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ABSTRACT   

The methods for choosing appropriate bandwidth (smoothing parameter) are important to approximate the 

regression function to the original function so that the error is as small as possible. It is always a good starting 

point, and that the smoothing accuracy depends only on the bandwidth, which in turn affects the degree of 

smoothing of the estimated curve and its proximity to the true curve. The equilibrium between bias and 

variance is called the smoothing parameter or the bandwidth parameter. Its value is greater than zero, which 

reduces the function and its value corresponds to the smallest standard, and that large values of (h) produce 

smoothed results, because it increases the bias and reduces the variance to estimate the original regression 

function. It is one of the methods to reduce the mean squares of error. This article explains the structured 

methods of bandwidth choice for estimating the rth derivative of a univariate kernel employing techniques 

methods of cross-validation. We used kedd package proposed by Arsalane Chouaib Guidoum based on R 

programming with different kernel functions for computing bandwidth choice for density derivative. 

Simulation approaches are used to construct the method of bandwidth along with real-life data sets. 
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1. Introduction 

In statistics and studies related field of wider applications, kernel density derivatives are highly adopted. The 

derivatives to probability density function with several statistical properties are important in estimation of 

distributions like extreme and point inflection that can be recognized. The kernel density derivative functions 

are applications used in time series analysis, clustering analysis, and estimation the location of a density 

estimate. 

The research is structured as follows: Section 2 gives details about kernel density estimator and its derivatives. 

Section 3 summarizes the techniques methods for bandwidth kernel density estimator and its derivative. In 

section 4, Monte Carlo simulation is used to construct the method of bandwidth. Moreover, the results are 

applied based on real data.  Finally, the research finishes with the “Conclusions". 

2. Kernel estimation and derivatives 

The univariate kernel estimate offers a brilliant base for showing characteristics in specified observations as a 

result of its straightforward application as compared with other complex estimators  [1]. 

As 𝑓(𝑥) = 1

𝑛ℎ
∑ 𝐾(𝑥−𝑋𝑖

ℎ
)𝑛

𝑖=1                         (1) 

Accordingly, 

K stands for kernel function. 

h > 0 for bandwidth that is very important. 

 Xi > 0 for the observations. 

n is the sample size. 

The kernel function which satisfies the conditions is [2]: 
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∫ 𝐾(𝑥)𝑑𝑥 = 1, ∫ 𝑥 𝐾(𝑥)𝑑𝑥 = 0    𝑎𝑛𝑑  ∫ 𝑥2𝐾(𝑥)𝑑𝑥 = 𝑘2(𝐾) > 0     ( 2) 

Let (X1,X2,……,Xn) with a probability density function and r times,  then estimator of the rth derivative to the 

kernel is [3] : 

𝑓ℎ
(𝑟)(𝑥) =

1

𝑛ℎ𝑟+1
∑ 𝐾(𝑟)𝑛

𝑖=1 (
𝑥−𝑋𝑖

ℎ
)                                                            (3) 

where K(𝒓) is related to rth. The choice method of h is an important problem since the effect of bandwidth is 

based on the estimator. If the value of bandwidth is big, we can obtain an over smooth estimator. On the other 

hand, if the value of bandwidth is small, the estimator can be  obtained with under smooth estimator. Gaussian 

function with mean zero and variance one can be used since yield estimator is smooth density [4]. Gaussian 

function rth density is estimated based on Gaussian kernel [5].  

3. Method of bandwidth  

The research  is  based on structured methods of bandwidth choice for estimating the rth derivative to the kernel 

[2] , [6] as follows:  

3.1. Unbiased cross-validation (𝐔𝐂𝐕) 

Method was proposed by Wolfgang et al.(1990) [7] to select rth derivative based on the kernel of 

density function , the minimization of ISE(h) defined [2]: 

h𝑢𝑐𝑣 =
𝑎𝑟𝑔𝑚𝑎𝑥 

h > 0
 𝑈𝐶𝑉(h, r)                                                                                                                    (4) 

𝑈𝐶𝑉(h, r) =
𝑅(𝐾(𝑟))

𝑛ℎ2𝑟+1 +
(−1)𝑟

𝑛(𝑛−1) ℎ2𝑟+1⁄
∑ ∑ (𝐾(𝑟) ∗ 𝐾(𝑟) − 2𝐾(2𝑟))𝐾 (

𝑥𝑗−𝑥𝑖

ℎ
)𝑛

𝑗=1
𝑗≠𝑖

𝑛
𝑖=1                          (5) 

The h. UCV for bandwidth is computing from Unbiased cross-validation (UCV)  [2] ,[8]. 

3.2. Complete cross-validation (𝐂𝐂𝐕) 

Method was proposed by (Peter and Marron(1987)) [9] to obtain rth for a kernel of density function given by: 

𝐶𝐶𝑉(h, r) = 𝑅 (f̂h
(r)

) −  θ̅(r)(h) + 1

2
𝜇2(𝐾)ℎ2 �̅�𝑟+1(ℎ) + 1

24
(6𝜇2

2(𝐾) −  𝛿(𝐾)) h4�̅�𝑟+2(ℎ)        (6) 

where, 

𝑅 (𝑓ℎ
(𝑟)

) =
𝑅(𝐾(𝑟))

𝑛ℎ2𝑟+1 +
(−1)𝑟

𝑛(𝑛−1)ℎ2𝑟+1
∑ ∑ 𝐾(𝑟) ∗ 𝐾(𝑟)𝐾 (

𝑥𝑗−𝑥𝑖

ℎ
)𝑛

𝑗=1
𝑗≠𝑖

𝑛
𝑖=1   

θ̅(r)(h) =
(−1)r

n(n−1)h2r+1
∑ ∑ K(2r)K (

xj−xi

h
)n

j=1
j≠i

n
i=1                                                                            (7) 

and 𝛿(𝐾) = ∫ 𝑥4 𝐾(𝑥)𝑑𝑥  

The h. CCV for bandwidth is computed based on complete cross-validation (CCV) [2] ,[10]. 

3.3. Modified cross-validation  (𝐌𝐂𝐕) 

This method was proposed on [2] , [11],to select the rth derivative of a kernel of density function. The 

minimization of  MCV(h) is defined: 

𝑀𝐶𝑉(h, r) =
𝑅(𝐾(𝑟))

𝑛ℎ2𝑟+1 +
(−1)𝑟

𝑛(𝑛−1)ℎ2𝑟+1
∑ ∑ 𝜑(𝑟) (

𝑥𝑗−𝑥𝑖

ℎ
)𝑛

𝑗=1
𝑗≠𝑖

𝑛
𝑖=1                                                         (8) 

where, 

𝜑(𝑟)(𝑐) = (𝐾(𝑟) ∗ 𝐾(𝑟) − 𝐾(2𝑟) −
𝜇2(𝐾)

2
𝐾(2𝑟+2))(c)  

The h. MCV for bandwidth computed from modified cross-validation (MCV) [2] , [12] 

 

 

4. Results and discussion 

In this section, we consider the simulation as well as real life data sets to compare some methods techniques for 

bandwidth for the kernel estimation and its derivatives. Further, corresponding values for bandwidth are 

depicted and compared. 

 

4.1. Monte Carlo simulation  
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In the Monte Carlo simulation study, data sets of size 45 have been generated with random variable   𝑥~𝑁(𝜇 =

0, 𝜎2 = 1)  from R software. It is based on 10,000 replications to obtain the techniques of cross-validation 

methods (UCV,CCV,MCV) for bandwidth the kernel estimation and its derivatives [2] , [12] . 

The following procedural code shows the method of unbiased cross-validation (UCV) for bandwidth the kernel 

estimation and its derivatives by using Data: x (45 obs.); Kernel: Gaussian 

 

> iteration<-10000 

> n<-45 

> mu<-0 

> sigmax<-1 

> x<-rnorm(n,mu,sigmax) 

> x 

 [1] -0.54956389  1.04689009 -0.32569102  0.39324899  1.21368868  0.15185216 

 [7]  0.01673154 -1.81966034  0.97438209 -0.32007329 -0.67662334  1.46333675 

[13] -0.31761550 -0.79010354  0.69971357  1.50079303  1.42018723  0.44832012 

[19]  0.87561001  0.87102969 -1.55306685  1.05567786 -0.22724150 -0.43851938 

[25] -0.18134940 -1.15267252  1.25044104 -0.05823951 -0.07319079 -0.13568687 

[31] -0.07421325  0.66530548 -1.21995170  2.13579256  0.47316818 -1.24977958 

[37] -0.57386579 -0.21625646 -0.33441057 -0.81315883 -1.15983138  0.51516997 

[43]  0.18838449  0.31007011 -0.03969973 

 

> h2<-h.ucv(x = x, deriv.order = 0, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -0.2835591;   Bandwidth 'h' = 0.5944787 

 

> h2<-h.ucv(x = x, deriv.order = 1, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -0.1199174;   Bandwidth 'h' = 0.7838137 

 

> h2<-h.ucv(x = x, deriv.order = 2, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 2 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -0.1093683;   Bandwidth 'h' = 0.9782694 

 

> h2<-h.ucv(x = x, deriv.order = 3, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: Gaussian 

Min UCV = -0.1223378;   Bandwidth 'h' = 1.155548 
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We note from above that: Gaussian ; Derivative order = 0, 1,2,3; Bandwidth 'h' ≥ 0 corresponds to the lowest 

value for this criterion.  Min UCV and large values of (h) produce smooth results because they increase bias 

and reduce variance,which affects the degree of smoothing of the estimated curve and its closeness to 

the true curve. 

 

 
Figure 1. UCV for Bandwidth choice for density derivative 

The following procedural code depicts the method of complete cross-validation (CCV) for bandwidth of kernel 

estimation and its derivatives based on Data: x (45 obs.);      Kernel: Gaussian 

 

> h4<-h.ccv(x = x, deriv.order = 0, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = 0.01439067;   Bandwidth 'h' = 0.4746379 

 

> h4<-h.ccv(x = x, deriv.order = 1, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = -0.9627307;   Bandwidth 'h' = 0.149492 

> h4<-h.ccv(x = x, deriv.order = 2, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 2 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = -376.0201;    Bandwidth 'h' = 0.1502714 
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> h4<-h.ccv(x = x, deriv.order = 3, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = -88037.8;     Bandwidth 'h' = 0.1596364 

We note from above that the method  of Complete cross-validation (CCV) for bandwidth of kernel estimation 

and its derivatives by using Data: x (45 obs.);      Kernel: Gaussian ; Derivative order = 0, 1,2,3;; Bandwidth 'h'  

≥ 0. It corresponds to the lowest value for this criterion  Min CCV, large values of (h) produce smooth 

results because they increase bias and reduce variance,which affects the degree of smoothing of the 

estimated curve and its closeness to the true curve. 

 

 
Figure 2. CCV for Bandwidth choice for density derivative 

The following procedural code gives details about the procedure of modified cross-validation (MCV) for 

bandwidth the kernel estimation and its derivatives by using Data: x (45 obs.);      Kernel: Gaussian 

 

> h5<-h.mcv(x = x, deriv.order = 0, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: Gaussian 

Min MCV = 0.01147959;   Bandwidth 'h' = 0.6800521 

 

> h5<-h.mcv(x = x, deriv.order = 1, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 
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Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = 0.008113091;  Bandwidth 'h' = 0.7643845 

 

> h5<-h.mcv(x = x, deriv.order = 2, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 2 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = -0.009132536; Bandwidth 'h' = 0.8226816 

 

> h5<-h.mcv(x = x, deriv.order = 3, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = -0.1630683;   Bandwidth 'h' = 0.8788744 
 

We note from above that the method of  Modified cross-validation  (MCV) for bandwidth the kernel estimation 

and its derivatives by using Data: x (45 obs.);      Kernel: Gaussian ; Derivative order = 0, 1,2,3;; Bandwidth 'h' 

≥ 0. It corresponds to the lowest value for this criterion  Min MCV, large values of (h) produce smooth 

results because they increase bias and reduce variance ,which affects the degree of smoothing of the 

estimated curve and its closeness to the true curve. 

 

 
Figure 3. MCV for Bandwidth choice for density derivative 

 

Table 1. Mean square error (MSE) of method of bandwidth 
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Derivative order = 0,1,2,3 

 

UCV of 

MSE 

CCV of  

MSE 
MCV of  MSE 

Derivative order = 0 

 
0.341331 0.233340 0.213870 

Derivative order = 1 

 
0.329578 0.221652 0.201156 

Derivative order = 2 

 
0.294897 0.209815 0.198023 

Derivative order = 3 

 
0.207286 0.198732 0.130170 

 

Based on Table 1, the method of Modified cross-validation (MCV) for bandwidth; Derivative order = 0, 1,2,3; 

is the best method of bandwidth than UCV,CCV which corresponds to the lowest value for this criterion 

of  MSE with derivative order = 3 corresponds to the lowest value from Derivative order = 0,1,2  for this 

criterion  MSE. 

4.2. Real life data  

Here, we have been considered the real data sets pertaining as given below. The methods and corresponding 

results in Figures 4-6 are presented. The reported real data set are based on [2] , [12]. The data of failure times 

( in year) for 45 Patient has the following details: 

0.047, 0.115, 0.121, 0.132, 0.164, 0.197,0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 

0.529, 0.534, 0.540, 0.641,0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 

1.589, 2.178,2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.223 

 

x<-c(0.047, 0.115, 0.121, 0.132, 0.164, 0.197,0.203, 0.260, 0.282, 0.296, 

+  0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641,0.644, 

+  0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 

+  1.589, 2.178,2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 

+  4.003, 4.223) 

> x 

 [1] 0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.260 0.282 0.296 0.334 0.395 

[13] 0.458 0.466 0.501 0.507 0.529 0.534 0.540 0.641 0.644 0.696 0.841 0.863 

[25] 1.099 1.219 1.271 1.326 1.447 1.485 1.553 1.581 1.589 2.178 2.343 2.416 

[37] 2.444 2.825 2.830 3.578 3.658 3.743 3.978 4.003 4.223 

 

> h2<-h.ucv(x = x, deriv.order = 0, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -0.339869;    Bandwidth 'h' = 0.2035855 

 

> h2<-h.ucv(x = x, deriv.order = 1, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -1.465631;    Bandwidth 'h' = 0.238213 

 

> h2<-h.ucv(x = x, deriv.order = 2, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 2 



 PEN Vol. 8, No. 3, August 2020, pp.1795- 1807 

1802 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -24.23165;    Bandwidth 'h' = 0.2845599 

> h2<-h.ucv(x = x, deriv.order = 3, kernel = "gaussian") 

> h2 

Call:           Unbiased Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: gaussian 

Min UCV = -458.7814;    Bandwidth 'h' = 0.3279021. 

 

We note from Figure 4 that the method of Unbiased cross-validation (UCV) for bandwidth the kernel estimation 

and its derivatives by using real life Data: x (45 obs.); Kernel: Gaussian ; Derivative order = 0, 1,2,3;; Bandwidth 

'h' ≥ 0 which corresponds to the lowest value for this criterion  Min UCV, large values of (h) produce 

smooth results because they increase bias and reduce variance ,which affects the degree of smoothing of the 

estimated curve and its closeness to the true curve. 

  

 
                                   Figure 4. UCV for Bandwidth choice for density derivative 

> h4<-h.ccv(x = x, deriv.order = 0, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = 0.03806313;   Bandwidth 'h' = 0.2011104 
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> h4<-h.ccv(x = x, deriv.order = 1, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = 0.1769831;    Bandwidth 'h' = 0.8465962 

> h4<-h.ccv(x = x, deriv.order = 2, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 2 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = 0.6411848;    Bandwidth 'h' = 1.021682 

> h4<-h.ccv(x = x, deriv.order = 3, kernel = "gaussian") 

> h4 

Call:           Complete Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: gaussian 

Min CCV = 1.882026;     Bandwidth 'h' = 1.188471 

We note from Figure 5 that the method of Complete cross-validation (CCV)for bandwidth the kernel estimation 

and its derivatives by using real life Data: x (45 obs.); Kernel: Gaussian ; Derivative order = 0, 1,2,3;; Bandwidth 

'h'  ≥ 0. It is based on the lowest value for this criterion  Min CCV , large values of (h) produce smooth 

results because they increase bias and reduce variance,which affects the degree of smoothing of the 

estimated curve and its closeness to the true curve. 

 
Figure 5. CCV for Bandwidth choice for density derivative. 

> h5<-h.mcv(x = x, deriv.order = 0, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 0 

Data: x (45 obs.);      Kernel: gaussian 
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Min MCV = 0.01844765;   Bandwidth 'h' = 1.33804 

> h5<-h.mcv(x = x, deriv.order = 1, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 1 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = 0.01577866;   Bandwidth 'h' = 1.698393 

> h5<-h.mcv(x = x, deriv.order = 2, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 2 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = 0.01211543;   Bandwidth 'h' = 2.047737 

> h5<-h.mcv(x = x, deriv.order = 3, kernel = "gaussian") 

> h5 

Call:           Modified Cross-Validation 

Derivative order = 3 

Data: x (45 obs.);      Kernel: gaussian 

Min MCV = 0.007641128; Bandwidth 'h' = 2.380374 

The above coding stands for modified cross-validation (MCV) for bandwidth the kernel estimation and its 

derivatives by using real life Data : x (45 obs.);      Kernel: Gaussian.  

We note that the Method Modified cross-validation  (MCV) for bandwidth the kernel estimation and its 

derivatives by using real life Data: x (45 obs.);      Kernel: Gaussian ; Derivative order = 0, 1,2,3; Bandwidth 'h'  

≥ 0. It corresponds to the lowest value for this criterion Min MCV, large values of (h) produce smooth 

results because they increase bias and reduce variance, which affects the degree of smoothing of the 

estimated curve and its closeness to the true curve. 

Table 2.  Mean square error (MSE) of method of bandwidth 

Derivative order = 0,1,2,3 

 
UCV of MSE CCV of  MSE MCV of  MSE 

Derivative order = 0 

 
0.428192 0.349187 0.301872 

Derivative order = 1 

 
0.412786 0.3301942 0.3100028 

Derivative order = 2 

 
0.328562 0.3001829 0.2561923 

Derivative order = 3 

 
0.291817 0.281342 0.2018213 

 

We note Table 2 that  the method of Modified cross-validation  (MCV) for bandwidth; Derivative order = 0, 

1,2,3; is the best method of bandwidth than UCV, CCV which corresponds to the lowest value for this 

criterion  MSE, and the Derivative order = 3 corresponds to the lowest value from Derivative order = 0,1,2  

for this criterion  MSE. Figure 6 depicts MCV for Bandwidth choice for density derivative. 
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Figure 6. MCV for Bandwidth choice for density derivative 

 

 

5. Conclusions  

In this research, for both the simulated and real-life data sets, we have used in R procedures for bandwidth 

choice for density derivative including diverse functions based on kedd package introduced by Arsalane 

Chouaib Guidoum. 

Methods for bandwidth the kernel estimation and its derivatives are by using simulated Data: x (45 obs.);   

Kernel: Gaussian as follows: 

1. Min UCV =-0.2835591; Bandwidth 'h' =0.5944787, Derivative order =1; Min UCV =-0.1199174; Bandwidth 

'h' = 0.7838137, Derivative order = 2; Min UCV = -0.1093683; Bandwidth 'h' = 0.9782694, Derivative order = 

3; Min UCV = -0.1223378;   Bandwidth 'h' = 1.155548. 
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2. Min CCV = -88037.8;   Bandwidth 'h' = 0.1596364, Min MCV = 0.01147959; Bandwidth 'h' = 0.6800521; 

Derivative order = 1; Min MCV = 0.008113091; Bandwidth 'h' = 0.7643845; Derivative order = 2; Min MCV 

= -0.009132536; Bandwidth 'h' = 0.8226816; Derivative order = 3 ; Min MCV = -0.1630683;   Bandwidth 'h' = 

0.8788744. 

 

On the other hands, the methods for bandwidth the kernel estimation and its derivatives by using Real Life Data: 

x (45 obs.);   Kernel: Gaussian, the obtained results are for UCV, CCV and MCV are as follows: 

3.Min UCV = -0.340; Bandwidth 'h' = 0.204; Derivative order = 1; Min UCV = -1.466; Bandwidth 'h' = 0.283. 

Derivative order = 2; Min UCV = -24.232; Bandwidth 'h' = 0.285; Derivative order = 3;Min UCV = -458.781; 

Bandwidth 'h' = 0.328. 

4.Min CCV =0.038; Bandwidth 'h' = 0.201; Derivative order = 1; Min CCV = 0.177;    Bandwidth 'h' = 0.847. 

Derivative order = 2;   Min CCV = 0.641;    Bandwidth 'h' =1.022; Derivative order =3; Min CCV = 1.882; 

Bandwidth 'h' = 1.188.   

5.Min MCV = 0.018; Bandwidth 'h' = 1.338; Derivative order = 1; Min MCV = 0.016; Bandwidth 'h' = 0.698. 

Derivative order = 2; Min MCV = -0.012; Bandwidth 'h' = 2.048; Derivative order = 3; Min MCV = 0.008; 

Bandwidth 'h' = 2.380. 

Concisely, the method of Modified cross-validation (MCV) is the best method in term of bandwidth than UCV 

and CCV which corresponds to the lowest value for this criterion MSE. 
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