learn the useful features by itself. Utilized and unsupervised DL 

models have been grown so fast due to their achievement in solving complex problems [16]. 

The novelty of this work is satisfied by sorting the RGB images of the objects into the six basic hand movements 

using deep learning (GoogLeNet) to improve the operability of the prosthetic hand by designing a pattern 

recognition for a prosthetic hand by using the Myo armband, also supporting the prosthetic hand by the visual 

recognition to distinguish the objects. The Myo armband is used to collect the EMG signal; then, the signal is 

classified into the six basic hand movements (cylindrical, tip, spherical, lateral, palmar, and hook) using machine 

learning (SVM).  

2. Methodology  

This research works on a novel idea of designing a prosthetic hand for an amputee’s person based on an 

electromyography (EMG) sensor and camera. Therefore, this work is divided into two parts; the EMG signals 

part and the image recognition part. 

In the EMG part, the first step is collecting the EMG signals from the elbow muscles for six basic hand 

movements, i.e., cylindrical, spherical, tip, palmar, hook, and lateral. The EMG data are collected from more 

than six participants of different gender and ages by using the Myo armband sensor. Then, simplify the raw 

collecting EMG signals by extracting time-domain features to prepare the extracted signals for the 

classifications stage. The final step will be choosing suitable classifiers from the Machine Learning (ML) 

algorithm (Support Vector Machine) groups to classify the EMG signals for different movements. 

In The image recognition part, the image data are collected for many different shapes to prepare the right 

environment for the recognition step. Then, process all the collected images by making all the images in the 

same resolution and size with an empty background. Sequentially, the features are extracted from the images 

then the images are classified using Deep Learning (DL) algorithm (GoogLeNet) into cylindrical, spherical, tip, 

palmar, hook, and lateral. The final step is adding a camera in the palm of the prosthetic hand. The camera is 

used to recognize the shapes of the objects that appear in front of the camera. The camera is working online in 

real-time while moving the hand and objects to test system ability and accuracy to recognize 24 items. 

2.1. Data collection and processing  

Designing a prosthetic hand, as proposed in this work, will be depended on collecting both EMG signals from 

the elbow and image data for different items. For this reason, the data are divided into two parts; EMG data and 

image data. 
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• Recording six basic hand movements, i.e., cylindrical, spherical, hook, palmar, tip, and lateral) for two 

males and three females. Eight sensors of the Myo armband are corresponding to eight inputs in the 

time domain, and the amplitude of the signal represents the voltage of the required muscles; and each 

time series consists of 3000 samples, the eight sensors cover the elbow. As a notice, fig.1 shows the 

raw EMG signals for basic hand movements; the amplitude of the EMG signals represents muscle 

contraction for high voltage and muscle relaxation for low voltage. In this part, the obtained EMG 

signals have low amplitude due to the low tension on muscles responsible for finger movements. 

• All the world items can be held by the human hand based on six hand movements, i.e., cylindrical, 

spherical, hook, palmar, tip, and lateral. This research captures 723 pictures for 24 items from different 

capturing corners, background, and distance from the camera. These items are classified into seven 

categories according to how the prosthetic hand will hold the items, i.e., basic hand movements. Table.1 

clarifies the categories containing the items and the number of pictures captured for each item. 

 

For the data processing part, this work is made simple processing for the collected data. When using the Myo 

Armband sensor, the level of the noise is considered very low. Therefore, no need to use filtering in the EMG 

signals for noise reduction. In the image data, all the image is resized to be 224*224 pixels, and the background 

is deleted. The processing step is important for preparing the data for feature extraction, either using machine 

learning or deep learning. 
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Figure 1. The raw EMG signals for basic hand movements 

Table 1. The collected images data   

Items 
No. of 

Images 
Items No. of Images Items 

No. of 

Images 
Items 

No. of 

Images 

Cylindrical Tip Hook Full Hand 

Cans 28 Pins 40 Mug 70 

Soft 

things 
40 

Water 

bottles 
31 Coins 7 

Door’s 

hand 
55 

Liquid 

bottles 
55 Nails 42 

Lateral Palmar Spherical 

Book 40 Spon 17 Balls 46 

Key 20 Knife 33 Egg 30 

Flash 

memory 
25 Fork 20 Orang 20 

Card 28 Pen 21 Apple 10 

Comb 25 Glasses 20 Balls 46 

 

2.2. Feature extraction   

After the data processing step, for construction pattern recognition (PR) system with considerable scope to 

transform the raw data into a feature vector or another suitable representation, to avoid time-consuming and 

extensive data. The feature vectors are given the ability to the learning system, i.e., classifiers, to detect the 

correct pattern [15]. Therefore, transforming the raw data to feature vectors requires time-domain analysis 

(TDA) or frequency domain analysis (FDA).  

In this work, for extracting features for EMG signals, the TDA is used instead of FDA because TDA is proper 

to use with EMG signals [17]. Thus, three TDA are used to analyze EMG signals in offline mode using Matlab 

2019a. The recoded signals are then segmented in a window size of 200 ms and an increment of 150 ms. In this 

work, the mean absolute value (MAV) and the Standard deviation (SD) are used to extract the features from the 

raw EMG signals and simplify them by using the following mathematical models [18]; 

MAV =
1

N
∑ ⃓xn⃓N

n=1       (1) 

SD = √1
N⁄ ∑ (xn − MAV)2N

n=1       (2)  

Where; x: input EMG signal, and N: the length of the input signals. 
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After that, the Principal Component Analysis (PCA) is used for dimension reduction of the EMG signals because 

of the reduction in time and space complexities. The dimensions of the new components will be uncorrelated 

and orthogonal to each other. The reduction happens when PCA selects the maximum variance and forms new 

directions. 

2.3. Learning algorithms   

After that, the Principal Component Analysis (PCA) is used for dimension reduction of the EMG signals because 

of the reduction in time and space complexities. after extracting the features from the raw data, the learning 

algorithm is chosen to classify the data according to the required categories. In this work, two learning 

algorithms are used; Machine Learning and Deep Learning.  

The difference between these two algorithms is the ML deals with the features extraction first, then uses the 

extracted feature to fed it to the classifiers. In comparison, deep learning takes the features extraction and the 

classifiers as one package to deals with.  

2.3.1. Support vector machine (SVM) 

ML contains many algorithms that are based on fixed logic; one of these algorithms is Support vector machines 

(SVM) that is used in this work. SVM is a powerful supervised machine learning technique that is used for 

regression or classification issues. The SVM finds the optimum separating hyperplane in data classification by 

building hyperplane or hyperplane groups with infinite dimensionality space [19].  

The SVM can deal with linearly separable data and not linearly separable. This work deals with not linearly 

separable because it maps the data to a higher dimension and uses the radial basis function (RBF) to obtain a 

high classification rate. Therefore, the RBF is considered as the kernel function to generate non-linear classifiers 

[20]. Also, SVM uses a subgroup of training (support vectors), and diverse Kernel functions can be particular 

for choosing the support vectors. The classifier used in medical diagnosis, also SVM, is useful for low memory 

[21, 22]. The cubic SVM is a type of SVM, and the equation of cubic SVM can be given as (3):e dimensions of 

the new components will be uncorrelated and orthogonal to each other. The reduction happens when PCA selects 

the maximum variance and forms new directions. 

𝑘(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 , 𝑥𝑗)3   (3) 

The cubic SVM is preferred because the short time required form training in this work training time ranges from 

3 sec to 12 sec. 

2.3.2. GoogLeNet 

Convolutional Neural Network (CNN) is the trendiest applied supervised Deep Learning used in this work. The 

CNN has obtained the features from input at the higher layers then combine them for more complex features at 

the lower layers [23] [24].  

GoogLeNet is a convolution architecture that has 22 layers that use an inception module to help in reduction 

parameters in the network [25]. Also, GoogLeNet is a concatenated layer of convolutions (3 × 3 and 5 × 5 

convolutions) and sub-layers for pooling process at different scales, the output of the pooling layer feeds to the 

filter banks to concatenate into a single output vector, then making this vector the input for the succeeding stage 

[26]. The sub-layers are connected in parallel as shown in Fig. 2, the GoogLeNet model has two convolutional 

layers, nine inception layers, four max-pooling layers, and a softmax layer [27].  

3. Results 

3.1. Evaluation methods 

This paper works to assess the usability of the proposed pattern recognition system as a step toward designing 

a prosthetic hand. Therefore, the work is divided into two phases; The first one is applied to the collected EMG 

signals for the basic hand movements using three time-domain features and SVM as a classifier. The second 

one is applied to the collected image of 24 items to classify these items according to the hand movements using 

the DL algorithm, i.e., GoogLeNet. The performance of the classifiers model is described using the confusion 
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matrix. This matrix clarifies the relationship between the predictive and the actual events. Table. 2 shows the 

confusion matrix model. 

 

 
Figure 2. Inception Module [27]. 

 

Table 2. Confusion matrix model 

Confusion Matrix  Predicted No Predicted Yes 

Actual No TN FN 

Actual Yes FP TP 

Where TP (True Positive) and TN (True Negative) mean the predicted value matches the actual value, FN (False 

Negative) means the predicted value was falsely predicted, and False Positive (FP) represents the actual value 

was falsely predicted. The accuracy of the confusion matrix can determine from the following equation [28]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
     (4) 

3.2. Training data 

3.2.1. EMG Data 

The first phase contains the training session for the basic hand movements. In this session, five participants (two 

males, three females) have been taken to collect the raw EMG signals by applying the MAV, SD, and PCA to 

extract the features. After that, the SVM and algorithm are used to classify six basic hand movements. Table. 3 

shows the three different experiments; each experiment has different numbers of features. In the first 

experiment, only the MAV is used to extract the feature; for this reason, the training accuracy reaches 57.4%. 

While in the second one, both MAV and SD are applied together, so the training accuracy increases. In the last 

experiment, the MAV, SD, and PCA are used, and they achieve the highest training accuracy. As concluded, 

the increment in features with an acceptable limit affects increasing the accuracy percentage. 

Table 3. ML experiments for basic hand movements. 

Basic hand 

movements 
Features Classifier 

Time 

(sec) 
Accuracy 

Experiment 1 MAV 

SVM 

11.91 57.4% 

Experiment 2 MAV and SD 4.35 87% 

Experiment 3 
MAV, SD, and 

PCA 
6.39 89% 
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Fig.3 shows the confusion matrices of SVM  for the three experiments with different number of features and 

clarifies in details the accuracy percentage for each hand movements. 

A   B  

C 

 
Figure 3. The confusion matrix of SVM (A) One Feature, (B) Two Features, and (B) Three 

Features. 

3.2.2. RGB image data 

The second phase contains the training session of 723 images for 13 items; these items are categorized according 

to how the hand will hold the item. That means the shape of the figure movements will differ from one item to 

another. Therefore, all the items are classified into seven classes, i.e., cylindrical, spherical, palmar, tip, lateral, 

hook, and full hand.  

The GoogLeNet is used to extract and classify the 724 images into seven classes. In this work, the GoogLeNet 

is constructed with 144 layers, starting in the input layer representing the image that enters the net with size 

224*224*3. Since the GoogLeNet is considered a type of CNN, the net is contained 57 layers as the 

convolutional layers. Then, the output of each convolutional layer is fed to an activation function layer to 

generate an activation map. In this work, 56 layers used Rectified Linear Unit (ReLU) as activation function 

due to the fast rectification to output zero if the input less than zero. After that, 13 max-pooling layers are used 

to reduce the number of parameters and the spatial size of input by selecting the maximum value from a group 

of numbers. For more optimization in feature selection, two layers with cross-channel normalization are added. 

They are also adding nine layers for depth concatenation to extract the features from the third dimension of the 

image. The last four layers are started with the average pooling to select the final features, then the dropout layer 

to drop some neurons randomly during the training to overcome the problem of overfitting. After that, the fully 

connected layer connects each neuron from the previous layer to all the neurons in the next layer. The last layer 

is the Softmax classifier that satisfied the probability of 1 for each class. Fig. 4 shows the training curve for the 

GoogLeNet. As noticed from the curve, the training accuracy reaches 99% using six epochs and 390 iterations; 

that is the mean value of 65 iterations per epochs with a learning rate of 0.0003. 
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Figure 4. The training curve for the GoogLeNet 

 

3.3. Testing dataset 

Testing for the proposed system is needed after finishing the training part. Therefore, the test is applied to 13 

items with different backgrounds, brightness, contrast, and direction if horizontal or vertical. The testing part 

aims to clarify the classification for each item and the ability of the system to achieve high recognition accuracy. 

Table. 4 and fig. 5 show the testing for 13 items and the accuracy of PR above each item. 

4. Discussion 

The intelligent prosthetic hand design requires adding multifunctionality characteristics. Hence, this work is 

divided into two parts; the EMG signal part to support the muscles’ action and the RGB image part to support 

the visual section. The reason for choosing the basic hand movements because it considers the essential step 

toward implementing the prosthetic hand by covering the following motions (cylindrical, spherical, hook, 

palmar, tip, and lateral). 
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Table 4. The testing accuracy  

Items 
No. of 

Images 
Items No. of Images Items 

No. of 

Images 
Items 

No. of 

Images 

Cylindrical Tip Hook Full Hand 

Cans 95% Pins 93% Mug 98% 

Soft 

things 
91% 

Water 

bottles 
100% Coins 89% 

Door’s 

hand 
100% 

Liquid 

bottles 
95% Nails 99% 

Lateral Palmar Spherical 

Book 100% Spon 99% Balls 96% 

Key 87% Knife 100% Egg 99% 

Flash 

memory 
98% Fork 97% Orang 99% 

Card 95% Pen 100% Apple 98% 

Comb 100% Glasses 98% Balls 100% 

    

    

    

    

    
Figure 5. The testing for random items. 
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4.1. The prosthetic based on EMG signals  

In the first part of the work, the Myo Armband sensor is used instead of the traditional sensors to solve noise 

issues and avoid the DC component in the raw signals; there is no need to use any filter. Also, the Myo armband 

covers the full forearm muscles. The data in each session were collected for six EMG movements from five 

subjects. The time-domain analysis is used instead of frequency domain analysis to extract the raw EMG signals' 

features because it shows better performance in classifying the EMG signals.  

In the basic hand movements, the SVM was used and achieved acceptable training accuracy. Also, show a fast 

average training time reaching 7.55 sec. The obtained classification results show that the cubic support vector 

machine achieves the highest training accuracy among other SVM types of ML due to the multi- hyper lines in 

this algorithm.  

Three experiments are done, as noticed from the results; the first experiment has the lowest accuracy of 57.4% 

among all the experiments due to using only one feature (Mean) for signals analysis. The second experiment 

used two features (Mean and standard deviation) to reach a training accuracy of 87%. The results achieve the 

highest accuracy reaching 89%, when using three features (Mean, standard deviation, and the principal 

component analysis). At the same time, the PCA is working on signal dimensions and increasing the accuracy. 

Therefore, the increasing number of features means increasing training accuracy because feature extraction 

helps to analyze signals. Fig. 6 shows the classification performance using different features. 

 

 
Figure 6. The classification performance using different features 

4.2. The prosthetic based on RGB images   

In the second part, the camera is planted into a prosthetic hand; this configuration enriches the system 

transmission information. Besides, combining the EMG signals and the visual part using artificial intelligence 

to implement the prosthetic hand can significantly expand the bandwidth of the feedback information to enhance 

the interactivity control. If there are multi objects, the direction of the prosthetic hand will be toward the closest 

one. 

The proposed vision-based PR method selects the GoogLeNet algorithm to classify RGB images of daily used 

objects into the six basic hand movement patterns for controlling the prosthetic hand. Some studies focus on 

image classification using CCN to recognize the objects without categorized them [29]. In comparison, other 

studies classified the image according to color, texture, Etc. [30]. Differently, this research work is categorized 

the RGB images into seven categories according to how the prosthetic hand will hold the item—also, 

considering the object's detail such as color and texture, and increasing the recognition ability by putting the 

objects at different distances from the camera using different backgrounds. 

The GoogLeNet was used for Deep Learning to achieve high training accuracy, reaching 99%, and high testing 

accuracy with a 95% average. Although some studies on RGB-D image classification are using CNN, most of 

them focused on object classification [30]. Object classification mainly depends on the detailed characteristics 

of objects (such as texture, color, etc.). 

However, the visual part has many challenges, like the multi-objects, the intricate backgrounds, and the distance 

between the camera and the objects; all these factors can affect image recognition. Working on these challenges 

can achieve revolution in the intelligence prostheses. 
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5. Conclusion 

This paper proposes a novel prosthetic hand control system for liver classification using the GoogLeNet and the 

SVM classifiers. The system also collaborates in building a visual-based object classifier that is conventional 

with an EMG-based motion classifier; this cooperation controls the prosthetic hand in six hand movements 

(cylindrical, tip, spherical, lateral, palmar, and hook). The goal of this work has been accomplished by 

improving the operability of the prosthetic hand. Therefore, the hand can recognize the target object using the 

camera that builds in the prosthetic hand. After that, the prosthetic hand will change the posture separately 

according to the shape of the object. 
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