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ABSTRACT: 

This paper aims to model the daily closing prices of the General Index (TASI), which expresses the Saudi 

stock market by studying three time period. The first period is short, which extends from (October 1, 2018 to 

May 21, 2020) and the intermediate extends from (January 1, 2017 to May 21, 2020), a total period extends 

from (April 26, 2015 to May 21, 2020). GARCH family models were used through identification, estimation, 

selecting the best model, diagnosis checking of the model and forecasting. The results concluded that the best 

model for representing the time series data for the intermediate and total period is the model is EGARCH 

(1,1). As for the short period, the best model is TGARCH (1,1). 
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  1. Introduction 

Financial markets are considered an essential pillar of the economy of any country in the world, because the 

efficiency of financial markets depends on the behavior of stock prices and the development of trading 

systems in them, and also reach to the fair value of stock price. Financial markets often come across price 

movements known as the state of (Volatility) which is one of the main variables in financial decision-making. 

Most of the practical studies applied to the time series of the returns of stock traded in financial markets. 

These series have a set of characteristics and attributes of them, such as leptokurtosis, volatility clustering, 

leverage effects and Heteroscedasticty. Modeling of Conditional Heteroscedasticty has become one of the 

most important recent developments in time series and thus ARCH(p) and GARCH(p,q) models have 

emerged. The researchers toward an interest in risk and an insufficient forecasting of expected returns from 

stocks and bonds Traded in financial markets, despite the importance of the ARCH(p) and GARCH(p,q) 

models, they are directed at criticisms of some economists such as (Nelson, 1991) and (Cao & Tsay, 1992), 

especially with regard to determining the relationship of. The squared of error term with conditional variance 

which leads to the emergence of other models among them (EGARCH (Exponential GARCH), TGARCH 

(Threshold GARCH) and PGARCH (Power GARCH) as well as (GARCH Mean) GARCH–M even taking 

into consideration the various positive and negative effects of shocks. Studies have been conducted Scientific 

proof of the efficiency of the family of GARCH models through practical application in a large number of 

financial markets in the world. The Saudi financial market is considered one of the most important Arab and 

Gulf markets, where the beginning of trading in stock at the end of the seventies of the last century and is one 

of the markets that were affected. The global financial crisis [2] where this market witnessed the attention of 

researchers, including Hassan Ghadban, Hassan Al-Haghuj in (2012) who tried to determine the impact of 

volatility analysis in the Saudi stock market by examining structural transformations using GARCH-M models 

from 2001-2010 and reached. The researchers reported that negative shocks via leverage increase in volatility 

compared to positive shocks [3]. Abdalla [4] has examined the effect of inflation rates on the returns and 

volatility of the Saudi general index for the period 1990-2011 by using GARCH models with a set of applied 

methods that have found that the effect of inflation rates has no significant in the return equation. There has 

been an significant effect Positive inflation, when included in the equation for conditional variance. The 

importance of GARCH models in modeling and forecasting volatility as a mechanism for crisis management 

and early warning through his study of nine Arab stock exchanges, including Saudi Arabia, for the period 

2007-2012 is highlighted in ref [1] . Lokofi and Al-Sheikhi discussed the modeling of stocks price volatility 
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for Saudi Telecom Union for the period 2010-2015 using a number of symmetrical and asymmetric ARCH 

models and it was found that the best model represents the time series ARIMA (1,1,3) -TGARCH (1,1) [3]. It 

turns out that positive shocks with good news give less volatility than negative shocks with negative news.  

In this paper, we aim to study the market, to find the best model that expresses the Saudi stock market through 

the overall trading index (TASI) for three periods after the daily closing prices.  Period studied in this research 

are (April 26, 2015 to May 21, 2020), short series (from October 1, 2018 to May 21 2020), which includes 

(418) observation and the intermediate series (from January 1, 2017 to May 21, 2020), which included (851) 

observation as well as (1271) observation included in the full series from (April 26,2015to May 21,2020). The 

models used in study are (ARCH, ARCH-M, GARCH, GARCH-M, TGARCH, TGARCH-M, PGARCH and 

PGARCH-M). 

 2. Materials and methods 

 2.1. Autoregressive conditional heteroscedasticty (ARCH (M)) 

Engle proposed an ARCH (m) model in 1982 to address the volatility in time series [8] and based on the 

Autoregressive of conditional variance, i.e. the variance of the current error limit is dependent on the square 

error limits of previous periods and their formula:  

                                                                                                                  (1) 

                                                  
           

          
                 (2) 

where   ~ (0,1)    ,   >0 and    ≥0 for   >0 

2.2.  Generalized autoregressive conditional heteroscedasticty (GARCH Model (1, 1)) 

The researcher (Bollerslov, 1986) [6] presented the generalized autoregressive conditional Heteroscedasticty 

GARCH. This model allows conditional variation to be dependent on its previous form and its form 

                                                                                                              (3) 

                                                                      

                                           
           

        
                                    (4)  

Where    represents the return time series    represents the average return,    represents the remaining return, 

   is the conditional standard deviation, and              are non-negative parameters 

 

2.3. The exponential generalized autoregressive heteroscedasticty (EGARCH (1, 1)) 

Nelson 1991introduced this model [10], which is characterized by entering the logarithm of the conditional 

variance and the form of Variance equation: 

(5)                                                 
        

    

    
    

    

    
           

  

Whereas γ measures the asymmetric effect, if its value is equal to zero, this means that positive and the 

negative shocks will have the same effect on the instability of the stock returns. If it is negative, this means 

that negative shocks have a greater contribution to oscillations than positive shocks. 

 

2.4. The threshold generalized autoregressive conditional heteroscedasticty (TGARCH (1,1)) 

This model was proposed by the researchers (Rabemananjara & Zakoian) in 1991 [14] and the Variance 

equation:  

(6)                                                                                 
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Since γ is the asymmetric effect and      is the variable used to distinguish between good and bad news when 

        if        this indicates the bad news and when        if        the good news. The 

specification of the TGARCH model assumes that unexpected changes in market returns will have a different 

impact on stock return fluctuation    
   

 

2.5. The power generalized autoregressive conditional heteroscedasticity (PGARCH (1,1)) 

This model was introduced by researchers Ding and Granger in 1993 [7] to deal with asymmetry and the 

Variance equation is: 

 

                            
           

                                                         (7)                              

 

Since    is constant,   and    are the parameters of ARCH and GARCH ,the   is leverage parameter and δ is 

the power parameter δ> 0, γ≤1 when     the equation above becomes the classic GARCH model that 

allows leverage effects and when δ = 1 the conditional standard deviation will be estimated. 

 

2.6. The GARCH-in-Mean GARCH-M (1,1) 

These models are considered to be the most important models used in assessing risk in financial markets, by 

measuring the relationship between return and risk and studying the market reaction, risk premium when the 

market is exposed to a negative shock, such as economic crises, and in it, the variance of the conditional is an 

explanatory variable for the conditional average where the Variance equation is: 

 

                                                                                                     (8)           

 

Where    represents the time series of returns   represents the average return,    represents the residual return 

and   is the risk factor, if its value is positive, this indicates that the return is positively correlated with its 

instability, in other words, the higher average return is the result of an increase in conditional variance [9]. 

 

3. Experimental procedures  

 

The data represents the daily closing prices of the TASI index, which expresses the Saudi stock market 

through studying three time periods. The first (short time series) extending from (October 1, 2018 until May 

21, 2020) includes (418) observation and the second period (intermediate time series) extended from (January 

1, 2017 to May 21, 2020) which included (851) observation and the third period (full time series) that Includes 

(1271) observation that run from (April 26, 2015 to May 21, 2020), Where the time series were converted to 

the daily return series through the formula:                               
  

    
  

Where as    is the returns series and    is the prices index for the current day and      the prices index for the 

previous day. Figures (1) and (2) show the full series of closing prices and daily return series for period from 

April 26, 2015 to May 21, 2020. 

 

     
Figure 1. Daily closing prices of TASI-Index                           Figure 2. Daily Return Series 
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3.2. Summary statistics and testing 

 

Table 1 illustrates descriptive statistical indicators that describe each of the return series (short, intermediate 

and full series). We find that the value of the Skewness coefficient for the three return series is negative, that 

is the distribution is Skewness to the left, which means that stock prices are affected by the negative shock 

more than positive shocks, and we find that the value of the kurtosis factor is greater than 3 indicating the 

presence of outlier values in the time series Especially in the intermediate series extending from (January 1, 

2017 to May 21, 2020) where the value of kurtosis (17.26). For the Jarque-Bera test, the value of (Prob = 0) 

for the three time series is indicative that they do not follow the normal distribution they do not follow the 

normal distribution. This is what characterizes the financial time series  

 

Table 1. Descriptive statistics for return series 

 
Mean Median Max Min Skewness Kurtosis 

Jarqua-

Bera 
Prob. N. 

Full series -0.00025 0.000335 0.071208 -0.08685 -0.95742 12.37575 4845.649 0 1271 

Intermediate 

series 
-3.1E-05 0.000458 0.068315 -0.08685 -1.24942 17.25686 7419.866 0 851 

Short series -0.00031 0.000912 0.068315 -0.08685 -1.40429 13.83773 2177.86 0 418 

Table 2 presents the results of the ARCH -LM test, through which it is possible to verify the presence of the 

ARCH effect to  the residuals . Here we note that the value of (Prob = 0) for (Obs R-Squared and F-statistic), 

which means that there is a (Heteroscedasticty) effect. 

 

Table 2. The results of the ARCH -LM test 

Full series 
F statistic  330.6819     Prob. F(1,1267) 0.000* 

     262.6526     Prob. Chi square 0.000* 

Intermediate series 
F statistic 225.5833     Prob. F(1,847) 0.000* 

     178.5598 Prob. Chi square 0.000* 

Short series 
F statistic 120.0536     Prob. F(1,414) 0.000* 

     93.51554     Prob. Chi square 0.000* 
*Indicates significance at 5% level 

Table (3) present the ADF test (Augmented Dickey Fuller Test Statistic) for both the closing price series and 

the return series, where the test we reject of the hypothesis of unit root for the return series for (short, 

intermediate and full series) studied, i.e. the return series dose not contain a unit root therefore it is stationary. 

Thus, no need to difference the return series. while the three daily closing price series is no stationary because 

it has a unit root. 

Table 3. The ADF test for both the closing price series and the return series 

Time period 

return series closing prices series 

 

ADF 

 test 

Test Critical values   

ADF 

test 

Test Critical values 

1% 5% 10% 1% 5% 10% 

Full series -13.552* -3.435 -2.864 -2.568 -2.530 -3.435 -2.864 -2.568 

Intermediate 

series 
-26.214* -3.438 -2.865 -2.569 -1.893 -3.438 -2.865 

-2.569 

Short series -18.758* -3.446 -2.868 -2.570 -1.084 -3.446 -2.868 -2.570 
*Indicates significance at 5% level 

 

3.3. Estimation 

The model estimated  using the maximum likelihood method, and the results of the estimate were presented in 

Table 4, which represents the estimate of the Mean Equation while The Variance Equation was presented in 

Tables 5 and  6. 

Table 4. Parameter estimation for mean equation to the models for each series 
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Time period 
model 

Mean Equation 

model 

Mean Equation 

Constant Constant   (risk) 

Full series 

ARCH 2.45E-04 ARCH-M -0.00084 0.122636 

GARCH 0.000119 GARCH-M -0.00107 0.134937 

TGARCH -0.00012 TGARCH-M 5.01E-05 -0.0206 

EGARCH -0.00015 EGARCH-M -0.00017 0.002293 

PGARCH -0.00015 PGARCH-M -5.44E-05 -0.011153 

Intermediate 

series 

ARCH 0.000342 ARCH-M -0.0029* 0.399989* 

GARCH 0.000182 GARCH-M -0.00132 0.181286 

TGARCH -5.95E-06 TGARCH-M -0.00013 0.016063 

EGARCH -5.62E-05 EGARCH-M -0.00032 0.035638 

PGARCH -5.08E-05 PCARCH-M -0.00051 0.059587 

Short series 

ARCH 0.000578 ARCH-M -0.00275* 0.35289* 

GARCH 0.000306 GARCH-M 9.27E-05 0.021954 

TGARCH -0.00013 TGARCH-M 0.001139 -0.149452 

EGARCH -7.25E-05 EGARCH-M -0.00275* 0.35289* 

PGARCH -3.60E-05 PGARCH-M 0.000781 -0.091259 
*Indicates significance at 5% level 

 

Table 5. parameter estimation for variance equation to the models for each series 

Time period Full series Intermediate series Short series 

       

model 

Variance 

 

Equation Coefficient Prob.   Coefficient Prob.   Coefficient Prob.   

ARCH 

   3.19E-05 0* 2.78E-05 0* 3.88E-05 0* 

   0.213233 0* 0.179024 0* 0.138489 0.0086* 

   0.197631 0* 0.206698 0* 0.179189 0.0046* 

   0.063899 0.0114* 0.057003 0.0497* 0.057825 0.2378 

   0.191917 0* 0.197368 0* 0.233964 0.0001* 

   0.18583 0* 0.193207 0* 0.260941 0* 

GARCH 

   4.90E-06 0* 4.86E-06 0* 5.04E-06 0.0119* 

   0.193933 0* 0.203976 0* 0.208887 0* 

   0.785892 0* 0.770538 0* 0.787312 0* 

TGARCH 

   4.07E-06 0* 3.89E-06 0* 3.26E-06 0* 

   0.080167 0* 0.09241 0* -0.09473 0* 

  0.167573 0* 0.171702 0* 0.19437 0* 

   0.816364 0* 0.80286 0* 0.963183 0* 

EGARCH 

   -0.60394 0* -0.625334 0* -0.51022 0.0001* 

   0.28987 0* 0.321116 0* 0.280933 0* 

  -0.11226 0* -0.102799 0* -0.10874 0* 

   0.958134 0* 0.958825 0* 0.966803 0* 

PGARCH 

   8.19E-05 0.2687 9.89E-05 0.3487 0.000197 0.4694 

   0.161765 0* 0.182936 0* 0.156567 0* 

  0.367152 0* 0.334263 0* 0.438174 0.0001* 

   0.835973 0* 0.822478 0* 0.856731 0* 

  1.344249 0* 1.293967 0* 1.110394 0.0002* 
*Indicates significance at 5% level 

From Tables 4 and 5,  all parameters of the models were significant in periods of the specified series except 

for the constant parameter in PGARCH model in addition to the    parameter of ARCH model in the short 
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series. Also, we note that in Table 6, all parameters of the models were significant except for The constant 

parameter for the PGARCH-M model was also not significant for all the specified time series specified as well 

as the parameter   ,    for the ARCH-M model in the short series. 

 

Table 6.  parameter estimation for variance equation to the models for each series 

Time period Full series Intermediate series Short series 

        model 

Variance 

Equation Coefficient Prob.   Coefficient Prob.   Coefficient Prob.   

ARCH-M 

   3.17E-05 0* 2.56E-05 0* 3.55E-05 0* 

   0.213047 0* 0.191963 0* 0.124099 0.0084* 

   0.196798 0* 0.148123 0* 0.100899 0.1278 

   0.060138 0.0155* 0.059103 0.0252* 0.055506 0.1868 

   0.200124 0* 0.241957 0* 0.301534 0* 

   0.187975 0* 0.222179 0* 0.323871 0* 

GARCH-M 

   5.12E-06 0* 5.20E-06 0* 5.04E-06 0.015* 

   0.199882 0* 0.215119 0* 0.20906 0* 

   0.779158 0* 0.758496 0* 0.7873 0* 

TGARCH-M 

   3.97E-06 0* 3.96E-06 0* 1.93E-06 0.0118* 

   0.078339 0* 0.094008 0* -0.08523 0* 

  0.169151 0* 0.170331 0* 0.18327 0* 

   0.818472 0* 0.801098 0* 0.976614 0* 

EGARCH-M 

   -0.60509 0* -0.646012 0* -0.47616 0.0002* 

   0.290028 0* 0.325592 0* 0.271518 0* 

  -0.11217 0* -0.10022 0* -0.11238 0* 

   0.958024 0* 0.957015 0* 0.96972 0* 

PGARCH-M 

   7.96E-05 0.2681 0.000124 0.367 0.000118 0.4997 

   0.160999 0* 0.188992 0* 0.136948 0.0004* 

  0.369979 0* 0.315893 0* 0.500761 0.0003* 

   0.83711 0* 0.815107 0* 0.875312 0* 

  1.347096 0* 1.262433 0* 1.176503 0.0001* 
 

3.4 Selecting the best model  

The criteria for selecting the best model was (the Akaike information criteria, Schwarz and Hannan-Quinn 

criteria ) are compered for all the specified models,  where it was indicates that EGARCH (1,1)  is the best 

model for the full and intermediate series while the best model in the short series was TGARCH(1,1) model. 

 

Table 7. Model Comparison between Akaike,Schwarz and Hannan-Q criteria 

Time period criterion ARCH GARCH TGARCH EGARCH PGARCH 

Full series 

Akaike info -6.372 -6.37915 -6.39844 -6.40404 -6.400017 

Schwarz -6.34363 -6.36294 -6.37818 -6.38378 -6.375702 

Hannan-Quinn -6.36134 -6.37306 -6.39083 -6.39643 -6.390883 

Intermediate 

series 

Akaike info -6.58073 -6.584 -6.5979 -6.6006 -6.598792 

Schwarz -6.54166 -6.56167 -6.56999 -6.57269 -6.565296 

Hannan-Quinn -6.56577 -6.57545 -6.58721 -6.58991 -6.585961 

Short series 

Akaike info -6.1641 -6.16569 -6.21873 -6.18898 -6.181273 

Schwarz -6.0964 -6.127 -6.17037 -6.14062 -6.123243 

Hannan-Quinn -6.13733 -6.1504 -6.19961 -6.16986 -6.158331 

 Time period criterion ARCH-M GARCH-M TGARCH-M EGARCH-M PGARCH-M 
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Full series 

Akaike info -6.37169 -6.37948 -6.39691 -6.40247 -6.398455 

Schwarz -6.33927 -6.35922 -6.37259 -6.37815 -6.370087 

Hannan-Quinn -6.35951 -6.37187 -6.38778 -6.39333 -6.387799 

Intermediate 

series 

Akaike info -6.58716 -6.58425 -6.59557 -6.59836 -6.596535 

Schwarz -6.54249 -6.55634 -6.56208 -6.56487 -6.557457 

Hannan-Quinn -6.57005 -6.57356 -6.58274 -6.58553 -6.581566 

Short series 

Akaike info -6.16383 -6.16095 -6.21916 -6.18467 -6.177518 

Schwarz -6.08646 -6.11259 -6.16113 -6.12664 -6.109816 

Hannan-Quinn -6.13324 -6.14183 -6.19622 -6.16173 -6.150751 

 

3.5. Diagnosis chickening 

After selecting the best models for each of the specified periods, the suitability and efficiency of the models 

are used ARCH-LM test, present in Table 8 the value of Prop> 0.05. Then, we accepted the null hypothesis 

meaning that no ARCH effect in the residuals. The Ljung-Box test is also used to determine the 

Autocorrelation of the square residual were the value of Prop <0.05 for all displacements from lag1 to lag36 

for the specified models present in Table 9, which means no serial correlation in the residuals therefore the 

models selected representing data volatility. 
 

Table 8. ARCH-LM test for ARCH effects 

Time period  ARCH-LM test model 

Full series 

F statistic  0.267349 

EGARCH(1,1) 
     0.267714 

Prob.F(1,1267) 0.6052 

Prob. Square  0.6049 

Intermediate series 

F-statistic 0.121508 

EGARCH(1,1) 
     0.121777 

Prob.F(1,847) 0.7275 

Prob. square 0.7271 

Short series 

F-statistic 2.943941 

TGARCH(1,1) 
     2.937276 

Prob.F(1,414) 0.0869 

Prob. square 0.0866 

 

Table 9. Ljung-Box test for all time lags  

Ljung-Box Test Full series Intermediate series Short series 

lag 
EGARCH(1,1) EGARCH(1,1) TGARCH(1,1) 

Q stat probability Q stat probability Q stat probability 

1 0.2685 0.604 0.1223 0.727 2.9639 0.085 

5 2.4191 0.789 2.0432 0.843 5.7339 0.333 

10 8.9446 0.537 9.2879 0.505 12.64 0.245 

15 14.282 0.504 13.085 0.596 14.233 0.508 

20 15.95 0.72 14.504 0.804 16.457 0.688 

25 19.092 0.793 18.262 0.831 19.421 0.777 

30 20.315 0.908 20.421 0.905 21.394 0.875 

35 23.058 0.939 24.148 0.916 24.065 0.918 

36 28.632 0.804 29.024 0.789 24.928 0.918 

A Jarque-Bera test was performed for each of the best models for each time periods as present in Table 10, 

where the value of (Prob = 0) for models indicates that the Standardized Residuals series for each models does 

not follow the normal distribution, which is characterizes Financial time series. 
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Table 10. Jarque-Bera test statistics 

Time period model  Jarque-Bera Probability 

Full series EGARCH(1,1) 407.3071 0* 

Intermediate series EGARCH(1,1) 439.7038 0* 

Short series TGARCH(1,1) 262.3229 0* 

 

Consequently, the variance equation of EGARCH (1,1)  models for the full series as follows: 

    
                   

    

    
          

    

    
                 

  

The formula for the variance equation of is for the EGARCH model (1,1) for the Intermediate full series as 

    
                     

    

    
           

    

    
                 

  

For the short  series the variance equation for the TGARCH (1,1) as follows: 

  
                      

              
             

      

 

3.6. Forecasting 

The forecasting  process was conducted for a series of daily closing prices (20) days for specified models  in 

the time period using the dynamic method . Figure  below clarify the accuracy of the forecasting through the 

proximity between the forecast series and the actual series the evaluation of forecasting using static forecast 

for models in the time periods, where the test values for the best models is the smallest within each time 

period present in Table 11,  which gives us a positive indication of the accuracy of the forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Full series                  Figure 4. Intermediate serie 
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Table 11. Static forecast for the specified models 

Time period  model 

Root 

mean 

squared 

error  

Mean 

absolute 

error 

Mean 

abs. 

percent 

error 

theil 

inequality 

coefficient  

Theil U2 

Coefficient          

Symmetric 

MAPE              

Full series EGARCH(1,1) 72.74107 60.53329 0.620549 0.003739 1.285368 0.621975 

Intermediate 

series EGARCH(1,1) 246.9245 206.6522 2.979008 0.01731 4.275551 2.916559 

Short series TGARCH(1,1) 352.8566 295.5141 3.888382 0.022387 2.416995 3.781941 

 

4. Conclusions 

This paper focuses to model the daily closing prices of the General Index (TASI), which expresses the Saudi 

stock market by studying three time periods ,the results showed The stock prices are affected by negative 

shocks more than positive shocks in all the time periods and the return series content outlier values especially 

in the intermediate series, the return series in time period is stationary with an effect (heteroscedastisticity) 

while not following the normal distribution, which is characteristic of financial time series. EGARCH (1,1) 

model was the best model selecting in intermediate and full series while TGARCH (1,1) model was the has 

the best in the short series period. that there is continuity in volatility with an asymmetric effect and the 

leverage effect that negative shocks associated with bad news cause more volatility in relation positive shocks 

associated with good news. The test of residues of the selected models are no serial correlation and no ARCH 

effect, and this confirms the accuracy in their selection. Finally The static of the forecasting accuracy tests 

showed indication of the accuracy of the forecasting meaning that the preference of the models selected within 

each time period. 
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