
ISSN 2303-4521

Periodicals of Engineering and Natural Sciences Original Research

Vol. 9, No. 4, October 2021, pp.632-642

© The Author 2021. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that

allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's
authorship and initial publication in this journal.

 632

A decision support system for curricula design

Sencer Yeralan
1,2

, Özge Büyükdağlı
3

1Computer Organization and Architecture, ADA University
2 Agricultural and Biological Engineering, University of Florida

3Computer Sciences and Engineering, International University of Sarajevo

ABSTRACT

A curriculum is a set of related courses that constitutes the basis of a degree program. The required courses

of a curriculum generally build student knowledge and skills particular to the field. In most cases, these are

cumulative, meaning that as students go through their studies, they put their new knowledge on top of

earlier ones, hence leading to the notion of prerequisite courses that must precede a given course. As

accreditation practices gain widespread acceptance, and as uniformity among peer institutions is promoted

to facilitate mobility, each course is assigned a set of learning outcomes. The learning outcomes of a

prerequisite course are seen to encapsulate the skills necessary to take the downstream course. This study

follows our efforts regarding the substantial revision of engineering courses throughout our college. As the

task is quite involved, we developed a flexible linear programming based tool to help the decision making

process by quickly evaluating alternative curricula. This study aims to provide an effective decision making

tool to accommodate many “what if” scenarios which would provide options to the decision makers and

help them detecting inconsistencies and oversights. This paper describes our approach and our experiences.

Keywords: Curricula design, Learning outcomes, Prerequisite courses, Decision support

Corresponding Author:

Sencer Yeralan,

Computer Organization and Architecture,

ADA University,

61 Ahmadbay Agha-Oglu Street, Baku, Azerbaijan, AZ1008

E-mail: syeralan@ada.edu.az

1. Introduction

Engineering curricula, as in many other fields, are built around a set of core courses. In this study, we

considered engineering programs in International University of Sarajevo (IUS) for our analysis. We observe

that the number of core courses range between 10 to 15 in each engineering curriculum. Each course in any

curriculum has learning outcomes that defines the aim of that course. Some required courses have prerequisite

courses that must be taken prior to that specific course. Examples are the dual-term courses (e.g. Operations

Research I and Operations Research II), where two courses cover one large topic and divided into two

consecutive terms, or strongly coupled courses (e.g. Statics and Strength of Materials), where the prior course

provides the skills needed to study the following course. We further clarify and seek a higher resolution

regarding the nature of prerequisite conditions. We scan the learning outcomes of the prerequisite courses to

identify set of finer elements and consider these as prerequisite skills. This approach gives a finer

understanding of the relations among the sequence of courses and allows more precision.

Our objective is to find feasible curricula that achieve a set of possible objectives. For example, we may

consider evenly distributing the required courses among the terms. Similarly, we may want to force two

courses to be given in the same term (e.g. Introduction to Engineering and Engineering Graphics) or to be

separated in time as much as possible (e.g. Calculus and Systems Design). The advantage of flexible LP

 PEN Vol. 9, No. 4, October 2021, pp.632-642

633

model is to be able to introduce different objectives using the model body, via constraints. Even in the single

objective LP models, flexibility in the design of the constraints provides the decision maker to apply

additional objectives and different system characteristics.

Prerequisite-course-triggered precedent relations naturally lead to a network-like structure. The nature of the

relations is linear, and thus quite appropriate for mixed integer programming (MIP) with binary decision

variables. MIP not only gives a convenient media to model, present, and test various scenarios and work

”what if” cases, but it also enjoys the ready availability of capable and sophisticated software tools. We use

the open-source GNU Linear Programming Kit (GLPK) package with a front end written in GNU Compiler

Collection (GCC) for all of our design decision support tasks while revising the curricula.

2. Related literature

The assignment of courses to teaching periods while satisfying prerequisite relations and balancing term loads

has been a common concern in academia. There are newer attempts to use formal models to address this

concern. Introduced by the Balanced Academic Curriculum Problem (BACP) ([1]), these models typically use

Integer Programming (IP) formulations, since most models have an underlying network topology stemming

from prerequisite relations. A common objective function is to minimize the maximum student work load for

each term. In these studies, the models come with simplifying assumptions, whereas curriculum design

includes many external beyond the domain of such quantitative models.

Several variants of the BACP are found in the literature dealing with the performance and solution quality

([2], [3]). Interestingly, many studies focus on solution techniques, e.g. constraint programming (CP) aimed at

the reduction of computational effort. Hnich et al. [4] propose different ways to model this problem. They

present a model where the problem domain may be pruned and the run-times be reduced. Di Gaspero et al. [5]

extend BACP by adding professor preferences and call this problem the Generalized Balanced Academic

Curriculum Problem (GBACP). Unal et al. [6] propose the so-called Relevance Based Curriculum Balancing

(RBCB) problem where they assign relevant courses to the closest possible periods while meeting all of the

constraints of BACP. This study is one of the few studies in the literature that considers the relationship

between courses other than pre-defined prerequisite relations. They define relevance scores as the level of

interdependency between courses. A 0–9 rating scale is used where score ‘9’ corresponds to a strong

relationship and the scores get closer to ‘0’ if the relation is weak. They formulate this problem as a bi-

objective Mixed Integer Linear Programming (MILP) model where the objective functions are to minimize

the distance between the relevant courses and the deviation from the average workload per semester.

Another branch of the literature on curriculum design considers the curriculum and course relations as a

network. Recently, this modeling perspective received more attention by researchers and administrators while

designing and analyzing course plans and workloads of the students. Graph theory provides a holistic and

quantitative perspective for curricula designers. Generally, the network representation of curricula is

constructed by considering the courses as nodes, and the prerequisite relations as directed arcs. The study by

Lightfoot [7] is among the earlier studies that use acyclic directed graph representations of curricula. They

investigate some graph metrics such as in-degree, out-degree, measures of centralities and clustering and their

relations to curriculum design. Aldrich [8] analyze the Benedictine University course catalog and its

underlying network structure. He models the system as a directed acyclic graph to study the curriculum

structure of the university. Slim et al. [9] introduce a framework to detect the courses with a high impact on

students’ progress, and also to quantify the cruciality of these courses, using network analysis and graph

theoretic concepts. They used the “cruciality” of courses in their formal model, which differs from the RBCB

formulation.

Knorn et al. [10] present a different network structure than earlier studies, called Directed Courses-Concepts

Graph (DCCG). They created two separate node sets: courses and concepts. Concepts are generated using the

learning outcomes of the courses within the program. They then defined the links between concept nodes and

course nodes to be either requirements or learning outcomes of the course, depending on the direction of the

edge. This approach can be useful to detect the mismatches or redundancies in existing curricula, and can be

 PEN Vol. 9, No. 4, October 2021, pp.632-642

634

used while determining and assigning prerequisite relations. It is one of the few studies in the literature that

models the system including the contents of the courses and relations between them as a learning flow.

There are also some studies using predictive models and curriculum visualization for curriculum generation.

Akbas et al. [11] propose an adaptive curriculum generation and planning system, where the model is trained

first by data from former students. The trained model is then used to create quantitative recommendations for

individual current students, considering their status. Siirtola et al. [12] develop an effective tool to visualize

the curriculum which aims to analyze the curriculum contents and try to detect overlaps with other programs.

3. Approach

Our approach is to provide a flexible tool quickly to test out various scenarios. Our model is thus more of a

“real-time calculator” used for decision support, rather than a formal model to “deliver a solution”. Our

experience is that with commonly available software tools and modest laptop computers, these solutions are

obtained in just a few seconds. Given the small problem sizes (only tens of courses), we see little need to

reduce computational effort. It should be noted that we did try to limit all our decision variables to be binary

variables. This assists modern optimization software in finding solutions in a very short time.

We make use of open source software, primarily the GLPK. We wrote a simple front-end pre-processor in

GCC to quickly parse course information and prepare a data file for GLPK. The preprocessor spawns GLPK

and the results are immediately observable. We view the GLPK code as part of the flexible approach, where

we may freely insert additional constrains, or modify the objective function. As such, we have developed, and

used in house, a practical and expedient decision support tool. As a decision support tool, the model does not

claim to capture curricular intricacies. Such externalities are to be discussed by the faculty councils in the

spirit of participatory and collective management of academic processes. The tool, however, is kept on hand

and during deliberations to rapidly test out various “what-if” scenarios. A few examples of these

modifications are given in Section 6.

3.1. Learning elements

Before we develop our mathematical model, we will first present and motivate the ingredients of our

approach. The so-called learning outcomes (LO) describe the expected skills and competences the student

acquires after successfully finishing a given course. The LOs are typically broad descriptions. We motivate

our insertion with an example. Many engineering courses require the student to be skillful in calculus and

numerical analysis. Let us consider such an engineering course: Strength of Materials (SoM). The prerequisite

for SoM at IUS is Statics, and the prerequisite to Statics is Calculus 1. The LOs of Calculus 1 are given below:

1. Recognize and graph basic polynomial, rational and trigonometric functions.

2. Compute basic limits and have an understanding of the formal definition.

3. Use all the rules for computing derivatives and be familiar with the definition of derivatives and the

tangent line.

4. Use derivatives to find maxima/minima of a function.

5. Use derivatives to determine the monotinicity or concavity, and graph functions.

6. Find basic anti-derivatives and compute definite integrals.

Similarly, the LOs of Statics are:

1. Construct free-body diagrams and calculate the reactions necessary to ensure static equilibria.

2. Analyze distributed loads.

3. Analyze internal forces and moments in membranes.

4. Conduct force analysis on structures.

5. Calculate centroids and moments of inertia.

6. Solve static equilibrium problems involving friction.

At a general level, the LOs of the prerequisite courses cover the skills needed to delve into SoM. However, the

LOs are rather non-specific. For example, SoM often makes use of polar coordinates (e.g. in dealing with

 PEN Vol. 9, No. 4, October 2021, pp.632-642

635

shafts and cylindrical structures). Similarly, stress and strain considerations require relatively simple

trigonometric functions (usually limited to only sine and cosine functions).

The observation we want to highlight is that prerequisite courses may be conducted in such a way that, say,

polar coordinates are not at all covered, and the more involved trigonometric and hyperbolic functions are

emphasized by an ambitious mathematics professor at the expense of simpler sine and cosine functions.
1

We seek a finer granularity and more specificity of LOs by defining Learning Elements (LE). One may

consider LEs as the contents or individual components of a given LO. Moreover, we consider LEs not only as

outcomes, but as inputs, that is, as more detailed components of the prerequisite courses which are deemed

necessary for enrolling in a downstream course.

Next, we establish the inter-dependency of courses through input and output LEs. This inter-dependency

preserves the prerequisite relations, but provides the enhanced granularity we seek.

4. The model

4.1. Model objectives

We build a computational mathematical model to serve us in the design of the curriculum of a single program,

or concurrently, for a set of curricula of related engineering programs. Treating multiple engineering programs

together allows the extraction of further efficiencies by better coordinating and synchronizing courses

common to different programs. We would like to use the model as a decision support tool, where several

scenarios are tested and examined. We realize that curricula design demands more than the mechanical

matching of course inputs and outputs. Curricula must also consider social and strategic priorities of the

institution. This relegates the model to a convenient computational support tool, rather than an ultimate

mechanism to produce the designs. That is, our model is a design support tool rather than a design automation

tool. The choice of using MIP follows from its flexibility. It is straightforward to add new constraints, or to

change objective functions in MIP. Since the size of the problems we anticipate are small (only tens of courses

and hundreds of learning outcomes), the computational effort demanded from modern MIP software is

negligible. Provide sufficient detail to allow the work to be reproduced. Methods already published should be

indicated by a reference: only relevant modifications should be described.

4.2. The model

Each course is associated with a set of input LEs and a set of output LEs. All input LEs are deemed necessary

for the eligibility of the subsequent course. The input LEs may be acquired from several other courses, not just

a given prerequisite. We seek to create curricula by assigning courses to terms in a way that satisfies the input-

output LE relations. Experience shows that several such assignments are usually possible. To further assist in

decision-making, we consider several objectives. These include the uniform distribution of courses along the

entire curricula, placing two given closely coupled courses one after another, or separating a set of given

courses as far apart as possible. The generation of a rich set of alternatives allows the decision maker to

entertain secondary, and rather qualitative concerns.

Moreover, the formulation may be applied to many engineering courses collectively. Although different

engineering programs will have different subsets of required courses, there are nonetheless several common

courses. Our experience shows that the collective consideration of many engineering courses has been helpful

in coordinating between the various programs and reducing the need to teach common courses every term to

accommodate the characteristics of the otherwise independently developed program curricula.

4.3. The mathematical model

We use Mixed Integer Programming (MIP) software to implement the model. There may be more efficient

ways to find possible course assignments. However, the ready availability of software makes the use of MIP a

practical and expedient choice. We use the open-source GLPK and developed a preprocessor to generate the

input to GLPK from a higher level of abstraction. The preprocessor is written in C and compiled with the

1
 This, to our dismay, has happened recently in our Strength of Materials course.

 PEN Vol. 9, No. 4, October 2021, pp.632-642

636

GCC
2
. The preprocessor not only formats the input file, but also verifies that all LEs are used either as an

input or an output, or both. Also, each input LE must be specified as an output LE of some other course. We

run our experiments in a Linux environment on a rather unassuming laptop computer.

Table 1. Notation

Sets

 Terms

 Learning elements

 Courses

Parameters

 Number of courses

 Maximum number of courses per term

 Number of learning elements (LE)

 Binary parameter, 1 if LE is an input of course

 Binary parameter, 1 if LE is an output of course

 A sufficiently large number (e.g. 100)

Binary Variables

Learning element is available at the beginning of

the term

Binary Decision Variables

 Course is scheduled for term

In the formulation, all variables are binary variables. This saves computational effort. All variables and

parameters are denoted by single letters, except for the traditional “big M”. Table 1 gives the notation.

The curriculum spans 8 terms (semesters, trimesters, etc.). However, we start the terms from 0, where term 0

is the start of the curriculum. We also use term 9 to indicate the conditions at graduation. Essentially, terms 0

and 9 are “virtual” terms that are used for boundary conditions. Similarly, we start the LEs from 0, which

corresponds to the requirement that the student enrolls in the program. Any course that does not need any

prerequisite LEs is designated with the input LE=0.

The size of the problems determined by the number of terms, the number of courses, and the number of

learning elements is expected to remain quite small. The number of terms could be left as a parameter, but it is

taken here as a constant, 8, following our standard four-year, two-semesters-per-year programs. The number

of courses is around 10 to 15, while we expect 100 to 200 learning elements. Given the high performance of

readily available software (GLPK can solve problems with tens of thousands of variables), not surprisingly,

typical computation times are only a few seconds. We now present the formal model.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

2
 The source code of the preprocessor and the GLPK model are available from the authors upon request.

 PEN Vol. 9, No. 4, October 2021, pp.632-642

637

 (10)

 (11)

 (12)

 (13)

The function (1) given above is but one possible such objective. It aims to finish all required courses as soon

as possible. Other objective functions are discussed in Section 6.

The equations (2) to (5) set the boundary conditions, at the start and the end of the curriculum. LE 0 is

satisfied and is available at the beginning (term 0). Moreover, no course is scheduled at term 0 or term 9.

Equations (6) and (7) set the values of . Equation (6) sets the upper limit of to a positive number

 if is an output LE of one of the courses scheduled up to and including term . Equation (7) forces

the binary variable to 1 if is an output LE of one of the courses scheduled up to and including term

 . Equation (8) guaranteed that a course is assigned to a term only if all its learning elements are available at

the beginning of the term. Note that the inequality is automatically satisfied if the learning element is not an

input to the course. Equation (9) requires that all LEs are satisfied by the curriculum, equation (10) prevents a

course from appearing more than once (in different terms) in the curriculum, and equation (11) sets the upper

limit to the number of courses to be assigned to a single term. Finally, variable domains are given in (12) and

(13).

The formulation provides the flexibility to conduct "what if" scenarios. For example, rather than requiring all

LEs to be satisfied by the end of the curriculum, we may relax our requirements and see how the curriculum

changes if we require that at least 90% of the LEs are required to be satisfied. Then equation (9) would be

replaced by equation (14):

 (14)

5. Design rule check

The MIP formulation provides a natural means for all types of design rule checks. If there are courses with

input LEs that are not provided as output LEs by any other course, for example, our curriculum would not be

viable. In this case, the MIP solver would report that the problem is infeasible. Similarly, if there are cyclical

prerequisites, the solver will report infeasibility. Thus, rather than listing and checking for separate forms of

inconsistencies, as it has been reported in the literature (see Knorn et al. [10]), the model provides a means to

check any kind of infeasibility in one fell swoop. This is an important contribution of our study, since not all

cases with LE cycles are infeasible, and not all courses need be linked with LE input-output relations.

Beyond infeasibility, the model also provides means to highlight shortcomings. In this sense, rather than a

design support tool, the model also functions as an evaluation support tool, bringing potential oversights into

focus. Such a case is discussed in Section 7.2 below.

6. Alternative objectives and constraints

The MIP formulation gives us great latitude to implement various objectives and constraints. Only a few

examples are given below.

6.1. Early completion of required courses

We may wish to set the curricula so that the required courses as completed as soon as possible. This will leave

the latter years of the study program to pursue further specializations (or tracks). There are many ways to

formulate this, each with a slightly different slant.

The original objective function (1) asks to complete the curricula as early as possible. An alternative may be

implemented as follows.

 PEN Vol. 9, No. 4, October 2021, pp.632-642

638

 (15)

 (16)

Here, the objective function value is the term which completes the curriculum. In our case, we would like

to be 6 or 7, leaving one or two terms for our specialization tracks. As stated, there are many other possible

ways to implement similar objectives.

6.2. Restricting courses to terms

A common modification we used comes from the desire to restrict a given course to a certain period. Such a

hard requirement is best implemented with additional constraints. Let course be limited to the terms from

to . The following additional constraints specify this requirement.

 (17)

Similarly, if we want course not to be placed within the terms to , we have,

 (18)

6.3. Coordinating two courses

Another common modification regards forcing two courses, either to be scheduled in the same term, or in

different terms. If the two courses and are to be scheduled in the same term, we simply may include the

following constraints.

 (19)

 (20)

If, on the other hand, we would like these courses not to be offered in the same term, we simply add the

following constraint.

 (21)

This constraint can easily be extended to cases where, say, at most two of the three courses , , and may be

scheduled in the same term.

 (22)

7. Implementation

We used the model in our efforts to review and re-design engineering curricula. We gain experience in both

designing individual engineering programs, and also in examining several engineering programs concurrently.

The multi-program case helps in coordinating between individual programs. Most importantly, we wanted the

common courses to be offered once in the same term (either Fall or Spring, but not both).

7.1. Designing a single program

Table 2 lists the 23 core courses of the Computer Sciences and Engineering (CSE) program. The elective

courses and required humanities courses are excluded from the list. There are 106 LEs, with the addition of

LE 0, which corresponds to the “no prerequisite” condition.

 PEN Vol. 9, No. 4, October 2021, pp.632-642

639

Table 2. CSE Core Courses and LEs

Course Input LEs Output LEs

CS103 0 1,2,3,4,5

CS105 1,2,3,4,5 6,7,8,9

CS302 3,4,5,7,8,9,79,81,83 10,11,12,13,14

CS303 97 15,16,17,18,19

CS304 7,16,17,18 20,21,22,23

CS305 1,3,4,5,6,7,8,9,10 24,25,26,27

CS306 1,5,8,9,10 28,29,30,31,32

CS307 1,2,3,4,5,6,7,8,9,10,14,20,21,22 33,34,35,36,37

CS308 1,2,6,7 38,39,40,41,42

CS313 6,7,9,10,11,13,14,20,21,26,27,79,80,81 43,44,45,46

CS370 42,43 47,48,49,50,51

CS412 1,2,3,4,5,6,7,8,9,10,11,14,22,26 52,53,54

EE325 1,2,3,4,5 103,104,105,106

ENS203 65 97,98,99,100,101,102

ENS490 52 53

MATH101 0 65,66,67,68,69,70

MATH102 65,66,67,68,69,70 71,72,73,74,75

MATH201 65 76,77,78

MATH202 67,68,69,70,71,73,74,76 94,95,96

MATH203 65,66 84,85,86,87,88

MATH204 65 79,80,81,82,83

MATH205 65,66,67,68,69,74,76 89,90,91,92,93

SE308 16,17,20,33,37 60,61,62,63,64

The data was fed into the GLPK solver, setting the maximum courses per semester to 4 and 5. The default

objective function was used, striving to complete the core curricula as early as possible (Table3).

Table 3. CSE core curricula
Term Maximum 4 courses per term

1 CS103 MATH101

2 CS105 MATH102 MATH201 ENS203

3 CS302 CS303 CS308 MATH204

4 CS304 CS305 MATH202 EE325

5 CS306 CS307 CS313 CS412

6 CS370 ENS490 SE308 MATH203

7 MATH205

Term Maximum 5 courses per term

1 CS103 CS303 MATH101

2 CS105 ENS203 MATH102 MATH201 MATH204

3 CS302 CS304 EE325 MATH202 MATH203

4 CS305 CS306 CS307 CS308 MATH205

5 CS313 CS412 SE308

6 CS370 ENS490

Both of these curricula were discussed and were seen to have merit.

7.2. Design evaluation

The pragmatic use of the model as a real-time support tool allows the verification of curricula design. We

offer as an example the detection of missing LE relations among courses. Courses CS303 and ENS203 deal

with digital design and electrical circuits, respectively. Earlier, CS303 did not have an input LE. When the

 PEN Vol. 9, No. 4, October 2021, pp.632-642

640

initial curriculum was generated and presented to the faculty members, objections were raised. The oversight

was then noticed as not having specified the output LEs of electrical circuits as input LEs to digital design.

Table 4 shows the curriculum generated using the original set of LEs and the corrected one, where an output

LE 97 of ENS203 is specified as an input LE of CS303, as shown in Table 2.

The model may be used to test out LE relations and uncovering missing or superfluous relations. Generating

alternative curricula with different objective functions would help identifying such oversights.

Table 4. Identifying missing LEs (see text).

Term Missing LE ‘97’

1 CS103 CS303 MATH101

2 CS105 EE325 MATH204 MATH203

3 CS302 CS304 MATH102 MATH201

4 CS305 CS307 CS308 MATH202

5 CS306 CS313 CS412 SE308

6 CS370 ENS203 ENS490 MATH205

Term Corrected LEs

1 CS103 MATH101

2 CS105 MATH102 MATH201 ENS203

3 CS302 CS303 CS308 MATH204

4 CS304 CS305 MATH202 EE325

5 CS306 CS307 CS313 CS412

6 CS370 ENS490 SE308 MATH203

7 MATH205

As an additional observation, it is interesting to see how one LE can create a domino effect and result in a

number of changes in the curriculum.

7.3. Concurrently designing multiple programs

The model may be used to synchronize multiple curricula. Here we consider Computer Sciences and

Engineering (CSE) and Software Engineering (SE), two programs that share a considerable number of

courses. The following table gives the required core courses for each program.

Table 5. CSE and SE courses
Common Courses CSE only SE only

CS103 CS303 CS310

CS105 CS313 CS420

CS302 CS370 MATH209

CS304 EE325 SE211

CS305 ENS203 SE302

CS306 MATH102 SE322

CS307 MATH202 SE406

CS308 MATH205 SE407

CS412

ENS490

MATH101

MATH201

MATH203

MATH204

SE308

There are 15 courses common to both programs. CSE and SE both have an additional 8 required courses that

differ. It is desired that CSE and SE students take the common courses jointly. That is, the common courses

 PEN Vol. 9, No. 4, October 2021, pp.632-642

641

should appear only once per academic year, and not be repeated for CSE and SE separately. Since the total

number of courses is 31, we attempt to create a curriculum with all courses combined. Table 6 shows the

resultant curriculum using the default objective function.

Table 6. Combined CSE / SE curricula (see text).

Term Combined CSE / SE Curricula

1 CS103 MATH101

2 CS105 EE325 ENS203 MATH204 SE211

3 CS302 CS303 MATH201 MATH203 SE302

4 CS304 CS305 CS308 SE322 SE407

5 CS306 CS307 CS412 MATH102 SE406

6 CS313 CS370 ENS490 MATH209 SE308

7 CS310 CS420 MATH202 MATH205

From the combined CSE/SE curricula, each program may pick the courses required and leave out the courses.

The resultant curricula have common courses shared and assigned to the same terms, thereby achieving the

desired efficiency.

Table 7. CSE and SE curricula

Term CSE Curriculum

1 CS103 MATH101

2 CS105 EE325 ENS203 MATH204

3 CS302 CS303 MATH201 MATH203

4 CS304 CS305 CS308

5 CS306 CS307 CS412 MATH102

6 CS313 CS370 ENS490 SE308

7 MATH202 MATH205

Term SE Curriculum

1 CS103 MATH101

2 CS105 ENS203 MATH204 SE211

3 CS302 MATH201 MATH203 SE302

4 CS304 CS305 CS308 SE322 SE407

5 CS306 CS307 CS412 SE406

6 ENS490 MATH209 SE308

7 CS310 CS420

8. Conclusions and contribution

Modern optimization software has evolved to a point where its use as a general-purpose tool in design and

decision support is quite expedient. Their routine use is further enhanced by superb open-source software.

Coupled with the computation power of even unassumingly ordinary laptop computers, using MIP software

for decision and design support becomes practical.

We develop a base MIP model and use it in curriculum revision and design. The flexibility of MIP

formulations allows the base model to be modified or tweaked to accommodate many “what if” scenarios. The

objective is not to completely automate curriculum design, but to provide options to the decision makers. The

model also helps in detecting inconsistencies and oversights, as demonstrate in Section 5. In our case,

following our college practice of transparent and collective management, we make the scenarios available to

all interested faculty members and use the model as a convenient tool during brainstorming and strategy

meetings.

The contributions of this work are twofold. First, it introduces the concept of Learning Elements (LE) that are

used to identify both the inputs and outputs of courses. These LEs, allow finer granularity in describing

prerequisite relations among courses. They also allow the concurrent consideration of curricula from multiple

 PEN Vol. 9, No. 4, October 2021, pp.632-642

642

programs towards further synchronization and the larger-scale optimization across programs. Our work

illustrates the benefits of using formal quantitative models in curricula design. As a second contribution, our

work serves as an example of a state-of-the-art MIP formulation that may be used as a foundation for similar

studies.

Acknowledgments

We acknowledge the contribution of our academic staff who throughout the revision of curricula advanced

many comments and questions that greatly helped the formulation of our model and improved its relevance in

a realistic environment.

References

[1] C. Castro and S. Manzano, “Variable and value ordering when solving balanced academic curriculum

problems”, arXiv preprint cs/0110007, 2001.

[2] J.-N. Monette, P. Schaus, S. Zampelli, Y. Deville and P. Dupont, “A CP approach to the balanced

academic curriculum problem”, Seventh International Workshop on Symmetry and Constraint Satisfaction

Problems, vol. 7, 2007.

[3] M. Chiarandini, L. Di Gaspero, S. Gualandi and A. Schaerf, “The balanced academic curriculum problem

revisited”, Journal of Heuristics, vol. 18, no. 1, pp. 119–148, 2012.

[4] B. Hnich, Z. Kiziltan and T. Walsh, “Modelling a balanced academic curriculum problem”, Proceedings of

CP-AI-OR-2002, pp. 121–131, 2002.

[5] L. Di Gaspero and A. Schaerf, “Hybrid local search techniques for the generalized balanced academic

curriculum problem”, International Workshop on Hybrid Metaheuristics, Springer, pp. 146–157, 2008.

 [6] Y. Z. Unal and O . Uysal, “A new mixed integer programming model for curriculum balancing:

Application to a turkish university”, European Journal of Operational Research, vol. 238, no.1, pp. 339–347,

2014.

[7] J. M. Lightfoot, “A graph-theoretic approach to improved curriculum structure and assessment

placement”, Communications of the IIMA, vol.10, no.2, 2010.

[8] P. R. Aldrich, “The curriculum prerequisite network: Modeling the curriculum as a complex system”,

Biochemistry and Molecular Biology Education, vol. 43, no.3, pp. 168–180, 2015.

[9] A. Slim, G. L. Heileman, E. Lopez, H. Al Yusuf and C. T. Abdallah, “Crucial based curriculum balancing:

A new model for curriculum balancing”, 10th International Conference on Computer Science & Education

(ICCSE), IEEE, pp. 243–248, 2015.

[10] S. Knorn, D. Varagnolo, K. Staffas, T. Wrigstad and E. Fjallstrom, “Quantitative analysis of curricula

coherence using directed graphs”, IFAC PapersOnLine, vol. 52, no. 9, pp. 318–323, 2019.

[11] M. I. Akbas, P. Basavaraj and M. Georgiopoulos, “Curriculum GPS: an adaptive curriculum generation

and planning system”, Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), pp.

1–11, 2015.

[12] H. Siirtola, K.-J. Raiha and V. Surakka, “Interactive curriculum visualization”, 17th International

Conference on Information Visualisation, IEEE, pp. 108–117, 2013

