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ABSTRACT   

Convergence of real valued sequences is a classical subject of study for many mathematicians and it continues 

to be studied in recent years. Different types of convergence including ordinary, statistical, almost and ideal 

convergence, and related properties have been researched.  In some studies, the relationship of a sequence 

and its subsequences regarding some type of convergence is investigated, using Lebesgue measure and Baire 

category.  In this paper we revisit ordinary convergence and study the properties of subsequences of a real 

valued sequence using measure and category. We state and prove some simple theorems offering fresh 

insights into a classical subject.  
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1. Introduction 

 

Convergence of real valued sequences has been a subject of study for many mathematicians over the last century 

and in recent years. Many different types of convergence including ordinary, statistical, almost an ideal 

convergence, and related properties have been researched. In some studies, the relationship of a sequence and 

its subsequences regarding some type of convergence was investigated. For this purpose, two different gauges 

of size were used: Lebesgue measure and Baire category, yielding many interesting results. 

 

Buck [1] has first initiated the study of the relationship between the convergence of a given sequence and the 

convergence of its subsequences.  Miller [5], Miller and Orhan [6], Zeager [13] have studied this relation with 

respect to some new types of convergence. Later on, in [2], [3], [7], [8], [11], [12] more types of convergence 

of a sequence and the related summability of its subsequences were studied, using Lebesgue measure as a gauge 

of the size of the set of convergent subsequences. Also, similar relations between sequences and their 

subsequences were studied, using Baire category, by some authors, [4], [9].  In this paper we will return to 

ordinary convergence. Our aim is to study the relationship of a sequence and its subsequences with respect to 

ordinary convergence, as it has been done for other types of convergence, using Lebesgue measure and Baire 

category. We will prove some simple analogues of earlier results regarding statistical, uniform statistical and 

almost convergence, with the goal of offering some interesting new insights into a classical topic. 

 

2. Main results 

Throughout the paper, 𝑥 = {𝑥𝑛} will always denote a sequence of real numbers. If a sequence x = {𝑥𝑛}  is 

convergent, then all of its subsequences converge to the same limit. In general we can talk about L the set of 

limit (accumulation) points of x, and for simplicity, most of our results are stated for bounded sequences, but 

analogues easily hold for unbounded sequences (where L contains ∞ or -∞). 
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Subsequences of a sequence 𝑥 = {𝑥𝑛}  can be naturally identified with numbers t ∈ (0,1] written by a binary 

expansion with infinitely many 1’s. For instance, the subsequence {𝑥2𝑛} is identified with t = 0,01010101…. 

Thus we can denote by x(t) ={(x(t))𝑛} the subsequence of x corresponding to t. Given x(t), a subsequence of 

x, we will denote by 𝐿𝑡 the set of limit points of x(t). 

 

We are ready to state our first result. 

Theorem 1     Suppose 𝑥 = {𝑥𝑛} is a bounded sequence and L is the set of its limit points. Then the set of t ∊ 

(0,1] such that 𝐿𝑡 =  𝐿 has Lebesgue measure 1. 

Before proceeding to the proof of Theorem 1.1, we will prove the following Lemma. 

Lemma 1    Suppose 𝑥 = {𝑥𝑛} is a bounded sequence and L is the set of its limit points. If 𝑙 ∊ 𝐿, then the  

set of t ∊ (0,1] such that 𝑙 ∊ 𝐿𝑡 has Lebesgue measure 1. 

Proof of Lemma 1    Since  𝑙 is a limit point of {𝑥𝑛}, there exists a sequence {𝑛𝑖 ∶ 𝑖 ∊ 𝑁} such that 

 

𝑥𝑛𝑖
  → l. Any t ∊ (0,1], 𝑡 = 0. 𝑡1𝑡2 … 𝑡𝑛 … , for which 𝑡𝑛𝑖

= 1 for infinitely many i clearly satisfies 𝑙 ∊ 𝐿𝑡.  

Let  {𝑛𝑖1
, 𝑛𝑖2

, … 𝑛𝑖𝑘 } be a fixed finite subset of {𝑛𝑖 ∶ 𝑖 ∊ 𝑁}.  Observe the set of t ∊ (0,1] such that 

𝑡𝑛 =  {
1             𝑓𝑜𝑟  𝑛 = 𝑛𝑖𝑗 ,    𝑗 = 1,2 … 𝑘                               

 0      𝑓𝑜𝑟  𝑛 = 𝑛𝑖  , 𝑖 ∉ { 𝑖1 , 𝑖2 … . 𝑖𝑘 }                      
 

 (with 𝑡𝑛 =  0 or 1 for other n).  Since the probability of each digit  𝑡𝑛  being 0 or 1 is 
1

2
  (independently) and 

we are specifying all the digits 𝑡𝑛𝑖
, 𝑖 = 1,2 … ., the outer measure of this set is 0. Likewise the set of t ∊ (0,1] 

with 𝑡𝑛𝑖
= 0, 𝑖 = 1,2 …, has measure 0.  

 

Now since {𝑛𝑖 ∶ 𝑖 ∊ 𝑁} has countably many finite subsets, the set of t ∊ (0,1], for which 𝑡𝑛𝑖
= 1 for finitely 

many i is a countable union of sets of measure 0 and hence has Lebesgue measure 0.  Hence, the set of t ∊ (0,1],  

for which 𝑡𝑛𝑖
= 1 for infinitely many i has Lebesgue measure 1, and consequently the set of t ∊ (0,1] such that 

𝑙 ∊ 𝐿𝑡 has Lebesgue measure 1. □ 

 

 

Now we are ready to prove Theorem 1. 

 

Proof of Theorem 1      Since L is closed and separable, there exists a set  {𝑙𝑖 ∶ 𝑖 ∊ 𝑁}  ⊆ 𝐿 such that  

the closure of {𝑙𝑖 ∶ 𝑖 ∊ 𝑁} is 𝐿.  Let 𝑇𝑖 = {t ∊  [0,1):  𝑙𝑖 ∊ 𝐿𝑡}.  From Lemma 1, 𝑚(𝑇𝑖) = 1, for 𝑖 = 1,2 …., and 

hence 𝑚(∩ 𝑖 𝑇𝑖) = 1. Now if 𝑡 ∊ ∩ 𝑖𝑇𝑖 , then {𝑙𝑖 ∶ 𝑖 ∊ 𝑁}  ⊆ 𝐿𝑡 and since 𝐿𝑡 is closed, 𝐿 ⊆ 𝐿𝑡.  So 𝑡 ∊ ∩ 𝑖𝑇𝑖, 

implies that 𝐿𝑡 =  𝐿.  Therefore the set of t ∊ (0,1] such that 𝐿𝑡 =  𝐿 has Lebesgue measure 1. □ 

 

 

We will now prove an analogous result regarding Baire category instead of Lebesgue measure. We use the term 

comeager to denote a set whose complement is meager or first Baire category [10]. 

 

Theorem 2     Suppose 𝑥 = {𝑥𝑛} is a bounded sequence and L is the set of its limit points. Then the set of t ∊ 

(0,1] such that 𝐿𝑡 =  𝐿 is comeager. 

 

In a similar manner as with Theorem 1, first we prove a necessary lemma. 
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Lemma 2    Suppose 𝑥 = {𝑥𝑛} is a bounded sequence and L is the set of its limit points. If 𝑙 ∊ 𝐿, then the  

set of t ∊ (0,1] such that 𝑙 ∊ 𝐿𝑡 is comeager. 

 

Proof of Lemma 2   Since  𝑙 is a limit point of {𝑥𝑛}, there exists a sequence {𝑛𝑖 ∶ 𝑖 ∊ 𝑁} such that 

𝑥𝑛𝑖
  → l.  For 𝑚 ∊ 𝑁 let 𝑋𝑚 denote the set of t ∊ (0,1] for which there exists  𝑖 ≥ 𝑚 such that 𝑡𝑛𝑖

= 1. We 

will show that  𝑋𝑚 comeager for 𝑚 ∊ 𝑁. 

 

Suppose 𝑚 is arbitrarily fixed. Let 𝑡1𝑡2 … 𝑡𝑘 be an arbitrarily fixed finite sequence of 0’s and 1’s. Fix  

𝑛𝑖 such that 𝑖 ≥ 𝑚 and 𝑛𝑖 > 𝑘. Observe the fixed sequence of length 𝑛𝑖 , 𝑡1𝑡2 … 𝑡𝑘 , 0,0 … 0,1  (with  

(𝑛𝑖 − 𝑘 − 1) 0′𝑠 and 1 in the 𝑛𝑖
′th position). Then every 𝑡 ∊ (0,1] that starts with the segment 

𝑡1𝑡2 … 𝑡𝑘 , 0,0 … 0,1    has 𝑡𝑛𝑖 = 1 so t ∊ 𝑋𝑚 . Now since numbers t ∊ (0,1] that start with a fixed finite sequence 

of 0’s and 1’s (and have infinitely many 1’s) represent a half-open interval (see [10]), this means that every 

(half-open) interval contains an interval that is a subset of 𝑋𝑚 , so 𝑋𝑚 is comeager. 

 

Now since 𝑋𝑚 is comeager for every m,  ∩ 𝑚𝑋𝑚 is comeager. But clearly 𝑡 ∊  ∩ 𝑚𝑋𝑚 implies that 𝑥(𝑡) contains 

a subsequence of {𝑥𝑛𝑖
} and therefore has l as a limit point. Hence we conclude that the set of t ∊ (0,1] such that 

𝑙 ∊ 𝐿𝑡is comeager. □ 

 

We proceed to the proof of Theorem 2.  

 

Proof of Theorem 2    As in the proof of Theorem 1, let  {𝑙𝑖 ∶ 𝑖 ∊ 𝑁}  ⊆ 𝐿 be such that  

the closure of {𝑙𝑖 ∶ 𝑖 ∊ 𝑁} is 𝐿 and let  𝑇𝑖 = {t ∊ (0,1] ∶   𝑙𝑖 ∊ 𝐿𝑡}.  From Lemma 2 we know that 𝑇𝑖 is comeager 

for each 𝑖.  Hence  ∩ 𝑖𝑇𝑖  is comeager.    As earlier, 𝑡 ∊ ∩ 𝑖𝑇𝑖, implies that 𝐿𝑡 =  𝐿.  Therefore the set of t ∊ (0,1] 

such that 𝐿𝑡 =  𝐿 is comeager. □ 

 

We remark that the above lemmas and theorems also hold for unbounded sequences {𝑥𝑛}, treating ∞, -∞ as 

ordinary limit points and as element(s) of L. The only reason for stating the results for bounded sequences was 

esthetic, as the proofs are slightly more elegant. 

 

3. Uniformly large subsequences 

In the previous section we have seen that if l is a limit point of a sequence 𝑥 = {𝑥𝑛}, then almost all of its 

subsequences have l as a limit point in the sense of both measure and category. Now we will examine a specific 

situation: If l is a limit point of a sequence 𝑥 = {𝑥𝑛}, how many of its subsequences have a “large part” that 

converges to l ? 

 

We introduce the following terminology. We will say that 𝑋, 𝑋 ⊆ 𝑁 is uniformly large in 𝑁, if ∀m ∃n 

such that {𝑛 + 1, 𝑛 + 2, … . 𝑛 + 𝑚} ⊆ 𝑋.  We remark that if 𝑋 is uniformly large in 𝑁, then the upper uniform 

density of 𝑋 is 1 (see [11]). Additionally we say that a subsequence of 𝑥 = {𝑥𝑛}, {𝑥𝑛𝑖
} is uniformly large in 𝑥, 

if {𝑛𝑖 ∶ 𝑖 ∊ 𝑁} is uniformly large in 𝑁. 

 

We have the following theorem. 

 

Theorem 3   Suppose 𝑥 = {𝑥𝑛} is a sequence and l is one of its limit points (l finite or infinite). Then the set of 

t ∊ (0,1] such that a uniformly large subsequence of x(t) converges to l is comeager. 

 

Proof of Theorem 3   Since l is a limit point of {𝑥𝑛}, we can fix a sequence {𝑛𝑖 ∶ 𝑖 ∊ 𝑁} such that 

𝑥𝑛𝑖
  → l. Suppose m is arbitrarily fixed. 

Now suppose that 𝑡1𝑡2 … 𝑡𝑘 be an arbitrarily fixed finite sequence of 0’s and 1’s. Fix (the smallest) 

𝑛𝑖 such that 𝑛𝑖+1 > 𝑘. Extend 𝑡1𝑡2 … 𝑡𝑘 to the finite sequence of length 𝑛𝑖+𝑚 

   𝑡∗ =  𝑡1𝑡2 … 𝑡𝑘00. .0100 … 0100 … 100 … … .100 … 1  

that starts with 𝑡1𝑡2 … 𝑡𝑘 and afterwards has 1’s in positions 𝑛𝑖+1, 𝑛𝑖+2 … 𝑛𝑖+𝑚 and 0’s in between. 

Then for every t ∊ (0,1]   that starts with 𝑡∗ , x(t) contains 𝑥𝑛𝑖+1
, 𝑥𝑛𝑖+2

,… 𝑥𝑛𝑖+𝑚
as consecutive terms 
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i.e. contains as m consecutive terms, m consecutive terms from {𝑥𝑛𝑖
}.  So every 𝑡1𝑡2 … 𝑡𝑘 can be extended to a 

sequence 𝑡∗ such that every t ∊ (0,1] that starts with 𝑡∗contains as m consecutive terms, m consecutive terms 

from {𝑥𝑛𝑖
}.   

By an argument identical to the one in the proof of Lemma 2, the set of t ∊ (0,1] such that x(t) has as m 

consecutive terms, m consecutive terms from {𝑥𝑛𝑖
} is comeager. Let 𝑌𝑚 denote this set. 

Now we can conclude that  ∩ 𝑚𝑌𝑚 is comeager. Now if  𝑡 ∊ ∩ 𝑚𝑌𝑚,  x(t) contains arbitrarily long consecutive 

stretches from 𝑥𝑛𝑖
  and 𝑥𝑛𝑖

  → l so x(t) has a uniformly large subsequence converging to l. This completes the 

proof. □ 

 

 

We can also prove a stronger theorem that is a consequence of Theorem 3. 

 

Theorem 4   Suppose 𝑥 = {𝑥𝑛} is a bounded sequence and L is the set of its limit points. Then the set of t ∊ (0,1] 

such that for every 𝑙 ∊ 𝐿 there is a uniformly large subsequence of x(t) converging to l, is comeager. 

 

Proof of Theorem 4      As earlier, let  {𝑙𝑖 ∶ 𝑖 ∊ 𝑁}  ⊆ 𝐿 be such that the closure of {𝑙𝑖 ∶ 𝑖 ∊ 𝑁} is 𝐿 and let  𝑈𝑖 

denote the set of t ∊ (0,1] such that a uniformly large subsequence of x(t) converges to 𝑙𝑖.    From Theorem 3 we 

know that 𝑈𝑖 is comeager for each 𝑖.  Hence  ∩ 𝑖𝑈𝑖  is comeager. 

 

Suppose 𝑡 ∊ ∩ 𝑖𝑈𝑖  is fixed. Now suppose 𝑙 ∊ 𝐿 is arbitrarily fixed. There is a subsequence of {𝑙𝑖 ∶ 𝑖 ∊ 𝑁} that 

converges to 𝑙.  For easier notation assume that ∣ 𝑙𝑖 − 𝑙 ∣ < 1/𝑖 for all 𝑖 (take out a subsequence and rename it). 

As a consequence of Theorem 3, since 𝑡 ∊ ∩ 𝑖𝑈𝑖 , for each i we can fix 𝑚𝑖 consecutive terms of x(t) that are in 

the interval (𝑙𝑖 −
1

𝑖
, 𝑙𝑖 +

1

𝑖
) with 𝑚𝑖 → ∞.  The union of these consecutive stretches of lengths 𝑚𝑖 then clearly 

makes up a uniformly large subsequence of x(t) that converges to 𝑙. Hence for every 𝑡 ∊ ∩ 𝑖𝑈𝑖 , for every 𝑙 ∊ 𝐿 

there is a uniformly large subsequence of x(t) converging to l. We conclude that  ∩ 𝑖𝑈𝑖  is the set of t ∊ (0,1] such 

that for every 𝑙 ∊ 𝐿 there is a uniformly large subsequence of x(t) converging to l .  Since  ∩ 𝑖𝑈𝑖  is comeager, 

the theorem is proved. □ 

 

 

We remark that we can prove the above theorem for unbounded sequences as well with some slight 

modifications to the proof. 

 

 

However, when it comes to measure, the situation is different. Depending on the structure of the sequence x 

either almost all or almost none of its subsequences have a uniformly large part converging to a fixed limit point 

of x. 

 

Theorem 5 Suppose 𝑥 = {𝑥𝑛} is a sequence and l is one of its limit points (l finite or infinite). Then the set of t 

∊ (0,1] such that a uniformly large subsequence of x(t) converges to l has Lebesgue measure 1 or 0 (both can 

occur). 

 

Proof of Theorem 5   Suppose l is finite (if l is infinite the proof can be easily modified). Let 𝑋𝑙 denote the set 

of t ∊ (0,1] such that a uniformly large subsequence of x(t) converges to l. 

First we verify that 𝑋𝑙 is measurable. Clearly 

𝑋𝑙 =   ∩ 𝑖 ∪ 𝑚>𝑖 ∪ 𝑛 { t ∊ (0,1] ∶  I  (𝑥(𝑡))
𝑛+𝑗

− 𝑙 I <
1

i
 for j = 1,2, … m} 

 

(𝑚 > 𝑖  is put to insure arbitrarily long stretches). Then since the set { t ∊ (0,1] ∶  ∣  (𝑥(𝑡))
𝑛+𝑗

− l ∣ <
1

i
 for j =

1,2, … m} differs from an open set by countably many elements (see [11]),  𝑋𝑙 is measurable. 

Also, 𝑋𝑙 is a tail set (i.e. if  𝑡 ∊ 𝑋𝑙  and 𝑡′ differs from 𝑡 in finitely many digits, then 𝑡′  ∊ 𝑋𝑙). Then 𝑋𝑙 

must have Lebesgue measure 1 or 0 or be nonmeasurable (see [10]). Since 𝑋𝑙 is measurable, we conclude that 

it has Lebesgue measure 1 or 0. 

 

To show that both values occur we give the following examples: 
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Let x be the alternating sequence of 0’s and 1’s i.e. 0,1,0,1,0,1… Suppose n is arbitrarily fixed. For t ∊ (0,1] 

the probability that: 𝑡𝑙 = 0 for i odd, and 𝑡𝑙 = 1 for i even holds for 1 ≤ i  ≤ 2n is 
1

22𝑛 . Likewise, the probability 

that: 

  

𝑡𝑙 = 0 for i odd, and 𝑡𝑙 = 1 for i even holds for 2kn+1 ≤ i ≤ 2(k+1)n  is 
1

22𝑛       (A) 

 

for k=0,1,2… . Hence the probability that (A) does not hold for any k=0,1,2… would be 

 (1 −
1

22𝑛 ) (1 −
1

22𝑛 )  ۰۰۰    (1 −
1

22𝑛 )۰۰۰ = 0. 

 

Therefore, the probability that (A) holds for at least one k is 1, i.e. the measure of the set of t ∊ (0,1] for which 

there exist a k such that (A) holds is 1. Clearly for each such t, x(t) contains n consecutive terms equal to1. 

Hence the set of t ∊ (0,1], for which x(t) contains n consecutive terms equal to1, has measure 1, for n arbitrary. 

By taking the intersection of these sets for all n we see that the set of t ∊ (0,1] such that a uniformly large 

subsequence of x(t) converges to 1 has Lebesgue measure 1. The argument for 0 is analogous. 

 

Now observe the sequence x given by 0,1,0,0,1,0,0,0,1…..,  i.e. with n 0’s followed by a single 1, n=1,2,3…. 

We will check that the set of t ∊ (0,1] such that a uniformly large subsequence of x(t) converges to 1 has 

Lebesgue measure 0. We will show that the probability that x(t) contains n consecutive 1’s is less than 
1

2𝑛−1 .   

If x(t) contains 2 consecutive 1’s and the first one of them is 𝑥2 than it must have 𝑡3 =  𝑡4  = 0 and the 

probability of this is 
1

4
,  if it contains 2 consecutive 1’s and the first one of them is 𝑥5 than it must have 𝑡6 =

 𝑡7 = 𝑡8 = 0 and the probability of this is 
1

8
 etc. so we can conclude that the probability that x(t) contains 2 

consecutive 1’s is less than 
1

4
 + 

1

8
 + 

1

16
……= 

1

2
.   In an analogous manner (starting with x(t) contains n consecutive 

1’s and the first one of them is 𝑥2 , or 𝑥5, or…) we can obtain that the probability that x(t) contains n consecutive 

1’s is much less than 
1

2𝑛−1 . 

 

Hence the set of t ∊ (0,1] such that x(t) contains n consecutive 1’s has measure less than 
1

2𝑛−1  (it is easily 

measurable).  Therefore, the set of t ∊ (0,1] such that x(t) contains n consecutive 1’s for all n has measure 0, 

proving the set of t ∊ (0,1] such that a uniformly large subsequence of x(t) converges to 1 has Lebesgue measure 

0. □ 

 

Finally, we can round off Theorem 5, with the following more general theorem. 

 

Theorem 6   Suppose 𝑥 = {𝑥𝑛} is a sequence and L is the set of its limit points. Then the set of t ∊ (0,1] such 

that for every 𝑙 ∊ 𝐿 there is a uniformly large subsequence of x(t) converging to l, has Lebesgue measure 1 or 0 

(both can occur). 

 

Proof of Theorem 6    Assume x is bounded (the proof can be modified for unbounded sequences).  As in 

Theorem 4, we fix  {𝑙𝑖 ∶ 𝑖 ∊ 𝑁}  ⊆ 𝐿 with closure 𝐿 and let  𝑈𝑖 denote the set of of t ∊ (0,1] such that a uniformly 

large subsequence of x(t) converges to 𝑙𝑖. From Theorem 5, we know that each 𝑈𝑖 has measure 1 or 0 and from 

Theorem 4 that  ∩ 𝑖𝑈𝑖 is the set of t ∊ (0,1] such that for every 𝑙 ∊ 𝐿 there is a uniformly large subsequence of 

x(t) converging to l. There are two possibilities: m(𝑈𝑖) = 1 for all i or there exists an i such that m(𝑈𝑖) = 0. 

 

In the first case, we conclude that the set of t ∊ (0,1] such that for every 𝑙 ∊ 𝐿 there is a uniformly large 

subsequence of x(t) converging to l, has measure 1, while in the second case it has measure 0.  

Also, from the examples given in the proof of Theorem 5, we see that both may occur. □ 

 

4. Conclusion 

In this paper we presented some simple but insightful new theorems showing the relationship of a sequence and 

its subsequences with respect to ordinary convergence, using Lebesgue measure and Baire category as gauges 
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of size. We proved some results analogous to earlier results regarding statistical, uniform statistical and almost 

convergence, providing a new viewpoint on familiar notions of convergence. 
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