
Periodicals of Engineering and Natural Sciences ISSN 2303-4521

Vol. 9, No. 2, April 2021, pp.569-580

 569

Joint image encryption and compression schemes based on hexa-coding

Mohammed H. Rasheed1, Omar M. Salih2, Mohammed M. Siddeq3

1,2,3Computer Engineering Dept., Technical College of Kirkuk, Northern Technical University

ABSTRACT

This research proposes a new image compression and encryption method depend on a modified JPEG technique

combined with the Hexa-Coding algorithm. The compression algorithm starts by dividing an image into 8x8 blocks,

then DCT (Discrete Cosine Transform) is applied to all blocks independently followed by uniform quantization.

Additionally, the size of blocks is reduced by eliminating insignificant coefficients, and then Arithmetic coding is

applied to compress residual coefficients. Finally, Hexa-encoding is applied to the compressed data to further reduce

compression size as well as provide encryption. The encryption is accomplished based on five different random keys.

The decompression uses a searching method called FMSA (Fast Matching Search Algorithm) which is used for

decoding the previously compressed data, followed by Arithmetic decoding) to retrieve residual coefficients. These

residuals are padded with zeros to rebuild the original 8x8 blocks. Finally, inverse DCT is applied to reconstruct

approximately the original image. The experimental results showed that our proposed image compression and

decompression has achieved up to 99% compression ratio while maintaining high visual image quality compared with

the JPEG technique.

Keywords: Modified JPEG Technique, Hexa-Coding Algorithm, Fast Matching Search

Algorithm.

Corresponding Author:

Mohammed H. Rasheed,

Technical College of Kirkuk

Northern Technical University

Kirkuk, Iraq.
E-mail: mohammed.rasheed@ntu.edu.iq

1. Introduction

Nowadays, networks and multimedia technologies are rapidly developing and became widely used in every

aspect of life. Due to the wide availability and use of high-resolution multimedia devices and services, sharing

of raw size digital media files requires a worthwhile amount of storage size and network traffic [1,2]. This has

led the research community to drive their attention to improve image compression techniques for large data files

while maintaining the best level of quality [3]. On the other hand, security and privacy have become an important

and challenging aspect to protect multimedia files from unauthorized access due to the rapid increase in hacking

attacks and personal privacy demands [4]. For these reasons, data compression and encryption have become a

hot research area. Therefore, Joint image compression and encryption (JICE) are required to fulfill both

compression and encryption goals simultaneously [5]. The inconsistency between compression and encryption

makes the joint method troublesome. For images, JICE is an effective tool to provide security and save space.

In the literature, two approaches have been implemented. The conventional approach suggests dividing the

operation into two separated but still related stages: encryption and compression, where the encryption and

compression are independent and performed separately. The other approach is to perform the encryption within

the transform during the compression step [6]. The following paragraph illustrates and reviews some of the

latest and well-known JICE algorithms developed by the research community.

In [7], A novel JICE based JPEG with a controllable image quality algorithm is presented. For encryption,

embedded compression is developed within the DCT by introducing sign-flips into the butterfly’s structure and

employing them alternatively according to a secret key. The image can be recovered even without this key.

mailto:mohammed.rasheed@ntu.edu.iq

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 570

while in [8] an improved JICE algorithm is proposed. It employed a DCT transformation dictionary for image

representation and then combining it with a hyper-chaotic system to attain image compression and encryption

jointly. Another JICE scheme is proposed based on curvelet transform, run-length coding, and Huffman coding

[6]. For encryption, a five-dimensional hyper-chaotic based on the Rabinovich scheme is employed with the

construction of a new pseudorandom plain text key-stream generator. The Authors in [9] proposed a lossless

JICE scheme based on IWT (Integer Wavelet Transform) and SPIHT (Set Partitioning In Hierarchical Trees|).

The algorithm used a hyper-chaotic system, nonlinear inverse process, secure hash algorithm, and plaintext key-

stream for secure encryption. Then, two JICE schemes are presented [10]. The first considers compression

performance by dividing the image into non-overlapped 16×16 blocks and applying different encryption

operations at the quantization and transformation steps of JPEG. The second scheme considers protection

performance by adding the RSV (Run Size and Value) pairs combined at JPEG's coding s after the encryption

of the first scheme. Additionally, in [11] a novel proposed algorithm based on two levels of DCT and Hexa-

Coding encoded with Arithmetic coding is introduced and applied on images and video streams from YouTube.

The results show that this algorithm can yield a high compression ratio and better perceptual quality. Finally, a

novel crypto-compression algorithm based on five levels of Discrete Wavelet Transform (DWT) followed by a

novel Hexa-Coding algorithm is proposed [12]. It also introduces a new algorithm called FMSA at the

decompression phase. The results show high quality reconstructed images at high compression ratios.

This research paper uses the second approach where compression and encryption are performed separately. Our

proposed algorithm introduces a new idea of image compression using a modified JPEG technique. This

research modifies the JPEG technique by introducing a new quantization procedure that contributes to adjusting

compression ratio as well as image quality. The Hexa-Coding algorithm is used then for providing encryption.

The novelty of the Hexa-Coding algorithm is that it uses two groups of keys. The first group uses five randomly

generated floating-point keys to minimize the amount of data without affecting quality, while the second group

of keys is the probability table generated from the compressed data used as a way of encryption. One of the

strengths of the proposed method is that it combines encryption and compression within its internal structure.

Furthermore, the Hexa-Coding algorithm provides a second level of compression since it abbreviates every six

values of the compressed data into a single value. The following sections explain the proposed algorithm in

detail and organized as follows, Section 2 introduces the proposed joint compression-encryption algorithm and

Section 3 describes the decryption and decompression algorithm. Sections 4 and 5 presents experimental results

and conclusions, respectively.

2. The proposed joint compression-encryption algorithm

The proposed JICE algorithm illustrated as a functional block in Figure 1. The algorithm starts initially by

partitioning the original image into non-overlapped blocks of size 8×8. If the image dimension is not in the form

of a multiple of eight, zeros are padded to the last column and the last row of the image to compensate the

missing values [13,14,15]. For simplicity, one 8×8 block is selected as an example of what is performed on all

other blocks.

A pre-processing operation is performed directly on original image values to normalize the values and eliminate

spurious and unwanted noise which will contribute to a higher compression ratio [16,17]. Our preprocessing

methodology suggests that each original value in the block is subtracted from an integer value (r) which equals

to the quotient of dividing the maximum value in the block by two and then round the result to the nearest

integer.

round(r) = Max Value / 2 (1)

The results show that careful selection of the value of (r) can contribute to removing irrelevant data and hence

improve compression ratio while maintaining the overall image quality after decompression.

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 571

Figure 1. The proposed compression-encryption algorithm

For example, Figure 2 represents an 8×8 block containing original image values, a quick value-based search

reveals that the largest value contained in this specific block is equal to 213, this value is then applied in equation

(1) and the result is used to subtract all the original pixel values from as shown in Figure 2. It is important to

note that resulted value from equation (1) (i.e., in our example 213/2) should be saved to be used to retrieve the

data in the decompression phase therefore it will be saved in the header file.

The next step in our proposed algorithm is transforming each pre-processed 8×8 block from its current spatial

domain to an equivalent frequency domain. The DCT is employed on all generated blocks to perform the

transformation. Implementing DCT will help in separating differing important information in each block from

the original image [17,18,19]. A DCT transformed block is shown in Figure 3, where an array consists of 64

values arranged as one single low frequency coefficient located on the top left side corner of the block, while

the remaining 63 values are considered high frequency coefficients. Many of the high frequency coefficients

can be ignored without causing serious deformation of the image since higher frequencies data have much small

effect than low frequency data.

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 572

Figure 2 (a, b). a block 8×8 pre-processed by subtracting (213/2) from all values

A Single Unified Quantization Value (SUQV) is used for all data in our 8×8 block. Each numerical value is

divided by the SUQV and rounded to the nearest integer. Based on our experiments and their outcomes, we

have elected a single unified value equal to 64 as our SUQV. This value represents hard quantization to remove

most of the unwanted coefficients. One of the reasons behind selecting a quantization value of 64 is that it

represents one-fourth of the maximum value of each element in each block, which is 255. The second reason is

to reduce the amount of data included in the compressed header file since quantization values must be preserved

to be used in the decompression phase. Figure 3(b) shows the DCT transformed block quantized by a SUQV

quantization value.

 Now, it is very important to confirm the integrity of our results therefore all steps performed up to this point

are inversed. Multiplying each value in the resulted 8×8 block by (64), and then inverse DCT applied to the

block, finally adding (213/2) to each value in the 8×8 block. A simple comparison between the resulted 8×8

block values shown in Figure 4 with the original image values illustrated in Figure 2(a) clearly shows an affinity

with the original values which proves the effectiveness of our proposed algorithm so far.

By examining the resulted two-dimensional array shown in Figure 4 and Figure 2(a), two important properties

were observed. The first is that most of the values became zeros and thus can be omitted. The second is that

most of the important values have been distributed among the bounded cells on the top left corner. Therefore, a

zigzag scan is applied on each block to convert each quantized block from a two-dimensional array into a one-

dimensional array of size (64) [13,18-21].

Figure 3 (a-c). Three steps show DCT, uniform quantization, and reduced zigzag scan applied to the block

8×8 respectively.

74 94 95 88 82 87 90 99

64 91 94 85 83 86 90 100

68 88 86 76 80 85 90 103

77 94 85 73 81 88 93 106

90 99 87 78 81 87 94 104

93 95 83 81 87 90 97 105

85 89 75 80 89 90 101 105

89 82 74 82 92 96 103 104

(b) Each value in the block 8x8 is

subtracted with (213/2)

(a) Pixel values of an original

8x8 block

181 201 202 195 189 194 197 206

171 198 201 192 190 193 197 207

175 195 193 183 187 192 197 210

184 201 192 180 188 195 200 213

197 206 194 185 188 194 201 211

200 202 190 188 194 197 204 212

192 196 182 187 196 197 208 212

196 189 181 189 199 203 210 211

Y(i,j) - r

(c) Zigzag scan applied to the block 8x8 to convert it to a one-dimensional array.

Then the first 8 coefficients kept as residual, while other coefficients are ignored

708 -40 31 -18 -12 -19 -7 -3

-12 6 -14 -26 -13 -6 5 -2

2 -6 -13 3 4 7 -1 -1

11 13 3 -1 1 2 -1 -2

4 4 4 3 0 1 2 -1

-3 -3 3 1 0 -2 -2 0

1 1 2 3 2 2 2 0

-2 1 2 -1 0 1 -1 0

11 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(b) The transformed block

quantized by a single value of 64

YDCT(i,j) divided

by 64

<----- 8 Values ----->

11 -1 0 0 0 0 0 0

(a) DCT transformed block

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 573

It has been observed that zigzag scan is more practical to use in terms of arranging important values into close

groups, rather than dispersing them between unimportant values when using column scan. After conversion

completes, our proposed algorithm suggests that only the first eight values are retained from each 8×8 block

consequently eliminates 87% of insignificant coefficients from each block. Considering our example above as

show in Figure 3, the only retained values are: [11,-1,0,0,0,0,0,0].

All reduced arrays are collected and combined into one single array called auxiliary array (AA). In our case,

AA is encoded using Arithmetic coding [17]. The implementation of Arithmetic coding on AA produces two

outputs. The first output is the probability table used in the decompression algorithm. The second output is the

main compressed data stream consist of integer data. By examining the values in the probability header produced

from arithmetic coding, it clearly shows sequences of many unrepeated values which makes it difficult to

compress, therefore the probability header is kept in the compressed file to be used as a reference in the

decompression phase. The other part which represents the compressed data stream is subject to a second level

of encoding called Hexa-Coding algorithm [12] as shown in Figure 1 phase two.

Figure 4. An 8×8 block represents inverse steps applied to the last 8 coefficients array (See Figure 3).

Hexa-Coding Algorithm is a novel lossless compression technique proposed by Siddeq and Rodrigues [11,12].

The Hexa-Coding algorithm provides a high data compression ratio with high perceptual decoded images. The

novelty of this method is that it can represent every sequenced six values in an array into only one single floating-

point number. This method provides a tremendous lossless compression. The algorithm also combines two

functionalities within its structure, it provides data compression and encryption at the same time. The steps

below explain the Hexa-Coding algorithm applied to an array:

1. Every three sequenced data are selected and represented by a single floating-point number. This is done

by generating three random keys ranging between 0.01 and 0.999. Each key is multiplied by its respective

value and then the results are summed together. The equation below reflects the mathematical equation of

this step.

𝑒(𝑛) = 𝐾1 × 𝑑(𝑖) + 𝐾2 × 𝑑(𝑖 + 1) + 𝐾3 × 𝑑(𝑖 + 2) (2)

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

184 186 189 193 197 201 204 206

11 -1 0 0 0 0 0 0

Zero padding the array to be 64 coefficients array,

then inverse zigzag scan is applied to convert the

array into 8x8 block

Then multiply each value by (64), finally adding

(213/2) to each value in the 8x8 block

Reconstructed the 8×8 block which is

approximately same as the original block 8x8

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 574

Where e(n) is the encoded output, and n is the encoded output index. K1, K2, and K3 are key 1, key 2,

and key 3 respectively. d(i) represents the original data stream, and i is the original data stream index.

2. Every two sequenced floating-point values resulted from step (1) are applied to a second level of

encoding, where a second level of randomly generating keys named (K4 and K5) are generated. These

keys are multiplied by the two floating-point values respectively and summed together to produce one

single floating-point value. The equation below reflects step (2) mathematically and Figure 5

demonstrates the Hexa-Coding algorithm.

𝑐(𝑗) = 𝐾4 × 𝑒(𝑛) + 𝐾5 × 𝑒(𝑛 + 1) (3)

Where y(j) represents the 2nd level encoded output, and j is the 2nd level encoded output index. K4 and K5 are

key 4 and key 5 respectively. c(n) is the1st level encoded output, and n is the 1st level encoded output index.

Figure 5. The Hexa-Coding algorithm layout [19]

As an example, assume we have 30 values resulted from Arithmetic coding as A =[11, 255, 34, 11, 34, 12, 10,

40, 9, 0, 90, 23, 0, 0, 20, 44, 1, 67, 11, 255, 34, 11, 34, 12, 0, 0, 20, 44, 1, 67], we apply Hexa-Coding algorithm

using five randomly generated keys as: K1= 0.8147, K2= 0.9058, K3= 0.1270, K4= 0.9134, and K5= 0.9575.

By using equations (2) and (3), every 6 data in A is converted to a single floating-point number. Therefore, the

result for this example is represents an Encoded Array = [262.6342, 122.4339, 45.658, 262.6342, 45.658]. Up

to this point, it is necessary to compute the probability of every 6 items within the array to be used later in the

decompression phase. Table 1 shows the probability table based on the values of the example above. It is

important to note that the probability table represents the compression-encryption keys. Therefore, it must be

saved as a stream of integer keys beside the five floating-point keys to recover the image during the

decompression-decryption phase.

Table 1. Probability of 30 values computed of every 6 values

Probability for every 6

values

Number of iterations of

every 6 values

0, 0, 20, 44, 1, 67 2

10, 40, 9, 0, 90, 23 1

11, 255, 34, 11, 34, 12 2

The example above shows clearly the ability of the Hexa-Coding algorithm to abbreviate 30 data values into

only five encrypted data. Additionally, the Hexa-coding algorithm produced a probability table represented as

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 575

a stream of integer keys. This feature in Hexa-Coding makes the algorithm more secure since in the event of

losing one of these probability values the data cannot be recoverable.

3. The decryption and decompression algorithm

The proposed decryption-decompression steps are considerably straightforward and very fast compared with

our proposed encryption-compression algorithm. The decryption-decompression algorithm starts by decoding

the Hexa-Coding encrypted data. The decryption algorithm uses the Fast-Matching Search algorithm to search

the probability table created in the encryption phase [1,11,12].

To demonstrate the decryption process, Its applied to the data generated from the example presented in Section

2. The final encrypted data (i.e. Encoded Array) was equal to [262.6342, 122.4339, 45.658, 262.6342, 45.658].

These values must be converted back (decrypted) to their exact values before Hexa-Coding encryption. The idea

in the decryption is to use the probability table beside the FMSA to recover the original integer data, this can be

summarized by the following steps:

1. Re-compute the output for every 6 data in the probability table using equations (2) and (3) as shown in Figure

7.

2. Sort the probability table in ascending order according to the output of step 1.

3. Select the Target that represents the data needed to be decoded from the compressed file and passed to the

fast-matching search algorithm to lookup the probability table.

4. When matching is found between the Target and a specific output from the probability table, the relevant 6

data represent the decoded values, as shown in Figure 7. These decoded values are placed in a new decoded

array in the exact location of Target.

 Figure 7. The decompression-decryption process

In the decryption process, there is no possibility of any mismatch since the probability table contains all possible

values of every 6 values in the probability table (see Table 1). The output column is sorted in ascending order

to facilitate and accelerate the search process. The type of search used is the Binary Search Algorithm which is

a very well-known search algorithm [11,12].

After these steps, the final Hexa-Decoded data are reconstructed and decompressed using the Arithmetic

decoding algorithm to obtain the values of the original coefficients. Each 8 decoded residual coefficients

(presented as 8 coefficients in each block) are padded with zeros to be 64 coefficients. Thereafter, these

coefficients return into 8×8 block again by using inverse zigzag scan, followed by inverse DCT to reconstruct

the approximately original image (See Figure 4).

Target

262.6342

Probability 6 data output

0, 0, 20, 44, 1, 67 45.658

10, 40, 9, 0, 90, 23 122.4339

11, 255, 34, 11, 34, 12 262.6342

Search Target inside output column

Relevant 6 data

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 576

4. Experimental results and comparison with JPEG technique

Our proposed compression-encryption algorithm has been implemented using MATLAB Language in a

computer using a Core-i7 processor with 2.7MHz clock frequency and 6MB of Cache Memory. The algorithm

is tested using four different greyscale images along with different dimensions. At first, the gray level of the

selected image is reduced using equation (1). Secondly, the quantization process whereas the maximum value

is computed according to the following steps:

A) QF = input(); % select a value for Quantization Factor between 0.01 to 0.9.

B) M = max(original image); % Find the maximum value in the image.

C) SUQV = round(M x QF); % SUQV ready to be used as quantization value.

Each image has its own Quantization Factor that contributes to its level of quality. The reason behind using this

type of quantization is that it can increase or decrease the image quality, thus determining the compression ratio.

If the Quantization Factor = 0.01 this means most of the coefficients remain approximately the same and lead

to increase image quality and decrease compression ratio accordingly. Otherwise, if Quantization Factor=0.9,

this represents hard quantization which leads to increase compression ratio and decrease image quality.

Table 2 shows the compressed image size for each image. Each original image was compressed three times

according to three different Quantization Factors. It also shows the PSNR (Peak Signal to Noise Ratio) for each

decompressed image. The PSNR is one of the popular quality measures, which is computed very easily and very

widely for comparing decompressed images against original images [18].

Figure 8 shows the decompressed images according to their compressed size. It illustrates the capability of the

proposed algorithm for compressing images at a higher compression ratio that reaches up to 99% of the original

size.

Table 2. Our proposed approach results

Image

name

Image

dimension

Original

size
 (QF)

Compressed

size

BPP

(bit/pixel)
PSNR

Lena 1024×1024 1 MB

0.05 56.5 KB 0.0551 42.8

0.15 27.6 KB 0.0270 41.6

0.3 17 KB 0.0166 40.24

Girl

1943×1534

2.84 MB

0.05 185 KB 0.0636 46.2

0.15 35.9 KB 0.0123 43.8

0.3 23 KB 0.0079 42.07

Tiger 1943×1534 769 KB

0.05 45 KB 0.0507 39.2

0.15 27.9 KB 0.0363 38.9

0.3 18.5 KB 0.0241 38.3

Woman

512×512

257 KB

0.01 30.4 KB 0.1183 35.95

0.1 13.8 KB 0.0537 35.9

0.3 7.3 KB 0.0284 35.6

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 577

 Compressed size: 56.5 KB Compressed size: 27.6 KB Compressed size: 17 KB

 Compressed size: 185 KB Compressed size: 35.9 KB Compressed size: 23 KB

 Compressed size: 45 KB Compressed size: 27.9 KB Compressed size: 18.5 KB

 Compressed size: 30.4 KB Compressed size: 13.8 KB Compressed size: 7.3 KB

Figure 8. Compressed images by our proposed algorithm

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 578

The proposed algorithm compared with the JPEG technique because it is the most useable compression

technique in many applications. Moreover, the JPEG algorithm still in development, to achieve maximum

compression ratio and high-quality images. Table 3 and Figure 9 show the comparison of the two methods, the

comparison is based on image quality at a higher compression ratio.

Table 3. Comparison with the JPEG algorithm

Image

name
dimension

Original

size

Compressed

size by

our proposed algorithm

PSNR

Compressed

size by

JPEG algorithm

PSNR

Lena 1024x1024 1 MBytes 17 Kbytes 40.24 19 Kbytes 37.25

Girl 1943x1534 2.84 MBytes 23 Kbytes 42.07 39.7 Kbytes 37.96

Tiger 1943x1534 769 KBytes 18.5 Kbytes 38.3 21.6 Kbytes 37.82

Woman 512x512 257 KBytes 7.3 Kbytes 35.6 10.1 Kbytes 35.3

 Compressed size: 19 KB Compressed size: 39.7 KB Compressed size: 18.5 KB

Compressed size: 10.1 KB

Figure 9. Compressed images by JPEG technique

Conclusion

We can summarize our proposed image encryption-compression algorithm in the following points:

1. The algorithm divides the image into 8×8 non-overlapped blocks, every block is transformed by two-

dimensional DCT.

2. Single Unified Quantization Value is used in this algorithm as a new way for the quantization process. This

uniform value is applied to each block independently. The performance of this type of quantization worked

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 579

successfully for balancing between image quality and compression ratio, as showed in the experimental

results.

3. Each block size of 8×8 coefficients is converted to a one-dimensional array of 64 coefficients through a

zigzag scan. Then 64 coefficients are reduced into 8 coefficients by keeping the first 8 coefficients which

represent the most important coefficients. The main reasoning behind this reduction for increasing the

compression ratio and keep the image quantity as much as possible.

4. All reduced 8 coefficients are collected, then addressed to Arithmetic coding for lossless compression.

5. Additionally, the Hexa-Coding algorithm is used to encrypt the compressed data. The feature of this

algorithm is to reduce compressed data size and encrypt it at the same time with five different keys. Also,

the Hexa-Coding algorithm helped our proposed method to increase image compression performance.

However, the Hexa-decoding algorithm is based on a searching method that consumes time to decode data

compared to JPEG technology that does not use any type of searching mechanism for decoding. Besides

that, if the five keys are lost or damaged the image will be un-decodable.

6. Finally, based on our proposed image encryption-compression algorithm the experimental results show a

high compression ratio of up to 99% compared to a traditional JPEG algorithm besides maintaining visual

image details.

References

[1] M.M. Siddeq, M.A Rodrigues, “A novel high-frequency encoding algorithm for image

compression,” EURASIP J. Adv. Signal Process, (Springer), (2017): 26, 2017.

[2] O. M. Salih, M. H. Rasheed, M. M. Siddeq, and M. A. Rodrigues, “Image compression for quality 3D

reconstruction,” Journal of King Saud University - Computer and Information Sciences, Aug. 2020.

[3] M. H. Rasheed, O. M. Salih, M. M. Siddeq, and M. A. Rodrigues, “Image compression based on 2D Discrete

Fourier Transform and matrix minimization algorithm,” Array, vol. 6, p. 100024, Jul. 2020.

[4] S. Deb, B. Biswas, and B. Bhuyan, “Secure image encryption scheme using high efficiency word-oriented

feedback shift register over finite field,” Multimedia Tools Applications, Vol. 78, 34901–34925, 2019.

[5] P. Chaudhary, R. Gupta, A. Singh, P. Majumder, and A. Pandey “Joint image compression and encryption

using a novel column-wise scanning and optimization algorithm,” Procedia Computer Science Vol. 167,

pp. 244-253, 2020.

[6] M. Zhang and X. Tong “Joint image encryption and compression scheme based on a new hyperchaotic

system and curvelet transform,” Journal of Electronic Imaging 26(4), 043008, 2017.

[7] P. Li and K. Lo, "Joint image compression and encryption based on alternating transforms with quality

control," 2015 Visual Communications and Image Processing (VCIP), Singapore, pp. 1-4, doi:

10.1109/VCIP.2015.7457867, 2015.

[8] X.Tong, M. Zhang, and Z. Wang “A joint color image encryption and compression scheme based on hyper-

chaotic system,” Nonlinear Dynamics (Springer) 84, 2333–2356, 2016.

[9] M. Zhang, and X. Tong “Joint image encryption and compression scheme based on IWT and SPIHT,”

Optics and Lasers in Engineering (Elsevier), Vol. 90, 254–274, 2017.

[10] P. Li and K. Lo “Joint image encryption and compression schemes based on 16 × 16 DCT,” Journal of

Visual Communication and Image Representation (Elsevier), 58, 12-24, 2019.

[11] M .M Siddeq, M.A Rodrigues “A Novel Hexa data Encoding Method for 2D Image Crypto-Compression,”

Multimedia Tools and Applications (Springer), 79, pp. 6045–6059, 2020.

[12] M.M. Siddeq, , M.A. Rodrigues “A Novel Method for Image and Video Compression Basedon

Two-Level DCT with Hexa data Coding,” Sensing and Imaging(Springer), 21, 36, 2020.

[13] G. K. Wallace, "The JPEG still picture compression standard," in IEEE Transactions on Consumer

Electronics, vol. 38, no. 1, pp. xviii-xxxiv,1992.

https://www.sciencedirect.com/science/article/pii/S1877050920306839#!
https://www.sciencedirect.com/science/article/pii/S1877050920306839#!
https://www.sciencedirect.com/science/article/pii/S1877050920306839#!
https://www.sciencedirect.com/science/article/pii/S1877050920306839#!
https://www.sciencedirect.com/science/article/pii/S1877050920306839#!
https://www.sciencedirect.com/science/journal/18770509
https://www.sciencedirect.com/science/journal/18770509/167/supp/C
https://www.sciencedirect.com/science/article/abs/pii/S104732031830292X#!
https://www.sciencedirect.com/science/article/abs/pii/S104732031830292X#!
https://www.sciencedirect.com/science/journal/10473203
https://www.sciencedirect.com/science/journal/10473203

 PEN Vol. 9, No. 2, April 2021, pp.569- 580

 580

[14] K.R. Rao, P. Yip, Discrete Cosine Transform. Academic Press, ISBN: 978-0-12-580203, 1990.

[15] Biju Bajracharya, and David Hua, “A Preprocessing Method for Improved Compression of Digital

Images,” Journal of Computer Sciences and Applications, vol. 6, no.1, 2018.

[16] M. Milanova, R. Kountchev, V. Todorov, R. Kountcheva, “Pre- And Post-Processing for Enhancement Of

Image Compression Based On Spectrum Pyramid,” In: Sobh T., Elleithy K., Mahmood A., Karim M.

(eds) Innovative Algorithms and Techniques in Automation, Industrial Electronics and

Telecommunications. Springer, Dordrecht, pp. 269-274. 2007.

[17] K. Sayood, Lossless Compression Handbook. Academic Press. ISBN: 9780126208610, 2003

[18] Abdullah Hussain, Ghadah AL-Khafaji and M. Siddeq, “Developed JPEG Algorithm applied in image

compression,” IOP 2nd Conference scientific of Al-Ayen University (ISCAU-2020), 928(032006), 2020.

[19] M. Siddeq “JPEG and sequential search algorithm applied on low- frequency sub-band for image

compression (JSS),” Journal of Information and Computing Science, 5 (3), 163-172, 2010.

[20] A. S. Abdullah, M. A. Abed, and I. Al Barazanchi, “Improving face recognition by elman neural network

using curvelet transform and HSI color space,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 430–437, 2019.

[21] I. Al Barazanchi and H. R. Abdulshaheed, “Adaptive Illumination Normalization Framework based on

Decrease Light Effect for Face Recognition,” Jour Adv Res. Dyn. Control Syst., vol. 11, no. 01, pp. 1741–

1747, 2019.

