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Abstract 
  The scale mixture of normal mixing with Rayleigh as representation of Laplace prior of 𝛽 has introduced by 

Flaih et al. [1]. We employed this new scale mixture for the adaptive lasso Binary regression. New hierarchical 

model is considering, as well the Gibbs sampler algorithm in introduced. We considering the new penalized 

Bayesian adaptive lasso in Binary regression as variable selection method in case of presenting they high 

dimensional data. The new proposed model can overcome the multicollinearity problem in predictor variables. 

We conducting simulation analysis, as well as real data application to show the performance of the proposed 

method. 
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1. Introduction 

Recently the applications of binary regression model has been widely common , the binary regression is one of 

the most well know models that estimate the conditional mean function 𝐸((𝑌|𝑋)). This paper discusses the 

binary regression model that proposed by David [2] .which  is explain the dependent (response) variable 𝑦  as 

a dichotomous or dummy variable ,that is means ,we have binary response variable .When the response variable 

has exactly two values (𝑦 = 0  𝑜𝑟 𝑦 = 1), then we often speak of binary model. We employed the binary 

regression model analysis through Bayesian point of view. Katerina et al [3] proposed the binary quintile 

regression and variable selection problem by using reweighted least squares method. The main objective of this 

paper is to how deal with the variable selection problem easily in Bayesian analysis for the Binary regression 

model and how the regularization method (adaptive lasso) proves the performance of Bayesian techniques like 

Gibbs sampler algorithm in prediction accuracy for the binary regression [4]. regression choice is the big deal 

to be aware about in the analysis of data. Choosing the appropriate regression model gives more interpretability 

and more efficient estimates and leads meaning full point estimation in terms of bias and variances of estimators. 

So consequently, we can say that the Binary regression is suitable for the binary response variable [5]. Dries 

and Poel [6] develop a Bayesian Gibbs sampler algorithm for the Binary quantile regression model and defined 

the standard Binary regression model as the following simple measurement equation 

 

𝑦𝑖 = {
1  𝑖𝑓   𝑦∗ = 𝑋𝑖

𝑡𝛽 + 𝑒𝑖 ≥ 0

0 𝑖𝑓  𝑦∗ = 𝑋𝑖
𝑡𝛽 + 𝑒𝑖 < 0

                                                               (1.1) 

Model (1.1) is the widely commonly used form for the Binary response regression model. That assume the range 

of 𝑦∗ ∈ (−∞, ∞) is an observable response variable. 

From form (1.1) 𝑦𝑖 is the observable variable  can be defined as an indicator of the 𝑖𝑡ℎ- response individual ,and 

its values determined by the  unobservable (latent) variable  𝑦∗ ,𝑥𝑖 = (𝑥𝑖, … . , 𝑥𝑝)  of explanatory variables , 

𝛽𝑡 = (𝛽1, … . . 𝛽𝑝) of coefficients, and 𝑒𝑖  is the term of random error  𝑖 = 1, … . . , 𝑛. Here  𝑝 is the number of 

predictors and  𝑛  is the sample size of observation. Katerina et al. in [3] assumed that if  𝑒𝑖~𝑁(0, 𝜎2), then the 

binary probit analysis model arises. 
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In this paper we derive the binary regression model (BRM) by considering that the latent variable (unobserved) 

can be formulated on the measurement model relating to unobserved variable (𝑦𝑖
∗) to the observed (𝑦𝑖) variable, 

binary outcome [7]. 

 

Regression analysis involve examine the interpretability of the model through the correct functional form which 

the irrelevant  explanatory variable that have smaller effect on the response variable must be removed ,because 

the large number of explanatory variables in the model may be hard to interpret, consequently overfitting can  

produced invalidate the model by involving too many irrelevant explanatory variables which are not effect on 

the response variable, therefore, variable selection procedures are very helpful to remove the irrelevant  

explanatory variables. 

 

Robert [8] produced the lasso and Bayes lasso regression models that can be considering as variable selection 

method, which give zero for some irrelevant predictor variables and then removed it from the regression model, 

this new penalized method produced more interpretable and more prediction accuracy model. In 2008 Park and 

Casella [9] proposed the Bayesian concept for the lasso method through defining the prior distribution of 

regression parameters as scale mixture of normal mixing with exponential distribution on their variances. Himel 

and Yi [10] proposed new scale mixture for the prior distribution, which are uniforms mixing with 

𝐺𝑎𝑚𝑚𝑎(2, 𝜆), Abbas and Alhamzawi in [5] produced adaptive lasso Binary regression by considering that the 

prior distribution of 𝛽  is a scale mixture of uniforms mixing with standard exponential. 

 

As seen in [1], introducing the Bayesian lasso and adaptive lasso based on considering that the prior distribution 

of 𝛽  is normal mixing with Rayleigh distribution, and also work motivated us to utilize the proposed scale 

mixture in Binary response regression model (1.1). 

 

2. Bayesian adaptive lasso binary response regression (BALBRReg) 

Zou [11] introduced the frequentist adaptive lasso and defined the adaptive lasso estimators as follows, 

 

𝛽̂𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑙𝑎𝑠𝑠𝑜 =  = ‖𝑌 − 𝑋𝑡𝛽‖2
𝛽      

𝑎𝑟𝑔𝑚𝑖𝑛
+ 𝜆 ∑ 𝑤𝑗|𝛽𝑗|

𝑝

𝑗=1

,                                             (1.2) 

 where 𝜆 ∑ 𝑤𝑗|𝛽𝑗|
𝑝
𝑗=1   is the penalty function with  𝜆 ≥ 0 , the shrinkage parameter and 𝑤𝑗 are the weights (𝑤𝑗 >

0). 

Minh-Ngoc and Nott [12], standard the minimization problem (1.2) in Bayesian point of view and considered 

the Bayesian regularization adaptive lasso estimator as follows, 

𝛽̂𝐵𝐿 =  = ‖𝑌 − 𝑋𝑡𝛽‖2
𝛽      

𝑎𝑟𝑔𝑚𝑖𝑛
+ ∑ 𝜆𝑗|𝛽𝑗|

𝑝

𝑗=1

,                                                     (1.3) 

The minimization problem (1.3) gives different shrinkage, parameter 𝜆𝑗 for each 𝛽. 

 

Flaih et a. in [1]. proposed new scale mixture that motivated us to study new Bayesian parameter analysis for 

the Binary response regression model, their proposed scale mixture takes the following representation form.   

𝜋(𝛽|𝜆, 𝜎2) =
𝜆

2𝜎2
𝑒𝑥𝑝 [−

𝜆|𝛽|

𝜎2
] = ∫

1

√2𝜋𝜎2𝜀

∞

0

𝑒
−

𝛽2

2𝜎2𝜀   
𝜆

2
 𝑒

−𝜆𝜀
2     𝑑𝜀                          (1.4)   

The prior 𝝅(𝜷|𝝀, 𝝈𝟐) in (1.4) conditioning on 𝝈𝟐  to generate the unimodality of the posterior distribution of 𝜷 

, for more details see in [9]. The presentation form (1.4) proved that it is a comparative formula in producing 

stationary Gibbs sampler algorithm. 

 

2.1.  The BALBRR hierarchical model  

The hierarchical model for the Bayesian adaptive lasso Binary response regression model is considering based 

on the scale mixture form (1.4) and the measurement model (1.1) and defined as follows, 

𝑦𝑖 = {
1  𝑖𝑓   𝑦∗ = 𝑋𝑖

𝑡𝛽 + 𝑒𝑖 ≥ 0

0 𝑖𝑓  𝑦∗ = 𝑋𝑖
𝑡𝛽 + 𝑒𝑖 < 0

  ,                                                        (2) 
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                                                                      𝑦∗|𝑥, 𝛽, 𝜎2~𝑁𝑛(𝑥𝑡𝛽, 𝜎2𝐼𝑛) ,                                                               (3) 

                                                               𝛽|𝜎2, 𝜀1, 𝜀2,, … 𝜀𝑝~𝑁𝑝(0, 𝜎2𝑣𝜀),                                                          (4) 

                                                                 𝑣𝜀 = 𝑑𝑖𝑎𝑔 (𝜀1, 𝜀2,, … 𝜀𝑝),                                                                  (5) 

                                                                𝜀1, 𝜀2,, … 𝜀𝑝~𝜋𝑗=1
𝑝

=
𝜆

2
𝑒−

𝜆𝜀𝑗

2   𝑑𝜀𝑗 ,                                                       (6) 

𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎  
𝜆~𝐺𝑎𝑚𝑚𝑎 (𝑎, 𝑏) 

2.2.  The full conditional posterior distribution for the BALBRR model 

 

The Gibbs sampling algorithm is implementing with the following full conditional posterior distribution of 

BALBRR model. 

1- The full conditional posterior distribution of the latent response variable  𝒚∗ is defined of follows. 

                             𝑦∗ = {
𝑦 = 1  𝑖𝑓   ~𝑁𝑛(𝑋𝑖

𝑡𝛽, 𝜎2𝐼𝑛)𝜋𝑖=1
𝑛      𝐼{𝑦𝑖 > 0}

𝑦 = 0 𝑖𝑓  ~𝑁𝑛(𝑋𝑖
𝑡𝛽, 𝜎2𝐼𝑛)𝜋𝑖=1

𝑛       𝐼{𝑦𝑖 > 0}
                                             (7) 

 

2- The full conditional posterior distribution  𝜷  is  

 

                                               𝜋(𝛽, 𝜆, 𝜎2|𝑦∗, 𝑥)𝛼𝜋(𝑦∗|𝑥, 𝛽,𝜎2, 𝜆)𝜋(𝛽|𝜎2)                                                       (8) 

                                                ∝ −
1

2𝜎2
[(𝑦 − 𝑋𝛽)𝑡(𝑦 − 𝑋𝛽)] −

1

2𝜎2 𝛽𝑡𝑉𝑐𝛽                                                       (9) 

                                               ∝ −
1

2𝜎2
[(𝛽 − 𝐶−1𝑋𝑡𝑦)𝑡𝐶(𝛽 − 𝐶−1𝑋𝑡𝑦)],                                                      (10) 

where is the multivariate normal distribution with mean 𝑪−𝟏𝑿𝒕𝒚  and variance 𝝈𝟐𝑪−𝟏 , for more details See In 

[1]. 

3- The Full conditional posterior distribution for 𝜎2 is the following inverse Gamma distribution 

 
                                                       𝜋(𝜎2|𝑦∗, 𝑥, 𝛽)𝛼𝜋(𝑦∗|𝑥, 𝛽,𝜎2)𝜋(𝜎2)                                                         (11) 

                                          ∝ (𝜎2)
𝑛

2𝑒
−

1

2𝜎2(𝑦−𝑋𝛽)𝑡(𝑦−𝑋𝛽)
     (𝜎2)−𝛼−1   𝑒

−
𝑟

𝜎2                                                     (12) 

                                                                ∝  (𝜎2)
−𝑝

2   𝑒
−

1

2𝜎2𝛽𝑉𝜀
−1𝛽

                                                                      (13) 

                      ∝ (𝜎2)−
−𝑛

2
−

𝑃

2
−(𝛼+1)  exp [− {

1

2𝜎2
(𝑦 − 𝑋𝛽)𝑡(𝑦 − 𝑋𝛽) +

1

2𝜎2 𝛽𝑉𝜀
−1𝛽 +

𝑟

𝜎2}]                             (14) 

 

Which is the inverse gamma with shape parameter 
𝒏

𝟐
+

𝑷

𝟐
+ 𝜶  and scale parameter  

(𝒚−𝑿𝜷)𝒕(𝒚−𝑿𝜷)

𝟐
+

𝜷𝑽𝜺
−𝟏𝜷/(𝟐 + 𝒓). 

4- The full conditional posterior distribution of 𝜀 is inverse Gaussian distribution  

 

𝜋(𝜺|𝛽,𝜎2, 𝜆)𝛼𝜋(𝛽|𝜺,𝜎2, 𝜆)𝜋(𝜺)                                                       (15) 

∝ (𝜺𝒋)−
𝟑

𝟐 exp (
−𝛽𝑗

2

2𝜎2𝜺𝒋
)(

𝜆𝜺𝒋

2
)                                                             (16) 

∝ (𝜺𝒋)−
𝟑

𝟐 exp (
𝛽𝑗

2(
1

𝜺𝒋
−√𝜆𝜎2 𝛽𝒋

𝟐⁄ )

2𝜎2(1 𝜺𝒋⁄ )
)                                                          (17) 

Which is inverse Gamma (√
𝜆𝜎2

𝛽𝒋
𝟐 , 𝜆) 

5- The full conditional posterior distribution of 𝜆 is Gamma  

 

𝜋(𝜺𝒋|𝜆)𝛼𝜋( 𝜆𝑗|𝜺𝒋)𝜋(𝜆𝑗)                                                          (18) 

∝ 𝜋𝑗=1
𝑝 𝜆

2
 𝑒−

𝜆

2
𝜺𝒋   (𝜆)𝑎−1𝑒−𝑏𝜆                                                        (19) 
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∝ 𝜆𝑝+𝑎−1 𝑒𝑥𝑝 [−𝜆(
1

2
∑ 𝜺𝒋 + 1)

𝑝
𝑗=1 ]                                                    (20) 

 Which is Gamma (p+a , 
𝟏

𝟐
∑ 𝜺𝒋 + 𝟏)

𝒑
𝒋=𝟏  

By following the hierarchical model and the posterior distributions of the interested parameters, we created an 

efficient simple fast Gibbs sampler algorithm for finding the interested parameters estimation. For comparting 

our proposed models performing, we used different exists estimation methods. 

 

3. Simulation analysis 

   

In this section, we employed the simulation techniques for comparing the proposed model with the Bayesian 

binary regression (BBReg) that introduced by Martin Quinn, park and Bayesian lasso Binary quantile regression 

(BLBQReg) that proposed by D,f. Benot et al In[6], the simulation study conducted based on three samples 

sizes , low sample size n=15 ,medium sample size  n=75, and large sample size  n=150. For each sample size, 

we assumed that the error form distributes as the following different distributions: 

1- 𝜖𝑖~𝑁(0,1)  , The standard normal distribution, 

2- 𝜖𝑖~𝑁(2,2) + 𝑁(3,3) , The mixed normal distributions, 

3-  𝜖𝑖~𝐿𝑎𝑝(0,1) , The standard Laplace distribution, 

4-  𝜖𝑖~𝐿𝑎𝑝(1,1) + 𝐿𝑎𝑝(1,1) , The mix Laplace distribution,  

5- 𝜖𝑖~𝑡(5) , The t-student   distribution with degree freedom 5, 

We draw 11000 iterations from the Gibbs sampler algorithm, the first 1000 iterations have been burned in. The 

mean absolute error (MAE) criterion has used, as well the standard deviation (SD) criterion for comparing 

between the proposed model and other estimations methods;  

 

𝑀𝐴𝐸 =
∑ |𝑋𝛽̂−𝑋𝛽𝑡𝑟𝑢𝑒|

𝑝
𝑖=1

𝑝
     ,   𝑆𝐷 =

∑ (𝑋𝛽̂−𝑋𝛽𝑡𝑟𝑢𝑒)2𝑝
𝑖=1

𝑝
                                        (21) 

1-Simulation case 1 (very sparsity model) 

 

We simulate a random data with seven independent random variables (𝑝 = 7), each with 100 observations 

(n=100), the true regression coefficients vector is ,  

𝛽𝑡𝑟𝑢𝑒 = (1, 06) 

 That is 

𝑦𝑖 = ∑ 𝑋𝑖
7
𝑖=1 𝛽𝑖 + 𝜖𝑖                                                                  (22) 

The matrix of the predictors variables (observations) 𝑋~𝑁(0, Σ), under different types of error distributions. 

The following table show the values of MAE and SD for the different scenarios. 

 

Table 1. The MAE and SD values under different seniors, for very sparse model 

𝐿𝑎𝑝(1,1)
+ 𝐿𝑎𝑝(2,2) 

𝑒𝑖~𝐿𝑎𝑝(0,1) 𝑒𝑖~𝑡(5) 𝑒𝑖~𝑁(2,2)
+ 𝑁(3,3) 

𝑒𝑖~𝑁(0,1)) Methods   

 

 

 
Sim1  

(1.231)(1.002) (0.873)(0.508) (0.834)(0.672) (0.784)(0.548) (0.652)(0.442) BLBQReg  

n=15 )1.545 ()1.305) )0.639 ()0.845) )0.568 ()0.806) )0.756 ()0.955) )0.385 ()0.856) BBReg 

(1.423)(1.357) (0.683)(0.430) (0.567)(0.743) (0.634)(0.643) (0.723)(0.539) BALBRR eg 

)1.342 ()1.211) )0.438 ()0.563) )0.530 ()0.634) )0.473 ()0.505) )0.304 ()0.450) BLBQR eg  

n=75 (1.214)(0.993) (0.765)(0.574) (0.837)(0.655) (0.773)(0.572) (0.532)(0.410) BBReg 

(1.340)(1.312) (0.453)(0.404) (0.563)(0.490) (0.845)(0.530) (0.682)(0.451) BALBRR eg 

)0.892 ()0.859) )0.397 ()0.379) )0.456 ()0.452) )0.201 ()0.263) )0.341 ()0.238) BLBQReg  

n=15

0 
)0.985 ()0.982) )0.305 ()0.403) )0.456 ()0.344) )0.222 ()0.267) )0.324 ()0.301) BBReg 

)0.845 ()0.923) )0.388 ()0.394) )0.378 ()0.435) )0.106 ()0.196) )0.242 ()0.201) BALBRReg 

 
Table 1, shows the values of MAE and SD at different , sample size and different error distributions for the 

proposed method (BALBRReg),the (BLBQReg)  and the (BBReg), we can conclude that our proposed method  

is comparable with the different methods and performs better ,based on the values MAE and SD ,where are less 
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than the values of the different methods .that is the proposed method gives more prediction accuracy and 

variable selection comparing with the different methods, especially at n=150 . 

 

2- Simulation case 2 (very density)  

Following the same procedure in simulation example 1, but here we consider the true vector of regression 

parameter is  

𝛽𝑡𝑟𝑢𝑒 = (0.85)𝑡 , which is the very density case, we simulate  𝒚𝒊 as follows  

𝑦𝑖 = ∑ 0.85𝑋𝑖
7
𝑖=1 + 𝜖𝑖                                                             (23) 

We generate  𝑋~𝑁(0, Σ), with n=100 under different types of error terms densities. The following table shows 

the values of MAE and SD criterions for the very density case. 

 

Table 2.  The MAE and SD values for very density under different scenarios. 
𝑒𝑖~𝐿𝑎𝑝(1,1)
+ 𝐿𝑎𝑝(2,2) 

𝑒𝑖~𝐿𝑎𝑝(0,1) 𝑒𝑖~𝑡(5) 𝑒𝑖~𝑁(2,2)
+ 𝑁(3,3) 

𝑒𝑖~𝑁(0,1)) Methods   

 

 

 

 

 

Sim2  

(1.364)(1.227) (0.738)(0.673) (0.672)(0.642) (0.654)(0.403) (0.735)(0.46) BLBQReg  

n=15 )1.365()1.267) )0.582()0.634) )0.623()0.646) )0.563()0.458) )0.503()0.742) BBReg 

(1.364)(1.243) (0.740)(0.668) (0.729)(0.638) (0.465)(0.534) (0.637)(0.472) BALBRReg 

)1.221()1.470) )0.539()0.662) )0.694()0.605) )0.734()0.450) )0.436()0.516) BLBQReg  

n=75 (1.340)(1.442) (0.638)(0.473) (0.693)(0.730) (0.431)(0.546) (0.653)(0.536) BBReg 

(1.365)(1.403) (0.404)(0.432) (0.634)(0.545) (0.745)(0.342) (0.483)(0.538) BLBQReg 

)0.648()0.734) )0.263()0.373) )0.430()0.443) )0.322()0.301) )0.386()0.347) BALBRReg  

n=150 )0.553()0.610) )0.293()0.306) )0.322()0.240) )0.201()0.243) )0.423()0.175) BBReg 

)0.543()0.453) )0.225()0.205) )0.278()0.135) )0.152()0.111) )0.123()0.432) BALBRReg 

 

  By looking at the values of MAE and SD for the different sample sizes and the different types of errors 

densities, we can see that our performance of our proposed model BALBRReg comparing with BLBQReg and 

BBReg, where the less values of MAE and SD are in our proposed model, which indicates the more estimation 

accuracy and the best variable selection in the view of the true vectors of parameters estimates. 

3- Simulation case 3 (sparse case) 

 

The true vector of parameters estimates is 

  

𝛽𝑡𝑟𝑢𝑒 = (5,0,0,0,5,0,5)𝑡      and the regression model is  

𝑦𝑖 = 5𝑋𝑖1 + 5𝑋𝑖5 + 5𝑋𝑖7 + 𝑒𝑖,                                                       (24) 

The data generated from 𝑋~𝑁(0, Σ),  with 100 observations with five different types of errors as describes in 

the previous examples. The following table shows the values of MAE and SD criterions. 

 

Table 3.  MAE and SD values for sparse model under different sample size and different error models 
𝑒𝑖~𝐿𝑎𝑝(1,1)
+ 𝐿𝑎𝑝(2,2) 

𝑒𝑖~𝐿𝑎𝑝(0,1) 𝑒𝑖~𝑡(5) 𝑒𝑖~𝑁(2,2)
+ 𝑁(3,3) 

𝑒𝑖~𝑁(0,1)) Methods   

 

 

 

Sim3  

(1.648)(1.548) (0.631)(0.773) (0.725)(0.649) (0.753)(0.693) (0.845)(0.534) BLBQReg  

n=15 )1.403()1.341) )0.623()0.730) )0.660()0.742) )0.682()0.563) )0.634()0.873) BBReg 

(1.463)(1.372) (0.602)(0.521) (0.845)(0.720) (0.502)(0.528) (0.734)(0.504) BALBRReg 

)1.734()1.636) (0.682 ()0.724) )0.644()0.705) )0.532()0.536) )0.734()0.435) BLBQReg  

n=75 (1.530)(1.356) (0.535)(0.401) (0.745)(0.632) (0.463)(0.605) (0.564)(0.534) BBReg 

(1.648)(1.592) (0.496)(0.567) (0.565)(0.627) (0.620)(0.546) (0.435)(0.354) BALBRReg 

)0.730()0.846) )0.395()0.400) )0.511()0.500) )0.367()0.401) )0.212()0.241) BLBQReg  

n=150 )0.486()0.536) )0.362()0.356) )0.293()0.362) )0.206()0.374) )0.203()0.116) BBReg 

)0.374()0.342) )0.377()0.536) )0.201()0.200) )0.200()0.220) )0.211()0.231) BALBRReg 

 

From the table 3, the values of MAE and SD for the proposed model are less than the other different models, 

which indicates the out performance of the BALBRReg over the BLBQRReg and BBReg models. 
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Consequently, the estimation accuracy and variable selection with the proposed model is more reliable in 

comparing with other models. 

 

 

 

 

 

  

 

 

 

 

 
Figure 1. The closed of estimation values with true value 
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The following figure summarized the simulation examples results, where in the first and second examples when 

the error term follows the standard normal distribution, our proposed model shows the closed parameters 

estimates for the true vector which indicates the outperformance of the proposed model. 
4. Real data analysis 

For the application proposes, we select the general hospital in Hala, where data have collected for 200 patients 

from the historical record. the response variables were blood sugar level and the predictors are as follows: age 

(𝑋1), weight (𝑋2), genetic factors (𝑋3), number of meals during the day (𝑋4), Dose the patient use diabetic? 

(𝑋5), is the patient suffering from a disorder of the pituitary glands? (𝑋6), number of exercise hours (𝑋7), internet 

hours (𝑋8), marital status (𝑋9),  residence place (𝑋10), monthly income (𝑋11), is the patient exposed to 

psychological pressure? (𝑋12), is the patient undergoing mental stress? ( 𝑋13), number of soft and energy drinks 

during the day (𝑋14), injury or surgery history (yes or no) (𝑋15). 

 

After collecting the data for 200 patients, we employed the proposed method and compared the results with the 

same method that used in simulation analysis, the mean square error (MSE) has used to judge the performance 

of the different methods. The following table explain the estimates of the MSE as well the standard error   

 

Table 4.  The values of MSE as S.E 

BALBRReg BBReg BLBQReg  Methods  

102 174 243 MSE 

0.379 0.632 0.885 S.E 

 
Table 4 shows that the proposed model (BALBRReg) have the minimum estimates of the MSE and S.D. 

comparing with (BLBQReg) and (BBReg), that is the outperformance of the proposed model in point view of 

estimation accuracy.  

 
5. Conclusions 

 

In this paper we have presented new regularization technique in point view of Bayesian for the adaptive lasso 

Binary regression model based on the scale mixture of normal mixing with Rayleigh distribution as 

representation of the Laplace prior distribution of the parameter  𝜷. New hierarchical model and prior 

distributions, as well as the full conditional posterior distributions have been developed for implementing an 

efficient and easy Gibbs sampler algorithm.  The proposed model, Bayesian Adaptive Lasso Binary Response 

Regression (BALBRReg) displayed the outperformance in the point view of variable selection and the 

prediction accuracy comparing with Bayesian binary regression (BBReg), and Bayesian lasso Binary quantile 

regression (BLBQReg) based on the simulation examples and the real data application. 
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