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ABSTRACT   

In this article, we developed a new loss function, as the simplification of linear exponential loss function 

(LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in 

accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior 

performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among 

maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator 

using square error loss (SE) function. The consequences have shown that a modified method is the finest for 

valuing a scale parameter, reliability and hazard functions.  
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1. Introduction 

Record values along with the related statistics stand for the relevant and imperative issues in the real-world  

applications.  Records have been very prevalent in fields of sporting, climatology, and financing or insurance. 

In terms of mathematics Chandler in 1952, has explained the investigation of record values and recognized 

numerous elementary features of records. Several scholars have deliberated inference under record values by 

means of diverse lifetime distributions as in [1-8].  

The Lomax distribution (LD) is a very popular statistical model in reliability modelling and life testing, with 

extended applications in economic sciences, actuarial modeling, queuing problems, and organic disciplines.  

Several authors have addressed inferential issues for the Lomax distribution in accordance with record values 

as in [9-16]. 

We derive, in this study, Bayes estimator based on weighted linear exponential (WLINEX) loss function for 

estimating the scale parameter θ , reliability function R(t)  and hazard function H(t) of the LD using upper 

record values. The aim is to compare a Maximum likelihood estimator, Bayesian estimator using LINEX loss 

function, Bayesian estimator using square error loss (SE) function with Bayesian estimator using Weighted 

Linear Exponential Loss Function (WLINEX).   

Let 𝑋1, 𝑋2, 𝑋3, ⋯ ⋯ be a series of independent and identically distributed (i.i.d) random variables with (C.D.F.) 

F(x) along with (P.D.F.)  𝑓(𝑥). Set 𝑌𝑛 = 𝑚𝑎𝑥(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛), 𝑛 ≥ 1, Xj stands for the upper record 

symbolized by XU(i) if 𝑌𝑗 > 𝑌𝑗−1, 𝑗 > 1 . 

Supposing that 𝑋𝑈(1), 𝑋𝑈(2), 𝑋𝑈(3), ⋯ ⋯ 𝑋𝑈(𝑛) are the 1st  n upper record values resultant from a sequence {Xi} 

of (i.i.d), Lomax variables with density function (P.D.F.):  
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𝑓(𝑥;  𝜃, 𝛿) = {𝜃 𝛿𝜃 (𝛿 + 𝜃)−𝜃−1              𝑥 ≥ 0 ;  𝛿, 𝜃 > 0
0                                       𝑜. 𝑤.

 (1) 

With cumulative distribution function (C.D.F.), we get:  

𝐹(𝑥) = 1 − 𝛿𝜃(𝑥 + 𝛿)−𝜃          𝑥 ≥ 0 ;  𝛿, 𝜃 > 0 (2) 

Here, 𝜃 and 𝛿 stand for scale and shape parameters correspondingly. In addition, a reliability function 𝑅(𝑡), in 

addition to the hazard (instantaneous failure rate) function 𝐻(𝑡) at mission time 𝑡 for the Lomax distribution 

have specified as follows: 

𝑅(𝑡) = 𝛿𝜃(𝑡 + 𝛿)−𝜃       ;    𝑡 ≥ 0 ;  𝛿, 𝜃 > 0 (3) 

𝐻(𝑡) = 𝜃(𝑡 + 𝛿)−1              ;  𝑡 ≥ 0                   (4) 

 

2. Maximum likelihood estimation (ML) 

We discuss, in this section, a maximum likelihood estimation of a scale parameter, reliability and hazard 

functions of LD specified in (1) as the available data stand for record values.     

 We assume that a shape parameter 𝛿 stands for known and the scale parameter 𝜃 is unidentified. We notice that 

the 1st  n upper record values has the LD whose P.D.F. and C.D.F have specified by (1) and (2) in that order. In 

accordance with those upper record values, for notation simplicity, we will adopt xi instead of XU(i). We have 

the joint density function of the first n upper record values 𝑥 ≡ 𝑥𝑈(1), 𝑥𝑈(2), 𝑥𝑈(3), ⋯ ⋯ 𝑥𝑈(𝑛) has specified 

according to Arnold et al. (1998) by 

𝑓1,2,3⋯⋯𝑛(𝑋𝑈(1), 𝑋𝑈(2), 𝑋𝑈(3), ⋯ ⋯ 𝑋𝑈(𝑛)) = 𝑓(𝑥𝑈(𝑛)) ∏
𝑓(𝑥𝑈(𝑖))

1 − 𝐹(𝑥𝑈(𝑖))
,

𝑛−1

𝑖=1

 

  

 

0 ≤ 𝑋𝑈(1) < 𝑋𝑈(2) < 𝑋𝑈(3), ⋯ ⋯ < 𝑋𝑈(𝑛) < ∞, 

(5) 

where 𝑓 (·), as well as F(·) are given, one-to-one, through (1) and (2) after substituting  x by  xU(i).  

A likelihood function in accordance with the n upper record values x has specified by: 

  ℓ(𝜃, 𝛿 | 𝑥) = (𝜃)𝑛 𝛿𝜃𝑢   (𝑥𝑢(𝑛) + 𝛿)
−𝜃

,   𝑢 = ∏  (𝑥𝑢(𝑛) + 𝛿)
−1

𝑛

𝑖=1

 (6) 

Based on (6), the natural logarithm of the likelihood function has written as: 

  ℓ(𝜃, 𝛿 | 𝑥) ≡ 𝐿𝑛(ℓ)   = 𝑛 𝐿𝑛(𝜃) + 𝜃𝐿𝑛(𝛿) − 𝜃 𝐿𝑛(𝑥𝑈(𝑛) + 𝛿) 

                                         −  ∑ 𝐿𝑛(𝑥𝑈(𝑖) + 𝛿)𝑛
𝑖=1      

(7) 

When a shape parameter 𝛿 has been identified and a scale parameter 𝜃 has been unidentified, a maximum 

likelihood estimates of  𝜃  is computed based on (7) as: 

𝜃𝑀𝐿 =
𝑛

𝐿𝑛(𝑥𝑈(𝑛) + 𝛿) − 𝐿𝑛(𝛿)
 (8) 

The invariance property of MLEs enables us to obtain the MLEs �̂�(𝑡)𝑀𝐿 and  Ĥ(t)ML of 𝑅(𝑡)  and   𝐻(𝑡) is 

specified by equations (3)  and  (4) after substituting  𝜃 by 𝜃𝑀𝐿 . 

�̂�(𝑡)𝑀𝐿 = 𝛿�̂�𝑀𝐿(𝑡 + 𝛿)−�̂�𝑀𝐿        ;    𝑡 ≥ 0 

 

(9) 

 

�̂�(𝑡)𝑀𝐿 = 𝜃𝑀𝐿(𝑡 + 𝛿)−1              ;  𝑡 ≥ 0

 

(10) 

3. Loss functions  

Based on Bayesian viewpoint, the selecton of loss function stands for the vital part in estimating and predicting 

problems. In this work, we use three types of loss function including squared error loss function (SE), Linear 

Exponential Loss Function (LINEX) along with Weighted Linear Exponential Loss Function (WLINEX)  

3.1. Squared error loss function (SE) 

This type has been categorized as a symmetric loss function and deems identical importance to the losses for 

overestimation and underestimation of identical magnitude. Squared error loss function is computed as follows: 

𝐿(𝜆 ̂, 𝜆) = (�̂� − 𝜆)
2
 (11) 

The Bayes estimator of  λ using this loss function, denoted by λ̂SE, is calculated by: 
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�̂�𝑆𝐸 = 𝐸𝜋(𝜆|𝑥) (12) 

3.2 Linear exponential loss function (LINEX) 

 LINEX loss function stands for asymmetric loss function, which was firstly given by Varian in [17]. Assuming 

minimal loss happens at  �̂� = (𝜃 ,  �̂�(𝑇)𝑎𝑛𝑑 �̂�(𝑡)), the LINEX loss function for   𝜆 = (𝜃 , 𝑅(𝑡) 𝑎𝑛𝑑 𝐻(𝑡)) can 

be expressed as  

𝐿(𝛥) ∝ [𝑒𝑥𝑝[𝑐𝛥] − 𝑐𝛥 − 1]           ; 𝑐 ≠ 0 (13) 

where 𝛥 = (�̂� − 𝜆) and �̂�  is an estimate of  𝜆 . The Bayesian estimator of 𝜆 in accordance with this loss function, 

denoted by �̂�𝐿𝐼𝑁𝐸𝑋, is gotten by: 

�̂�𝐿𝐼𝑁𝐸𝑋 = − 
1

𝑐
𝐿𝑛[𝐸𝜆𝑒𝑥𝑝[−𝑐 𝜆]] (14) 

Provided that 𝐸𝜆 = (𝑒−𝑐𝜆) exist and finite, where Eλdenotes the expected value. 

3.3. Weighted linear exponential loss function  

The researchers in the literature based on weighted loss function (LINEX) proposed this function as follows: 

𝐿⋆(�̂� − 𝜆) = 𝑤(𝜆)[𝑒𝑥𝑝[𝑐𝛥] − 𝑐𝛥 − 1]           ; 𝑐 ≠ 0 (15) 

Where λ̂ signifies an estimated parameter that creates an expectation of loss function (Equation (13)) as 

minimum as feasible. While, 𝑤(𝜆) characterizes a projected weighted function that equals to:  

𝑤(𝜆) = 𝑒𝑥𝑝[−𝑧𝜆] (16) 

Subject to a posterior distribution of the parameter 𝜆, and through a proposed weighted function as in Equation 

(15), we can acquire an estimated weighted Bayes of the parameter  𝜆  as follows:  

𝛦𝐿⋆
𝑤(�̂�, 𝜆) = ∫ 𝐿𝑤(�̂�, 𝜆)

 ∀𝜆
𝑓(𝜆|𝑥)𝑑𝜆  

= ∫ 𝑤(𝜆)
 ∀𝜆

[𝑒𝑥𝑝[𝑐(�̂� − 𝜆)] − 𝑐(�̂� − 𝜆) − 1] 𝑓(𝜆 | 𝑥)𝑑𝜆      

= ∫ 𝑒𝑥𝑝[−𝑧𝜆] 𝑒𝑥𝑝 [
 ∀𝜆

𝑐(�̂� − 𝜆)] 𝑓(𝜆  | 𝑥)𝑑𝜆 − ∫ 𝑒𝑥𝑝[−𝑧𝜆  ] {𝑐(�̂� − 𝜆)
 ∀𝜆

𝑓(𝜆  | 𝑥)𝑑𝜆     

              -∫ 𝑒𝑥𝑝[−𝑧𝜆  ]
 ∀𝜆

 𝑓(𝜆 | 𝑥) 

= 𝑒𝑥𝑝[𝑐�̂�] ∫ 𝑒𝑥𝑝 [
 ∀𝜆

− 𝜆(𝑐 + 𝑧)] 𝑓(𝜆|𝑥)𝑑𝜆 − 𝑐�̂� ∫ exp[−𝑧𝜆]
 ∀𝜆

𝑓(𝜆 | 𝑥) 𝑑𝜆  

              +𝑐 ∫ 𝜆 𝑒𝑥𝑝[−𝑧𝜆]
 ∀𝜆

𝑓(𝜆 | 𝑥)𝑑𝜆 − ∫ 𝑒𝑥𝑝[−𝑧𝜆]
 ∀𝜆

𝑓(𝜆 | 𝑥)𝑑𝜆 

= 𝑒𝑥𝑝[𝑐�̂�] 𝐸𝜆(𝑒𝑥𝑝[−𝜆(𝑧 + 𝑐) | 𝑥]) − 𝑐�̂�𝐸𝜆(𝑒𝑥𝑝[−𝑧𝜆 | 𝑥]) + 𝑐 𝐸𝜆(𝜆 𝑒𝑥𝑝[−𝑧𝜆 | 𝑥])  − 𝐸𝜆(𝑒𝑥𝑝[−𝑧𝜆 | 𝑥]) 

𝜕 𝐸𝜆𝐿⋆
𝑤(�̂�, 𝜆)

�̂�
=  𝑐 𝑒𝑥𝑝[𝑐�̂�] 𝐸𝜆(𝑒𝑥𝑝[−𝜆(𝑧 + 𝑐) | 𝑥]) − 𝑐 𝐸𝜆(𝑒𝑥𝑝[−𝑧𝜆 | 𝑥]) = 0 

So, we can find that 
 

 𝑐 𝑒𝑥𝑝[𝑐�̂�] 𝐸𝜆(𝑒𝑥𝑝[−𝜆(𝑧 + 𝑐)| 𝑥]) =  𝑐𝐸𝜆 (𝑒𝑥𝑝[−𝑧𝜆 | 𝑥 ]) 

Consequently, the Bayesian estimation of the parameter λ using WLINEX will be  

 

�̂�𝑊𝐵𝐿   =
1

𝑐
 𝐿𝑛 [

𝐸𝜆(𝑒𝑥𝑝 [(−𝑧𝜆 | 𝑥)]

𝐸𝜆(𝑒𝑥𝑝 [(−𝜆(𝑧 + 𝑐) | 𝑥)]
]      ;  𝑧 + 𝑐 ≠ 0 (17) 

Note that, WLINEX loss function is a generalizing of LINEX loss function, where LINEX is a special case of 

WLINEX when 𝑧 = 0 in Equation (17). 

4. Bayes estimators 

This section explains the derivation of Bayes estimates for a scale parameter 𝜃, a reliability function 𝑅(𝑡) and 

a hazard function  𝐻(𝑡) for LD. We employ three various loss functions involving the squared error loss function 

(SE) , the LINEX loss functions, and the weighted LINEX loss functions. Furthermore, we assume gamma 

(𝜂 , 𝑎) be a conjugate prior distribution for 𝜃 as follow   

𝑔(𝜃) =
𝜂𝑎

𝛤(𝑎)
𝜃𝑎−1𝑒𝑥𝑝[−𝜂 𝜃]         ;   𝜂 > 0 , 𝜃 > 0 (18) 
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 Via Bayes theorem, joining the likelihood function in Equation (6) with the prior pdf of 𝜃  in Equation (18), a 

posterior distribution of 𝜃  can be gotten as 

𝜋(𝜃 | 𝑥) =
𝐿(𝜃, 𝑥)𝑔(𝜃)

∫ 𝐿(𝜃, 𝑥)𝑔(𝜃)𝑑𝜃
∞

0

=
𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 

(19) 

where  𝒜 = 𝜂 +  𝐿𝑛{ 𝑥𝑢(𝑛) + 𝛿} 

4.1. Bayes estimator based on squared error loss function (SE) 

Using squared error loss function, Bayesian estimator  𝜃𝑆𝐸  for  𝜃 using Equation (12) is: 

𝜃𝑆𝐸  = 𝐸(𝜃 | 𝑥) =  ∫ 𝜃 𝜋(𝜃 | 𝑥) 𝑑𝜃     
∞

0

 

           = ∫ 𝜃
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃 

=
𝑛 + 𝑎

𝒜
                                          

(20) 

Correspondingly, Bayesian estimator based on reliability function 𝑅(𝑡) with fixed  𝑡 ≥ 0 is be expressed as: 

�̂�𝑆𝐸(𝑡)  = 𝐸(𝑅(𝑡) | 𝑥) =  ∫ 𝛿𝜃(𝑡 + 𝛿)−𝜃 𝜋(𝜃 | 𝑥) 𝑑𝜃         
∞

0

 

            = ∫ 𝛿𝜃(𝑡 + 𝛿)−𝜃
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃   

= [1 +
𝐿𝑛 (1 +

𝑡
𝛿

)

𝒜
]                                             

(21) 

While for a hazard function, 𝐻(𝑡) is expressed as 

�̂�𝑆𝐸(𝑡)  = 𝐸(𝐻(𝑡) | 𝑥) =  ∫ 𝜃(𝑡 + 𝛿)−1 𝜋(𝜃 | 𝑥) 𝑑𝜃        
∞

0

 

            = ∫ 𝜃(𝑡 + 𝛿)−1
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃    

= [1 +
𝑛 + 𝑎

𝒜(𝑡 + 𝛿)
]                                            

(22) 

 

4.2. Bayes estimator using squared error loss function (SE) 

Based on LINEX loss function, via using Equation (14), Bayesian estimator  𝜃𝐿𝐼𝑁𝐸𝑋  for 𝜃, can be specified by:  

𝜃𝐿𝐼𝑁𝐸𝑋  =  − 
1

𝑐
𝐿𝑛 [𝐸𝜃(𝑒𝑥𝑝[−𝑐 𝜃] | 𝑥)]                                                     

=  −
1

𝑐
𝐿𝑛 [∫ {𝑒𝑥𝑝[−𝑐 𝜃]} 𝜋(𝜃 | 𝑥) 𝑑𝜃 

∞

0

]           

           = −
1

𝑐
𝐿𝑛 ∫ {𝑒𝑥𝑝[−𝑐 𝜃]}

∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃     

= −
1

𝑐
 𝐿𝑛 (1 +

𝑐

𝒜
)

−(𝑛+𝑎)

                                                  

(23) 

Bayes estimators for  𝑅(𝑡) as well as  𝐻(𝑡)  using LINEX loss function have specified by:                
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�̂�𝐿𝐼𝑁𝐸𝑋(𝑡) = − 
1

𝑐
𝐿𝑛 [𝐸𝜃(𝑒𝑥𝑝[−𝑐 𝑅(𝑡)] | 𝑥)]                                                           

=  −
1

𝑐
𝐿𝑛 [∫ {𝑒𝑥𝑝[−𝑐 𝑅(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃 

∞

0

]         

                    = −
1

𝑐
𝐿𝑛 ∫ {𝑒𝑥𝑝[−𝑐 𝑅(𝑡)]}

∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃             

             = −
1

𝑐
 𝐿𝑛 [∑

(−𝑐)𝑖

i!
(1 +

𝑖 𝐿𝑛 (1 +
𝑡
𝛿

)

𝒜
)

−(𝑛+𝑎)
∞

𝑖=0

]                       

(24) 

 and  

�̂�𝐿𝐼𝑁𝐸𝑋(𝑡) = − 
1

𝑐
𝐿𝑛 [𝐸𝜃(𝑒𝑥𝑝[−𝑐 𝐻(𝑡)] | 𝑥)]                                                             

=  −
1

𝑐
𝐿𝑛 [∫ {𝑒𝑥𝑝[−𝑐 𝐻(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃 

∞

0

]         

                    = −
1

𝑐
𝐿𝑛 ∫ {𝑒𝑥𝑝[−𝑐 𝐻(𝑡)]}

∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃          

             = −
1

𝑐
 𝐿𝑛 [1 +

𝑐

𝒜(𝑡 + 𝛿)
]

−(𝑛+𝑎)

                                                   

(25) 

4.3. Bayes estimator using weighted LINEX loss function (WLINEX) 

Based on weighted LINEX loss function, through using (17), the Bayes estimator of  𝜃 , 𝑅(𝑡)  and 𝐻(𝑡) are 

feasibly derived, respectively, as 

𝜃𝑊𝐿𝐼𝑁𝐸𝑋 =
1

𝑐
 𝐿𝑛 [

𝐸𝜃(𝑒𝑥𝑝[−𝑧𝜃] | 𝑥)

𝐸𝜃(𝑒𝑥𝑝[−(𝑧 + 𝑐)𝜃] | 𝑥)
] 

=
1

𝑐
 𝐿𝑛 [

𝐼1

𝐼2
]                              

(26) 

Where, 

 

𝐼 1 = 𝐸𝜃(𝑒𝑥𝑝[(−𝑧𝜃 | 𝑥)]] =   ∫ {𝑒𝑥𝑝[−𝑧 𝜃]} 𝜋(𝜃 | 𝑥) 𝑑𝜃              
∞

0

 

                                     = ∫ {𝑒𝑥𝑝[−𝑧 𝜃]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃 

= (1 +
𝑧

𝒜
)

−(𝑛+𝑎)

                         

(27) 

                                        
and  

 

𝐼 2 = 𝐸𝜃(𝑒𝑥𝑝[(−(𝑧 + 𝑐)𝜃 | 𝑥)]] =   ∫ {𝑒𝑥𝑝[−(𝑧 + 𝑐) 𝜃]} 𝜋(𝜃 | 𝑥) 𝑑𝜃 
∞

0

 

       = ∫ {𝑒𝑥𝑝[−(𝑧 + 𝑐) 𝜃]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
𝑑𝜃 

= (1 +
𝑧 + 𝑐

𝒜
)

−(𝑛+𝑎)

                                                              

                         

(28) 

and the Bayes estimator  for 𝑅(𝑡) is given by 
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�̂�𝑊𝐿𝐼𝑁𝐸𝑋(𝑡) =
1

𝑐
 𝐿𝑛 [

𝐸𝜃(𝑒𝑥𝑝[−𝑧𝑅(𝑡)] | 𝑥)

𝐸𝜃(𝑒𝑥𝑝[−(𝑧 + 𝑐)𝑅(𝑡)] | 𝑥)
] 

=
1

𝑐
 𝐿𝑛 [

𝐼3

𝐼4
]                             

(29) 

Where, 

𝐼 3 = 𝐸𝜃(𝑒𝑥𝑝[(−𝑧𝑅(𝑡) | 𝑥)]] =   ∫ {𝑒𝑥𝑝[−𝑧 𝑅(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃              
∞

0

           

                                                       = ∫ {𝑒𝑥𝑝[−𝑧 𝑅(𝑡)]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃                        

                          = ∑
(−𝑧)𝑖

i!
(1 +

𝑖 𝐿𝑛 (1 +
𝑡
𝛿

)

𝒜
)

−(𝑛+𝑎)

                                             

∞

𝑖=0

     

(30) 

 and  

                     𝐼 4 = 𝐸𝜃(𝑒𝑥𝑝[(−(𝑧 + 𝑐)𝑅(𝑡) | 𝑥)]]

=   ∫ {𝑒𝑥𝑝[−(𝑧 + 𝑐 )𝑅(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃              
∞

0

           

                                                       = ∫ {𝑒𝑥𝑝[−(𝑧 + 𝑐) 𝑅(𝑡)]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃 

          = ∑
(−(𝑐 + 𝑧))𝑖

i!
(1 +

𝑖 𝐿𝑛 (1 +
𝑡
𝛿

)

𝒜
)

−(𝑛+𝑎)
∞

𝑖=0

     

(31) 

 

Bayes estimators for 𝐻(𝑡) has specified by: 

�̂�𝑊𝐿𝐼𝑁𝐸𝑋 =
1

𝑐
 𝐿𝑛 [

𝐸𝜃(𝑒𝑥𝑝[−𝑧𝐻(𝑡)] | 𝑥)

𝐸𝜃(𝑒𝑥𝑝[−(𝑧 + 𝑐)𝐻(𝑡)] | 𝑥)
] 

=
1

𝑐
 𝐿𝑛 [

𝐼5

𝐼6
]                              

(32) 

Where,  

                                  𝐼5 = 𝐸𝜃(𝑒𝑥𝑝[−𝑐 𝐻(𝑡)] | 𝑥)  

 =  ∫ {𝑒𝑥𝑝[−𝑐 𝐻(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃                                                
∞

0

 

                              = ∫ {𝑒𝑥𝑝[−𝑐 𝐻(𝑡)]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃           

                     = [1 +
𝑧

𝒜(𝑡 + 𝛿)
]

−(𝑛+𝑎)

                                                       

(33) 

and  
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                                 𝐼6 = 𝐸𝜃(𝑒𝑥𝑝[−𝑐 𝐻(𝑡)] | 𝑥)    

 =  ∫ {𝑒𝑥𝑝[−(𝑐 + 𝑧) 𝐻(𝑡)]} 𝜋(𝜃 | 𝑥) 𝑑𝜃                                    
∞

0

 

                                  = ∫ {𝑒𝑥𝑝[−(𝑐 + 𝑧 )𝐻(𝑡)]}
∞

0

𝒜(𝑛+𝑎)𝜃𝑛+𝑎−1𝑒𝑥𝑝[−𝜃𝒜]

𝛤(𝑛 + 𝑎)
 𝑑𝜃    

                     = [1 +
𝑧 + 𝑐

𝒜(𝑡 + 𝛿)
]

−(𝑛+𝑎)

                                                      

(34) 

 

5. Empirical example 

In this section, Monte Carlo simulation has been implemented for investigating the performance of suggested 

estimate compared with MLE and Bayes estimate under SE, LINEX and WLINEX loss functions to estimate 

the scale parameter, hazard function and reliability function of LD when the shape parameter is known. We 

supposed some parameters including 𝑐 and 𝑧. The values of (𝑐) are equal to −0.7    , 0.0001 and 2.The positive 

and negative values were selected to represent both cases of overestimate and underestimate, respectively, while 

the values of 𝑧 were 0.0001 and 3. 

 

The simulation consists of the subsequent steps: 

1. For the specified values of prior parameters (𝜂 = 2 , 𝑎 = 1),we generate value 𝜃 = 1.383 from the 

Gamma prior pdf in Equation (18)  

2.  Based on the used value  𝜃 = 1.383 form Step 1, with  𝛿 = 1,     𝑛, (𝑛 = 4,5,6 𝑎𝑛𝑑 7) for upper record 

values from Lomax distribution whose P.D.F. is given by Equation (1) are generated. 

3. The different estimates of  𝜃 , 𝑅(𝑇)  along with  𝐻(𝑇) at time 𝑡 (chosen to be 4) have calculated. 

4. Steps 1 to 3 have been repetitive for 10,000 times, while the mean squared error (MSE) for every 

estimate (say  �̂�) has computed by:  

𝑀𝑆𝐸(�̂�) =
1

10000
∑ (�̂�𝑖 − 𝜆)

2
10000

𝑖=1

 (35) 

where  𝜆 can be  𝜃 , 𝑅(𝑡  or 𝐻(𝑡) and �̂�𝑖  is the estimate at the thi run. 

 

5. The results are listed in Tables 1-2. 

 

Table 1. MSE of the estimates of  𝜃, 𝑅(𝑡)   and  𝐻(𝑡) when 𝑧 = 3  and 𝑡 = 4 

WLINEX (. ) LINEX (. ) SE (. )ML 𝑛 Parameters 

2 0.0001 −0.7 2 0.0001 −0.7   c  

0.2831 0.1675 0.1293 0.2515 1.2586 2.6411 1.2587 4.0792 4 

θ 
0.2256 0.1358 0.1132 0.2861 1.1838 2.2693 1.1839 3.2044 5 

0.1836 0.1155 0.0993 0.3064 1.1127 1.8683 1.1128 2.5398 6 

0.1544 0.0998 0.0894 0.2782 0.9034 1.5117 0.9034 1.8430 7 

0.0043 0.0043 0.0043 0.0044 0.0047 0.0048 0.0047 0.0088 4 

𝑅(𝑡) 
0.0041 0.0041 0.0041 0.0043 0.0044 0.0046 0.0044 0.0076 5 

0.0037 0.0038 0.0038 0.0039 0.0041 0.0041 0.0041 0.0064 6 

0.0034 0.0034 0.0033 0.0033 0.0034 0.0034 0.0034 0.0052 7 

0.0113 0.0164 0.0188 0.0351 0.0503 0.0575 0.0505 0.1632 4 𝐻(𝑡) 
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0.0129 0.0182 0.0202 0.0340 0.0474 0.0538 0.0474 0.1282 5 

0.0138 0.0185 0.0205 0.0326 0.0445 0.0475 0.0437 0.1016 6 

0.0130 0.0172 0.0187 0.0273 0.0361 0.0405 0.0369 0.0737 7 

 

Table 2. MSE of the estimates of  𝜃, 𝑅(𝑡)   and  𝐻(𝑡) when  𝑧 = 0.0001  and  𝑡 = 4 

WLINEX (. ) LINEX (. ) SE (. )ML 𝑛 Parameters 

2 0.0001 −0.7 2 0.0001 −0.7   c  

0.2514 1.2583 2.6405 
0.251

5 
1.2586 2.6411 1.2587 4.0792 4 

θ 

0.2861 1.1836 2.2689 
0.286

1 
1.1838 2.2693 1.1839 3.2044 5 

0.3064 1.1126 1.8680 
0.306

4 
1.1127 1.8683 1.1128 2.5398 6 

0.2782 0.9033 1.5115 
0.278

2 
0.9034 1.5117 0.9034 1.8430 7 

0.0044 0.0047 0.0048 
0.004

4 
0.0047 0.0048 0.0047 0.0088 4 

𝑅(𝑡) 

0.0043 0.0044 0.0046 
0.004

3 
0.0044 0.0046 0.0044 0.0076 5 

0.0039 0.0041 0.0041 
0.003

9 
0.0041 0.0041 0.0041 0.0064 6 

0.0033 0.0034 0.0034 
0.003

3 
0.0034 0.0034 0.0034 0.0052 7 

0.0351 0.0503 0.0575 
0.035

1 
0.0503 0.0575 0.0505 0.1632 4 

𝐻(𝑡) 

0.0340 0.0474 0.0538 
0.034

0 
0.0474 0.0538 0.0474 0.1282 5 

0.0326 0.0445 0.0475 
0.032

6 
0.0445 0.0475 0.0437 0.1016 6 

0.0273 0.0361 0.0405 
0.027

3 
0.0361 0.0405 0.0369 0.0737 7 

 

 

 

6. Conclusion 

From the results in the above tables (1) and (2) we can state the following points: 

1. The Bayesian estimator under WLINEX loss function has a minimum MSE’s than the estimators using 

LINEX loss function, SE Loss Function, or MLE’s followed by the Bayesian estimator under LINEX 

Loss Function 

2.  Aimed at estimation of 𝜃  for small record sample size, the use of Bayesian method in estimation has 

recommended in this study. 

3. To draw a conclusion about the effect of a shape parameter (c) for asymmetric loss Function, whenever 

(c) has been convergent to zero then the Bayesian estimates under LINEX loss function are nearly the 

same as the SE estimate. For that reason, we can say that stands for one of the advantageous features of 

asymmetric loss functions. 

4. Also, to draw a conclusion about the effect of (z), we examined different values of z whenever (z) it is 

close to zero then the Bayesian estimates under WLINEX loss function are almost the same as the 

Bayesian estimates under LINEX. Therefore, it stands for one of advantageous features of working with 

proposed loss functions. 
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