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ABSTRACT   

The monthly and annual time series of the flow of the Tigris River at Al-Amara barrage was analyzed in order to 

forecast the annual and monthly future values of discharge of that river. The monthly series from 1980-2010 was used 

as data for this analysis.  Non-homogeneity was detected in the series with significant positive jump’s observed in the 

periods 1987-1988 and 1992-1997. The non-homogeneity was removed using the method suggested by Referance [1]. 

A Box and Cox [2] transformation was then used to normalize the homogeneous series. The dependent stochastic 

component was obtained from the series after removing the periodic component, which was observed using harmonic 

analysis after fitting the normalized series. A first-order auto-regressive model (Markovian chain) was then used to 

model the last obtained component. The data in the period 1980-2000 was used to conduct that analysis. For 

generation of a future series, the model was verified using the remaining 9-years, 2001-2010. Some statistical 

properties were obtained for both the forecasted and the observed series and then used to compare the two series. The 

comparison indicates that the model is capable of forecasting acceptable future data. 
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1. Introduction 

Al-Amara Barrage is located on the Tigris River. Four regulators branch off upstream, namely: Al-Biterah, 

Al-Musharah, Al-Areedh, and Al-Kahlaa. Al-Amara Barrage is located about 450 m upstream of the Al-

Kahlaa branch. The barrage has a navigation lock and a fish passage. In addition, it provides an adequate 

quantity of water to irrigate the land located on both sides of the Tigris River. Many marshes in the south of 

Iraq are fed predominately by the Tigris and its distributaries such as the Al- Huwaizah and Al-Hammar 

marshes. These marshes collect overflow water from the main channel of the Tigris during the wet season. 

Thus, it is important to predict the future values of the discharge of the Tigris River in order to sustain all the 

projects mentioned above. In addition, predicting a river flow is an important task for some events such as 

flood, managing of water resources, operation of reservoirs and planning, as well as designing new projects, 

etc. Therefore, a mathematical model was built using a time-series technique to estimate the statistical 

parameters.  In this study, the data of the monthly discharge of the Tigris River at Al-Amara barrage was used 

to build a stochastic model in order to predict the future flowrate of this river.  

In reference [4], the data of Total suspended solid TSS in the Euphrates River were used to build the 

mathematical model using the first-order auto-regressive model (Markovian chain) to predict future 

concentration. The result of the observed model indicates that it is capable of producing acceptable future 

data. In Reference [11], the researchers implemented a forecasting system for the Danube, Rhine and Elbe 

rivers in Germany using two approaches: the hydrological model with the statistical approach using empirical 

relationship and meteorological data with streamflows. They found that; for some stations; the meteorological 

forcing has more effect on seasonal forecast than the initial hydrological conditions. In Reference [13],  a 

simple, low-cost method was innovated using combinations of well-known techniques (the Monte Carlo 

method, regression analysis and cumulative probability distribution function) to forecast the annual and 
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monthly streamflows of a hydrological year. The new method showed accurate results, in which, it's improved 

as the observed months increases. The peak river flow statistics were estimated using a hydrological model 

(Niger-HYPE) [12]. The authors tested the estimated peak flow with the observation values. The results show 

that the model capable in simulating the peak discharge  (on average + 20%). The model was then used with a 

meteorological data to test the forecasting capacity. The results show good forecasting capacity with 17% 

deviation. In Reference [15] three models hydrologic sensitivity, multi-regression and hydrologic model 

simulations were used to assist the impact of human activities and climate change on the Lower Zab River 

basin (LZRB). The long-term runoff series from 1979 to 2013 was used for this analysis. The researcher was 

find that the climate variability was the main causes of reduction (66–97%) in streamflow, while human 

activities caused reductions of 4–34%. Two methods, namely, Chi-Square Automatic Interaction Detector 

(CHAID) and Optimally Pruned Extreme Learning Machine (OPELM) were used to model the deterministic 

parts of monthly streamflow equations, while for the stochastic parts, Autoregressive Conditional 

Heteroskedasticity (ARCH) was used in modeling monthly streamflow equations [16]. All the mentioned 

models were integrated to enhance the accuracy of these models. The results remarkably reveal that modified 

models show more accurate results comparing with the other models. In reference [9], a Hidden Markov 

Model was used to forecast meteorological droughts in Nile river basin. The results obtained from the Hidden 

Markov Model agree with the observed values regarding the SPI time series. Several models namely: 

Seasonal AutoRegressive Integrated Moving Average (SARIMA) model, Periodic AutoRegressive Moving 

Average (PARMA) model, Deseasonalized AutoRegressive Moving Average (DARMA) model, and; and the 

nonlinear Artificial Neural Network (ANN) model were used for modeling monthly streamflow at Eldiem 

station [7]. It was concluded that the nonlinear model (ANN) was more accurate than the other models in 

forecasting the monthly streamsflow. The monthly and annual flow rate of the Jarrahi river were forecasted 

using the stochastic model [6]. The authors used an auto-regressive moving average for modeling annual data 

and a multivariate auto-regressive moving average for modeling monthly data. In reference [5], the authors 

developed short-term flow forecasting models for the Bow River in Canada. The daily discharges collected 

from three-gauge stations were used to evaluate the accuracy of several regression models and the base 

difference (newly proposed). They suggested that the Banff and Calgary stations could be considered for 

forecasting the flow in Calgary because it require a few number of gauge stations. Two commonly used 

hydrologic models; the Deseasonalized Auto-Regressive Moving Average (DARMA) models and Seasonal 

Auto-Regressive Integrated Moving Average (SARIMA) models were selected for modeling monthly 

streamflow in the White Nile; Blue Nile; Atbara River and the Nile river [14]. It was concluded that the 

DARMA model performs better than the SARIMA model for monthly streamflow in rivers. In reference [3], 

three different models, namely multiple regression, second-order auto-regressive, and classic Box–Jenkins [2] 

models were used for simulating and predicting daily stream water temperatures on the Moisie River. The 

results indicated that the second-order auto-regressive model provided the best results. 

In general, the time series of any hydrological model may consist of two components according to the variable 

as well as the average time interval. For instance, in a seasonal river flowrate series (Qt), two components may 

exist, namely the deterministic and stochastic components (εQ) and the flowrate is detected from those 

components. The deterministic part may consist of three components, namely the jump (JQ), trend (TQ), and 

periodic or cyclic components (PQ). These components may be formulated by: 

                                                                          (1) 

The deterministic part (1) is represented by the first three components, while the fourth component represents 

the non-deterministic part. By using a suitable formulation, the deterministic part (represented by the three 

mentioned components) should be detected and separated from the stochastic component. 

2. Methodology and results 

The following process was employed to perform the analysis:  

Test the homogeneity of the data series by some statistical tests, if non-homogeneity exists, it will be removed 

by a suitable method. This was achieved using the spilt-sample method of dividing the sample into two sub-

samples. The difference between the mean and standard deviation of these two sub-samples at the 95 percent 

probability level of significance were tested using the t-test method.  The non-homogeneity was detected for 
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the series and found to be non-homogeneous for the periods of 1987-1988 and 1992-1997, as shown in Figure. 

(1).  

 

Figure 1. The original historical data divided into two sample tests 

Using (2), the calculated t-value was found to be greater than the tabulated t-value. In order to remove the 

non-homogeneity from the series, the method suggested by Reference [1] was used. This was done using a 

linear regression equation for the annual mean, as well as for the annual standard deviation. The regression 

coefficient of the first sub-sample was calculated and the results summarized in Table 1. 

                                                       (2) 

       And, 

                                  (3) 

where, 

X1 = mean of first sub-sample 

X2 = mean of second sub-sample  

n1, n2 = number of years in the first and second sub-samples, respectively 

Xi, Xj = annual value of the first and second sub-samples, respectively 

 

Table 1. The regression coefficient of the first sub-sample. 

Parameter The regression coefficient of 

mean 

The regression coefficient of 

sd 

Data 97.864 2.8491 45.918 0.4542 

 The first sub-sample was then transformed using the following equation: 

                            (4) 

where, 

Y = homogeneous series (transformed)  

X = non-homogeneous series (historical) 

j, t = the position of the annual and seasonal original data, respectively 

Xj, Sj = equations of linear regression for annual mean and standard deviation versus Years 

Av2, Sd2 = the average and standard deviation for the second subsample, respectively 

sub-sample 1 

Mean=126.4 

sub-sample 2 

Mean=111.9 

t-calculated=4.425 

t-tabulated=1.703 
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Two sub-samples were established; the period 1980-2000 represents the first sub-sample, while the 

second sub-sample is represented by the period 2001-2010. The first sub-sample was transformed 

according to (4). The homogeneity was checked again for the two sub-samples using a t-test.  

Fig. (2) and Table 2 show the results of applying  (4). The calculated t-values are less than the tabulated t-

values. Thus, the transformed series is homogeneous. 

 
Figure 2. The original series and the series after removing the non-homogeneity 

Table 2. Mean and standard deviation of both sub-samples before and after removing the non-homogeneity.  

 Before removal After removal 

Mean Standard deviation Mean Standard deviation 

Sub-sample 1 126.4 41.38 111.9 14.28 

Sub-sample 2 111.9 14.28 111.9 14.28 

 

The homogenous data was transformed to a normal distribution using Box and Cox transformation [2]. 

This is done by removing the skewness in the data, in other words, make it equal to zero. In order to 

perform the above transformation, the transformation coefficient value (λ) was estimated. This coefficient 

is strongly associated with the skewness coefficient (Cs) and has a value between (λ = -2) and (λ = 2). By 

using different values of λ, the values of Cs were computed for each transformed series, the results are 

shown in Table 3. These values were found to be best fitted by a second polynomial equation, as shown in 

Fig. (3). 

                            (5) 

Table 3. Different values of the Skewness coefficient versus Box and Cox transformation coefficient. 

λ  -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Cs  -1.606 -1.376 -1.167 -0.977 -0.640 -0.487 -0.341 -0.200 -0.061 0.075 0.209 0.342 

 
Figure 3. Best fit of a second polynomial equation between the Skewness coefficient (Cs) and Box and Cox 

transformation coefficient (λ) 
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For normalizing the data, the skewness coefficient Cs (5) is replaced by zero. Thus, the value of the 

transformation coefficient (λ) becomes equal to 1.0807. Using (6) for the Box and Cox transformation, the 

(λ) value was used obtain a new series. 

 

                                   (6) 

 

where, 

y: Series after transformation 

x: Historical series 

   The monthly mean and standard deviation for the historical series and the series after transformation are 

shown in Table 4. 

Table 4. Mean and standard deviation for the observed and normalized series for the period 1980 - 2010 

  original series normalized series 

  
AV.monthly 

S.d 

monthly 
AV.monthly 

S.d 

monthly 

Oct. 83.414 32.865 110.152 46.624 

Nov. 88.489 36.227 117.527 51.749 

Dec. 92.127 33.546 122.609 48.032 

Jan 96.248 38.81 128.776 55.7 

Feb 96.437 37.602 128.973 54.092 

Mar. 94.581 37.281 126.278 53.629 

Apr. 105.311 31.912 141.56 46.146 

May 101.198 36.43 135.805 52.375 

Jun. 94.8 34.911 126.504 50.106 

Jul. 85.824 30.076 113.442 42.889 

Aug. 81.505 28.577 107.233 40.619 

Sep. 81.266 29.235 106.928 41.474 

 

To detect the existence of a periodic component, a correlogram was found using the serial correlation 

coefficient calculated using (7): 

                       (7) 

 

where, 

Y: the normalized series using to the transformation of  Box and Cox  

rk: Lag-k serial correlation coefficient (r1=Lag1, r2=Lag2, … etc) 

: Mean of all the observations 

: Position of the value in the series 

A Matlab program was written and a correlogram was drawn, as shown in Fig. (4), which indicates the 

periodicity. This figure, which is a plot of the serial correlation coefficient against the Lag, exhibits an 

oscillation at the same frequency. 
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Figure 4. Correlogram of the normalized Series 

The periodic component removal can be done by applying a non-parametric method for the normalized 

series by using the equation below.   

                      (8) 

where, 

i,j = Dependent stochastic part 

 = Mean value of the data, i represents the position (month) 

j = Standard deviation value, j represents the position (month) 

The result of  (8) represents the dependent stochastic parts (i,j). Fig. (5) shows the correlogram of the 

dependent stochastic component. From this figure, it should be noted that there are no seasonal 

fluctuations or any other oscillations.  

 

Figure 5. Correlogram of the stochastic component (p,t). 

 

To obtain the independent stochastic component (i,j), the most common model, namely the auto-regressive 

model, was used. The value of i,j was fitted by this model in which its parameters were found depending on 

the correlation represented by the lag rk serial correlation coefficient model (rk), as shown in Fig. (6). The 

first degree of the auto-regressive model (Markov model) was selected and its capability to eliminate the 

series of the dependent part (i,j) was examined. The value of the lag-one (r1) serial correlation coefficient 

was found to be r1=0.8957. This was then used in the Markov model, which expresses the relationship 

between i,j and i,j as follows: 

                       (9) 

Using the value of r1=0.8957 in (9), the independent stochastic series i,j, could be found as  follow: 

i,j =(i,j -0.8957 i,j-1)/0.4446                               (10) 
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The adequacy of the first degree of the auto-regressive model was tested. This was done by finding the 

correlogram of the independent stochastic component (i,j).  From Fig. (6), all the coefficient values of serial 

correlation are almost near a zero value. Thus meaning that the first degree of the auto-regressive model 

(Markov model) is suitable since the dependents of the value (i,j) were removed, as shown in Fig. (6). 

 
Figure 6. Correlogram of the Independent Stochastic Component (i,j) according to first-order auto-regressive 

model. 

After finding the parameters of the model, this model was verified using the remaining data that was not 

previously included in the process of estimating the parameters of the model. This data was in the period 

2001-2010. The Matlab program was used for generation of future series of the flowrate. The forecasted series 

was then compared with the observed one in order to test the performance of the new model. Nine series were 

generated as shown in Table 6, Table 7 and Table 8 for three runs (run1, run2, and run3). Fig. (7) illustrate the 

values of the monthly mean streamflow obtained using the generated series run1, run2, and run3, as well as 

the observed flowrate. It can be noticed that the model performs well for most of the months, when compared 

with the observed data. 

The mean values, standard deviation and coefficient of skewness of the forecasted series as well as the 

observed values are shown in table 9.  

 

Table 6. The monthly forecasted series (run1)(i,j) for 9 years 

 Oct. Nov. Dec. Jan Feb Mar. Apr. May Jun. Jul. Aug. Sep. 

2001-2002 27.96 31.86 31.45 43.68 47.88 48.00 49.22 42.74 53.44 50.38 51.11 48.22 

2002-2003 45.20 47.92 52.70 53.09 50.53 51.79 61.94 65.91 62.22 50.13 55.05 52.57 

2003-2004 53.52 48.94 58.42 64.25 63.91 70.01 78.68 77.70 73.58 64.02 54.69 57.72 

2004-2005 55.72 50.55 43.86 38.58 48.00 56.98 48.79 46.51 40.75 37.04 46.66 49.05 

2005-2006 50.10 42.36 43.36 41.23 43.85 43.55 44.75 43.18 52.02 48.05 52.36 55.78 

2006-2007 55.75 73.16 69.94 67.71 60.31 46.46 53.57 62.48 59.86 52.37 50.27 52.40 

2007-2008 52.76 61.22 51.10 56.04 51.03 51.57 51.85 49.04 50.77 45.77 42.56 42.09 

2008-2009 42.53 46.04 52.62 63.16 61.37 52.22 58.11 52.37 45.62 38.07 34.17 34.42 

2009-2010 42.93 39.73 41.43 39.26 40.24 50.00 47.32 50.76 53.92 47.56 48.97 52.49 

mean 47.39 49.09 49.43 51.89 51.90 52.29 54.91 54.52 54.69 48.15 48.43 49.42 

Table 7. The monthly forecasted series (run2) (i,j) for 9 years 

 Oct. Nov. Dec. Jan Feb Mar. Apr. May Jun. Jul. Aug. Sep. 

2001-2002 35.92 30.53 32.56 37.65 30.85 24.66 32.97 35.79 43.66 36.64 39.47 43.30 

2002-2003 36.58 41.03 52.25 48.21 49.46 57.04 57.28 51.06 55.36 54.09 52.85 47.75 

2003-2004 47.72 51.77 48.79 40.68 47.47 58.27 61.28 48.98 47.68 43.23 40.77 38.06 

2004-2005 41.34 41.15 55.04 62.02 67.04 53.77 60.78 56.59 59.54 52.96 43.23 49.23 
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2005-2006 51.35 51.09 49.20 41.00 52.25 57.18 53.22 61.31 54.21 54.87 46.93 40.24 

2006-2007 51.22 47.85 50.46 39.90 51.46 49.52 47.13 46.21 48.76 46.11 46.81 49.21 

2007-2008 51.74 44.69 54.42 57.01 61.98 58.16 57.68 65.15 72.52 70.30 67.28 68.86 

2008-2009 67.58 70.25 73.83 87.00 75.18 67.62 65.01 76.48 60.25 66.82 55.82 47.80 

2009-2010 52.71 60.13 56.19 66.59 65.61 71.50 76.96 64.36 57.09 50.80 48.71 48.48 

mean 48.46 48.72 52.53 53.34 55.70 55.30 56.92 56.21 55.45 52.87 49.10 48.10 

Table 8. The monthly forecasted series (run3) (i,j) for 9 years. 

 Oct. Nov. Dec. Jan Feb Mar. Apr. May Jun. Jul. Aug. Sep. 

2001-2002 31.75 29.47 30.30 25.77 31.69 38.97 52.23 53.12 59.23 56.10 55.78 51.94 

2002-2003 51.51 56.95 61.04 65.22 55.96 55.61 51.93 48.60 36.04 41.08 42.85 44.17 

2003-2004 51.08 56.68 55.73 52.82 50.18 52.63 56.65 51.69 48.70 43.53 35.63 39.62 

2004-2005 46.47 44.42 46.87 48.44 55.40 51.80 46.52 41.64 45.81 49.40 40.40 42.40 

2005-2006 38.31 42.02 43.97 51.48 45.31 45.33 51.74 55.83 53.69 50.81 53.94 54.32 

2006-2007 53.59 50.89 55.66 58.22 57.12 61.50 62.44 65.25 61.78 48.31 49.58 50.55 

2007-2008 50.83 58.30 66.99 78.35 70.10 60.72 55.44 52.49 48.11 42.50 42.83 48.45 

2008-2009 49.67 51.43 57.17 57.44 51.55 47.13 52.42 58.46 66.16 57.60 60.59 48.03 

2009-2010 50.83 57.74 58.06 64.02 57.71 63.10 69.98 64.28 58.29 55.13 59.74 58.45 

mean 47.12 49.77 52.87 55.75 52.78 52.98 55.48 54.60 53.09 49.38 49.04 48.66 

Table 9. The properties of the forecasted series and the observed series 

 Mean Standard 

deviation 

Skewness 

coefficient 

Run1 46.22 11.00 0.40 

Run2 52.73 11.39 0.28 

Run3 51.79 9.05 -0.30 

Observed data 50.71 13.77 0.56 

 

Figure 7. Comparison between the forecasted and observed series 

3. Conclusions 

1. Non-homogeneity was detected for the series of the flowrate from the Al-Amara Barrage on the Tigris 

River. 

2. A seasonal pattern was detected for the data series. This pattern may be because of the annual cyclic 

pattern of the hydrological inputs to the barrage.  

3. The power of the Box and Cox transformation equation (λ) was found to be equal to 1.0807. 
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4. The first order auto-regressive model was found to be capable of estimating the independent 

stochastic component. 

5. The forecasted series was found to have the same properties as the observed series, i.e. mean, standard 

deviation and skewness coefficient. Thus, the obtained model can predict future flowrate values. 
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