
Periodicals of Engineering and Natural Sciences  ISSN 2303-4521 

Vol.7, No.1, January 2019, pp. 1~11  

Available online at: http://pen.ius.edu.ba 

  

 1 

 Finite element modelling to predict machining induced residual 

stresses in the end milling of hard to machine Ti6Al4V alloy 
 
 

K Prakash Marimuthu
1
, H P Thirtha Prasada

2
, and C S Chethan Kumar

3
 

1 Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India. 
2 Department of Computer Aided Engineering, Visvesvaraya Institute of Advanced Technologies, Visvesvaraya Technological 

University, India  
3 Department of Industrial Engineering & Management, M S Ramaiah Institute of Technology, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Sept 29, 2018 

 

 
Machining is one of the methods to produce components and products from 

raw material. Many factors influence the outcome of the machining process 

and the life of the components there after. Researchers have tried to 

understand the underlying principles of machining using finite element 

analysis since many years. In the present work the authors have made an 

attempt to study few behaviour namely, stress distribution, force variation and 

machining induced residual stresses while machining hard to machine 

Ti6Al4V alloy using finite element analysis. The model that is presented in 

this work is an improvisation of some of the existing models overcoming 

some of the shortcomings of the existing model. The work presented here uses 

the time tested Johnson-Cook model, but unlike the many other works 

sacrificial layers is not being used rather, Johnson-Cook damage model is 

being used. In addition, the authors have considered opted for oblique cutting 

in spite of high computational time due to the want of more accurate results.  
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1. Introduction 

Machining is one of the important processes to produce net shape components. During the machining process, 

the component undergoes changes. It undergoes physical as well as metallurgical changes. One of the crucial 

parameters of importance is the residual stresses induced during machining. Residual stresses are integral part 

of structures and components. Any component produced by plastically deforming by various manufacturing 

processes will have the residual stresses. The nature and magnitude has favourable as well as detrimental 

consequence to the components functional performances. Machining produces two types of residual stresses 

namely tensile and compressive residual stresses. Machining induced residual stresses have drawn interest of 

many researchers. Researches have done extensive review on residual stresses but there in no one strong 

consensus. Key challenge while dealing with residual stresses is the prediction and determination. Many 

residual stresses measurement technique are available. Researchers sort to experimental, numerical as well as 

analytical methods to determine the residual stresses. Majority of the researchers using the above method 

assume that the cutting process is orthogonal cutting process. In actuality, in majority of the cases, oblique 

cutting is happening. Residual stresses study has become the cynosure of the research community owing to the 

fact that on the nature and magnitude of their presence, affects the functionality of the structures/components. 

http://r.search.yahoo.com/_ylt=AwrTca_xxLVWkrMAdDInnIlQ;_ylu=X3oDMTByc3RzMXFjBGNvbG8DZ3ExBHBvcwM0BHZ0aWQDBHNlYwNzcg--/RV=2/RE=1454781809/RO=10/RU=http%3a%2f%2fwww.msrit.edu%2fsis%2f/RK=0/RS=d._1eblVtAD2gte8X8PQlHy0Tac-
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It can affect the fatigue life of the components. Studies are there on how the residual stresses effect the 

distortion in thin wall machining, it can affect the corrosion resistance of the material. 

Titanium, Ti6Al4V is known to be a difficult to machine material [1]. Many researchers have studied various 

aspects of machining of titanium alloy, from chip formation [2], temperature variation, force variation to 

residual stresses induced during machining process [3]–[5]. Majority of the researchers have used numerical 

methods to predict the different parameters of the cutting process. It has been observed from the literature, that 

the numerical methods have helped the research fraternity to unearth the underlying principles of machining 

[6]–[11]. 

As such the machining process is a very complex phenomenon, therefore many of the research has been 

restricted to orthogonal machining (Ramesh et al., 2015; Ducobu, Rivière-Lorphèvre and Filippi, 2015; 

Ducobu et al., 2017). The three main machining parameters are the speed, feed and depth of cut. When it 

comes to the orthogonal machining, it is difficult to incorporate all the machining factors [12] in the 

simulation model and we are forced to have some assumptions, which prevents us from getting exact results. 

In practicality, the machining process is oblique metal cutting in majority of the cases and very rarely research 

on oblique cutting is taking place. In the present work the authors have attempted to model a 3d oblique 

cutting model to predict the residual stresses that are induced during the machining of the titanium alloy. In 

this work end-milling of titanium alloy is considered for simulation purposes.  

End-milling process with a 4-flute tool is considered and one slot is being cut and the residual stresses that are 

induced is obtained from the simulation. Apart from the residual stresses variation, von-Mises stress 

distribution and the force variation during the cutting process is also obtained. The setting up of the process, 

the simulation and the results obtained are explained in the following sections. Key features of the work 

include : 1) Oblique cutting is being modelled, 2) Johnson-Cook material and damage model is being used, 3) 

No sacrificial layer is used for damage of material, 4) Model results are compared with the experimental 

results of AISI 1045 steel. 

 

1.1. Research Gap 

Many of the reseaches that have been carried out pertaining to orthogonal cutting and mostly researchers have 

restrained themselves to 2D analysis owing to high computational time. Also the authors of the present work 

have observed that use of sacrificial layers for the element deletion effects the chip formation and hence the 

results would be influenced. Reseaches mainly analyse the chip formation process, so the analysis are being 

done for a very, very short time interval. The present work tries to address these research gaps. It deals with 

the 3D analysis of Titanium machining, oblique cutting is presented which is close to reality and sacrificial 

layer has not been used. In the present work one full pass of material removal is being considered unlike many 

other researches which deals with only the chip formation. Apart from addressing these research gaps, the 

authors have focused of the determination of the residual stresses, which is a tedious task. It is quite expensive 

process. Although less expensive processes are available, it is not accurate. Finite element analysis is not only 

less expensive, it is also relatively accurate when the above issues are addressed. The drawback being the 

computiaonal time which is not denied. The input to the analysis is provided so that further research can be 

undertaken to conquer newer frontiers in the area of machining simulation. 

2. Finite Element Analysis  

2.1. Modelling 

A dynamic explicit analysis was done in this work using a commercially available software, Abaqus. In the 

present work a mechanical model is designed, meaning the tool is considered to be rigid and the work piece is 

considered to be deformable. By doing so, the focus is the mechanical behaviour of the process than the 

temperature aspects. This in one way reduces the overall computation time also. The tool that was used for the 

analysis was a 4-flute end-mill cutter. Owing to the complexity in the design of the tool, a cad model of the 

tool was imported into the work environment. The work piece was designed within the software itself. The 

assembled view of the work piece and the tool is shown in Fig. 1. 
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Fig. 1  Assembled view of the work piece and the tool. 

2.2. Material modelling 

The key aspect of numerical simulation of the machining process is the material modelling. For that matter, it 

is the core of any simulation work. The machining process being complex, many methods are there to do the 

material modelling. In the machining process large strains occur, there is work hardening, there is temperature 

variation due to the contact between the work piece and the tool. A model which could capture the different 

aspects of the machining process  is necessitated to properly simulate the machining process. In the present 

work Johnson-Cook material model is being considered. The material model constants are obtained from 

Split-Hopkinson test. Another important aspect of the material modelling is the defining the criteria at which 

the material will fail, otherwise called as the damage criteria. I has been observed that the Johnson-Cook 

damage model along with the material model works more effectively than the other models that are available 

namely the shear model, Zerilli–Armstrong flow stress, Steinberg–Cochran–Guinan–Lund flow stress model 

etc. The material constants that were used in the numerical analysis is shown in Table 1 and Table 2. The 

material properties are shown in Table 3.  

 

Table 1 Johnson-Cook material Model for Ti6Al4V [15]. 

 A(MPa) B(MPa) C n m 

Ti6Al4V 862 331 0.012 0.34 0.8 

 

Table 2 Johnson-Cook material model for Ti6Al4V [16]. 

 D1 D2 D3 D4 D5 Tmelt Troom 

Ti6Al4V -0.09 0.25 -0.5 0.014 3.87 1670◦C 25◦C 

 

2.3. Loading and Boundary condition  

The model with the boundary conditions and different loads that are used is shown in Fig. 2. 

 

 

 

 

 

 

 



Praksah Marimuthu K et al.  PEN Vol. 7, No. 1, 2019, pp. 1 – 7 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Model with Boundary condition and Loads. 

The bottom of the work piece is arrested for all degree of freedom at the bottom. The tool on the other hand is 

restricted for translation motion in the Z- axis and Y- axis. It is free to move in the X- axis. The feed is given 

in the X direction, the cutting speed, as Rpm is given about the Y- axis. The depth of cut is given in the Z-

axis. The different cutting conditions that were used for the numerical simulation purpose is shown in Table 3. 

 

Table 3 Cutting conditions used in the simulation. 

Cutting condition 1 

Cutting speed: 700, 900, 1200 rpm 

Feed: 120 mm/min 

Depth of Cut: 0.3 mm 

Cutting condition 2 

Cutting speed: 

Feed: 80, 100, 120, 150, 180 mm /min 

Depth of Cut: 0.3 

 

2.4. Contact and Meshing 

In the present work a simple Coulomb friction is considered between tool and the work piece. The coefficient 

of friction of 0.2 was used between the tool and work piece. A surface-to-surface contact is established 

making the tool as the master surface, which can effect deformation in the material on which it comes into to 

contact and the work piece, is considered to be slave surface. The tool is considered as rigid as mentioned 

earlier. The work piece was meshed with C3D8R elements [17] and the tool was meshed with C3D10M 

elements. The size of the element is 0.01 mm. Mapped mess was used to reduce the impact of the size of mesh 

on the analysis. There is no sacrificial layers used as stated in the research gap. Reduced integration elements 

are being used in order to reduce the computation time. The meshed model is shown in Fig. 3. Unlike majority 

of the researches that is available a sacrificial layer is not used. The volume of the work piece is of most 

interest is provided with a fine mesh and the other region is made of coarse meshed so that the number of 

elements is minimized. 

 

2.5. Simulation 

Simulations were run for different step times, The results of simulation at the end of different time steps are 

given in Fig 4. It was found that 2.5 s of time step is required to complete one complete pass of the tool over 

the work piece. The experiment were done and the residual stresses were measured after one complete pass. 

To mimic the experiments an explicit dynamic analysis was done for a duration of 2.5 s. that is the time taken 

for the tool to complete one full pass and not just initiation of the chip formation. Figure 4. (a), (b) and (c) 
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shows that the end of simulation at different step times and Fig. 4 (d) shows the actual experimental specimen. 

For the completion of one pass similar to that of the experiment, 2.5 s is required.  Element deletion was 

adopted in the model so as to obtain the chip formation. Force variation and residual stresses variation was 

studied whose results are discussed in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Meshed model. 

 
 

(a) (b) 

 

 

 

(c) (d) 

 
Fig. 4 Simulation at the end of diffent time steps (a) Step time = 1.5 s (b) Step time = 2 s (c) Step time = 2.5 s (d) Experimental Specimen 

3. Results and Discussion 

After the simulation completed, the chip formation was observed. The von-Mises stress distribution, force 

variation and the residual stresses variation was studied for different cutting conditions. Keeping the feed rate 
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at 120 mm/minute and depth of cut at 0.3 as constant the force variation at 700, 900, and 1200 rpm was 

studied. The force variation is given in Fig. 5. The force variation with respect to varying feed rate keeping 

other factors as constant is given in Fig. 6. The milled specimen with the von-Mises stress distribution is given 

in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Variation of force for different cutting speed (feed rate, 120mm/minute; depth of cut, 0.3 mm). 

In addition to the above results, machining induced residual stresses was also studied. It was observed that the 

majority was compressive residual stresses within the component however tensile residual stresses were also 

present. The variation of residual stresses both compressive and tensile for varying speed at constant feed and 

depth of cut is shown in Fig. 8. The variation of the residual stresses both tensile and compressive for varying 

feed rate, at constant cutting speed and depth of cut is shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Variation of force at varying feed rate (Cutting speed, 1200rpm; depth of cut, 0.3 mm). 
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Fig. 7 Milled specimen showing von-Mises stress distribution (Cutting speed, 1200 rpm: feed rate, 120mm/minute; depth of cut, 0.3 mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Variation of Residual stresses for different cutting speed  (feed rate, 120mm/minute; depth of cut, 0.3 mm). 

From the force variation, it is observed that initially the force increase as the feed rate increases and later it 

stabilizes. The same trend of force variation was also observed when the cutting speed increases. As far as the 

residual stresses are concerned, tensile as well as compressive residual stresses are distributed in the machined 

specimen. However, compressive residual stresses are pre dominant on the cut surface. The advantage of 

using the numerical simulation is that the variation of the residual stresses along the depth as well as the plane 

can be studied. The tensile stresses showed increasing trend whereas the compressive stresses showed 

decreasing trend  

for varying feed rates. In the case of varying cutting speed both showed a decreasing trend for increasing 

cutting speeds.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Variation of Residual stresses at varying feed rate (Cutting speed, 1200rpm; depth of cut, 0.3 mm) 

4. Experimental Verification 

For validation of the model that is described in this work, a model used to predict the residual stresses for 

varying cutting conditions on AISI steel is used. The experimental design was done using Taguchi method, a 

well known Design of Experiments method [18]. The machining induced residual stresses for nine different 

cutting conditions was measured using X-ray diffraction method and compared with the numerical simulation 

results. The experimental and the numerical results are presented in Table 4. The model was able to predict 

with an error of less than 15% in majority of the cases. 
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Table 4 Experimental versus simulation results for AISI 1045 steel. 

Expt 

No. 

Speed 

in 

rpm 

Feed in 

mm/min 

Depth of 

cut in 

mm 

Stress 

Values in 

MPa 

Simulation 

results 

1 355 20 0.2 -389.9±7.5 -354.8 

2 355 40 0.3 -448.3±8.0 -439.22 

3 355 80 0.5 -291.5±7.1 -218.9 

4 500 20 0.3 -523.1±5.3 -459.55 

5 500 40 0.5 -448.7±8.0 -456.81 

6 500 80 0.2 -245.0±10.6 -321.29 

7 710 20 0.5 -501.2±6.3 -405.88 

8 710 40 0.2 -253.4±10.9 -250.38 

9 710 80 0.3 -301.8±10.1 -279.75 

 

5. Conclusion 

A mechanical numerical model was developed and the end-milling processes was studied. Force variation and 

machining induced residual stresses variation was determined using the Finite element model. The developed 

model is as improvisation of the existing research in the sense that oblique cutting is being modelled. Chip 

formation was observed and the machining induced residual stresses is mostly compressive on the newly 

obtained surface and there after it becomes tensile. Increase in cutting speed as well as increase in the feed 

rate increased the compressive residual stresses. Whereas the tensile residual stresses showed decreasing trend 

as the feed rate increased and showed an increasing trend as the cutting speed increased. Some of the 

limitations of the model include high computation time and it is not a thermos mechanical model. 

The future work includes developing a Thermo-mechanical model and building a model to study the effect of 

sequential cuts on the machining induced residual stresses. Study of effect of sequential cuts is an important 

aspect [19] because the product is realised after multiple cuts irrespective of the machining process being 

used. Each cut is a plastic deformation process and it will have an effect of the induced residual stresses as it 

alters the physical as well as the metallurgical behaviour of the material. 

 

6. Supplementary data 

6.1. Input file  

*Part, name=Part-3 

*Nset, nset=Set-63, generate 

     1,  35568,      1 

*Elset, elset=Set-63, generate 

     1,  31875,      1 

** Section: Section-1 

*Solid Section, elset=Set-63, controls=EC-1, material=steel 

, 

*End Part 

**   

*Part, name=tool6mm 

*Node 

*Surface, type=ELEMENT, name=m_Surf-2 

_m_Surf-2_S2, S2 

_m_Surf-2_S3, S3 

_m_Surf-2_S4, S4 

_m_Surf-2_S1, S1 

*Surface, type=NODE, name=s_Set-9_CNS_, internal 
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s_Set-9, 1. 

** Constraint: Tool_Body 

*Rigid Body, ref node=_PickedSet16, elset=b_Set-1 

*End Assembly 

**  

** ELEMENT CONTROLS 

**  

*Section Controls, name=EC-1, DISTORTION CONTROL=YES, length ratio=0.99, ELEMENT 

DELETION=YES, MAX DEGRADATION=0.9999, hourglass=RELAX STIFFNESS 

1., 1., 1. 

**  

** MATERIALS 

**  

*Material, name=steel 

*Damage Initiation, criterion=JOHNSON COOK 

 -0.09,  0.25,  -0.5, 0.014,  3.87, 1700.,  850.,   0.1 

*Damage Evolution, type=ENERGY 

10., 

*Density 

 4.4e-09, 

*Elastic 

110000., 0.33 

*Inelastic Heat Fraction 

         0.9, 

*Plastic, hardening=JOHNSON COOK 

860., 683., 0.47,   1.,1700., 850. 

*Rate Dependent, type=JOHNSON COOK 

 0.034, 0.1 

*Specific Heat 

 6e+08, 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=Cont_Prop 

*Friction 

 0.4, 

*Surface Behavior, pressure-overclosure=HARD 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES 

*Dynamic, Explicit 

, 5. 

*Bulk Viscosity 

0.06, 1.2 

** Mass Scaling: Semi-Automatic 

**               Whole Model 

*Fixed Mass Scaling, factor=5000. 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Fixed_Wp Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Set-8, ENCASTRE 
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** Name: Tool_Prop Type: Velocity/Angular velocity 

*Boundary, type=VELOCITY 

Set-4, 1, 1, -1.66 

Set-4, 2, 2 

Set-4, 3, 3 

Set-4, 4, 4 

Set-4, 5, 5, 125.66 

Set-4, 6, 6 

**  

** INTERACTIONS 

**  

** Interaction: Int-1 

*Contact Pair, interaction=Cont_Prop, mechanical constraint=PENALTY, cpset=Int-1 

m_Surf-2, s_Set-9_CNS_ 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, number interval=1, time marks=NO 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, number interval=500 

*Node Output 

A, RF, U, V 

*Element Output, directions=YES 

EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, STATUS, SVAVG 

*Contact Output 

CSTRESS,  

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history 

*Contact Output, cpset=Int-1 

CFTM,  

*End Step 
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