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ABSTRACT   

The work consists of the development of a computational model for the simulation of the temperatures, using 

a system of differential equations in partial derivatives, which solution was found by finite differences 

method, using the hypothesis of the isobaric coordinates, it means that the pressure is not a function but 

becomes an independent variable, in the new system, z is a function, more  precisely a variable closely related 

to the geopotential ф. The data was obtained from the NCAR's Research Data Archive Database in January 

2011 at different altitudes of 2 to 4572 meters above sea level (m.a.s.l.). The grid was structured with 10 

spatial points on the x-axis, 8 spatial points on the y axis, and 5 sigma’s sigma's layers at thesame altitude 

evaluated, representing the 80 km² covering the Pamplonita River basin in the sector between Pamplona and 

Cucuta. The calculations obtained by the modeling system at the time of validation of the model have a low 

error level. The minimum error of validating the model was 0.17 %, obtained for the results of the model at 

2 m.a.s.l. 
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1. Introduction 

The study of atmospheric circulation  generates a growing interest in researchers in different areas of earth 

sciences; as the atmosphere is a complex dynamic system, its prediction represents a complex problem. 

Therefore, having a effective prediction of the meteorological variables is almost impossible. [1] analyzed a 

series of systems that were representative of meteorology, based on three non-linear differential equations, 

observing in his results that if he did a  minorslight numerical modification to the initial conditions of a variable, 

the result of the simulation would be totally different from the previous one. The meteorological prediction has 

increased the quality of its forecasts as time has passed; those done in 1954 with the barotropic model for 24 

hours are equivalent to the ones done in 1995 in the European Center for Meteorological Predictions for a 6-

days. Without going so far back in time, the statistics of the last years about Europe, published by Météo-France, 

show that the quality of the prediction in 1995 for 72 hours is equivalent to the one had in 1980 for 24 hours 

forecast  [2], [3]. 

A complete understanding of the general circulation requires an understanding of the role of small-scale 

motions, radiation, convection and interaction with the ocean and land surface.[4] Weather prediction is a 

challenging task for researchers and has drawn of many research interests in recent years.  
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Interpolation methods are widely used for temperature prediction like as [5] that presents a procedure to 

interpolate daily mean temperature over a whole year period by using time series of auxiliary predictors, where 

the main objective was to promote space-time prediction techniques for ,functional mapping versus purely 

spatial methods. However, this type of prediction is based on the analysis of point values taken from satellite 

data and the use of statistical interpolation methods where only the temperature at surface level is taken into 

account.  

Literature studies have shown that machine learning techniques achieved better performance than traditional 

statistical methods. [6] applicated the Support Vector Machines (SVMs) for weather prediction. In this work 

time series, daily maximum temperature data at a location is analyzed to predict the maximum temperature of 

the next day at that location based on the daily maximum temperatures for a span of previous n days. 

Performance of the system is observed over various spans of 2 to 10 days by using optimal values of the kernel 

function. The non-linear regression method is found to be suitable to train the SVM for this application. Other 

authors, as [7] studied the effectiveness of multilayer perceptron networks (MLPs) for the prediction of the 

maximum and the minimum temperatures based on past observations on various atmospheric parameters to 

capture the seasonality of atmospheric data, to improve the prediction accuracy, However, in these types of 

applications, the physics of the atmosphere and spatial-temporal interaction of temperatures with other 

meteorological variables are not taken into account.  

A completely non-hydrostatic model system known as the Advanced Regional Prediction System (ARPS) was 

developed in the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma [8], [9]. 

The ARPS is an effective tool for research and a system suitable for the explicit prediction of convective storms 

and weather systems at significant scales. The ARPS includes its data ingest, quality control and objective 

analysis packages, a data assimilation system that includes single-Doppler velocity and thermodynamic retrieval 

algorithms, the forward prediction component, and self-contained post-processing, diagnostic, and verification 

package [10] 

Other types of physics-based models, such as oceanic-atmospheric coupling [11], [12], use a fully non-linear 

ocean general circulation and atmospheric physic and statical element. Whit these models there have been 

significant advances in understanding the role of the wave, mean-flow interaction in the general circulation of 

the atmosphere and its variability, in particular,  the relationships among wave propagation, momentum 

transport and zonal flow accelerations are much better understood and have been applied to a wide range of 

problems. 

Currently, there are different models of meteorological prediction at the global level; for example, the Weather 

Research and Forecasting model (WRF) [13],  that has become one of the world's most widely used numerical 

weather prediction models [14] and that constitutes a novel meteorological non-hydrostatic tool, developed from 

the collaboration of prestigious international research centers [15], the HadCM3, an integrated climate model 

which has been widely used for weather forecast, detection and attribution, and other studies of climate 

sensibility [16], and the MM5 model, a terrain follow-up model designed to simulate or forecast the mesoscale 

and regional atmospheric circulation in a grand scale [17]. These models are robust and have been developed 

by experts in the different fields that make up atmospheric sciences, with high quality results, although at present 

it is necessary to develop models at local scales that can be adapted to the specific needs of each area, especially 

in tropical climates that present a high variation of their atmospheric systems over small distances. 

This work aims to develop a numerical atmosphere temperature prediction model based on the equations of 

atmospheric circulation in isobaric coordinates, implementing four assumptions. In order to make a first 

approach to the construction of a meteorological model for the Pamplonita river basin, that can be implemented 

for the generation of early warning systems for extreme weather events. 

2. Study zone 

The Pamplonita river basin (Figure 1) is located southwest of the department of Norte de Santander, on the 

eastern slope of the eastern mountain range of Colombia, with heights oscillating between 50 and 4200 meters 

above sea level (m.a.s.l). The main channel forms in the town of Pamplona at the confluence of the El Rosal 

and Navarro streams and ends near the town center of Puerto Villamizar in the Municipality of Cúcuta where 

present high climate variety, with conditions varying wildly in small distances [18], [19]. In the basins of the 
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rivers Pamplonita there are two different climate patterns, which have a differentiated behavior influenced by 

the ENSO phenomena [20]. The rainfall regime tends to be bimodal in most of the basin, there are two dry 

seasons roughly equivalent in intensity, from January to March and from June to August. The study area (Figure 

1) covers the upper and lower part of the basin from the town of Pamplona to Cúcuta city where present 

temperatures that oscillate between 9°C and 28°C on average. 

 

 
Figure 1. Study Area, Norte de Santander Department, Colombia. 

 

 

3.  Methodology and construction of the model 

To develop the temperature prediction model, the methodology was the following: 

Beginning from the primitive equations of the atmospheric circulation in isobaric coordinates (the height 

variation is used in the function of the pressure surfaces, and not in the function of geometrical height) and the 

four assumptions (described later), the equation system (1-5) which was representative of the Pamplonita River 

basin was established, which is ruled by the physical and thermodynamic laws of fluid mechanics, given that 

the atmosphere is a fluid, with properties that vary in time and space [21]. 

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝑢

𝜕𝑦
− 𝜔

𝜕𝑢

𝜕𝑃
−

𝜕ф

𝜕𝑥
+ ƒ𝑣 

(1) 

𝜕𝑣

𝜕𝑡
= −𝑢

𝜕𝑣

𝜕𝑥
− 𝑣

𝜕𝑣

𝜕𝑦
− 𝜔

𝜕𝑣

𝜕𝑃
−

𝜕ф

𝜕𝑦
− ƒ𝑢 

(2) 

𝜕𝑇

𝜕𝑡
= −𝑢

𝜕𝑇

𝜕𝑥
− 𝑣

𝜕𝑇

𝜕𝑦
− 𝜔

𝜕𝑇

𝜕𝑃
+

1

𝐶𝑝𝜌
− 𝜔 

(3) 

𝜕𝜔

𝜕𝑃
= −

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
 

(4) 

𝜕ф

𝜕𝑃
= −

1

𝜌
 

  (5) 



 PEN Vol. 9, No. 3, July 2021, pp.428-438 

431 

Where ω is the temporal variation of pressure,  ф is the geopotential height, 𝑢 and v are the wind components 

(u is the zonal component, specifically the horizontal speed along a latitude circle in west to east direction, v is 

the horizontal speed along a south to north meridian), T is the temperature of the atmosphere, Cp is the moist 

air constant, f is Coriolis' force, and ρ is air density. 

The criteria to select variables were established from the differential equations which represent the model and 

after the assumptions made to simplify the solution, the initial validation conditions and model calibration were 

obtained from the temporal series acquired in the Research Data Archive Computational & Information System 

Lab, from  the database NCEP Global Forecast System (GFS)  the data for the years 2001 to 2012 [22], with a 

complete validation, selecting the variables: Temperature (T) of the air at different heights, the geopotential (φ), 

pressure (P), direction and speed of the wind (u, v). 

 

The assumptions established for the model applied in the Pamplonita river basin are: 

 

Assumption 1: The representation of the model was done in three (3) spatial dimensions, from which the z 

component is replaced by the component of spatial pressure and temporal pressure, so our independent variables 

are x, y, P, and t. 

Assumption 2: The study area was represented as a cube, in which the Pamplonita River basin represents its 

grid. 

Assumption 3: This is considered a closed system, which behaves as an adiabatic one (there is no heat transfer). 

Assumption 4: It is assumed that what is above the ground corresponds completely to the atmosphere, given 

that the topography of the study basin was not considered. 

 

A grid of 8 x 10 x 5 was done to represent the Pamplonita River basin zone, in which the longitude is given by 

8 nodes and the latitude by 10 nodes (which cover an area of approximately 80 Km2). At the same time, the 

altitude of 5 levels comprehends from 2, 1829, 2743, 3658 and 4572 (m. a. s. l.), where the initial conditions are 

given by the dependent variables (u, v, T, ω, ф) obtained from the satellite data and the solving of the constants. 

The approximate solution of the model uses the finite difference method, generating a future prediction for 1, 4 

and 10 days. The boundary conditions were defined by temperature (𝑡), wind speed (𝑣, 𝑤) and pressure (𝑝) at 

the edge points within the domain, which was set around the mesh 10 x 8 x 5 and the values of variables 𝑡,𝑤, 𝑣 

and 𝑝 in the time 0 (𝑡0) are the initial conditions.  

For the validation of the model, its results are compared with the actual data of 1, 4 and 10 days, respectively. 

For this purpose, we used the Percent Error Eq. (6), defined as: 

                                                  𝑃𝐸 =  
𝑇𝑗−𝑇𝑖

𝑇𝑖
                                                        (6) 

 

Where 𝑇𝑗 is the modelled value; 𝑇𝑖is the real value. 

 

4.  Results 

Below are the present results obtained from the simulations done by the model for the Pamplonita River basin; 

the interest variable corresponds to the temperature at different heights. 

  

In Figure 2 is presents the comparison of the real data and the average calculated data for a day at 2 m. a. s. l.  
high, where the vertical axis represents the temperatures in degrees Celsius for a day, with a maximum value 

for the calculated data of 25.6°C and the minimum data was 9°C, the maximum value for the real data was 

27°C, and the minimum data was 10°C.  

 

In this simulation, it can be observed that the results of the prediction of temperatures have a high similarity 

with the real data, except in longitude 6 where the real data have a lower value than the simulated. The highest 

temperature ranges are present at this level; since they are found on the surface and also because the study area 

is on a tropical system with important changes in temperatures over small distances [23]. 
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Figure 2.  Temperatures (°C) calculated from the model vs. real for a day at 2 m. a. s. l. 

 

In Figure 3 is presents the comparison of the real data and the average calculated data for a day at 1829 m. a. s. l. 
where the vertical axis represents the temperatures in degrees Celsius for a day. The maximum value for the 

calculated data was 15.7°C and the minimum data was 14.96°C, for the real data the maximum was 15.7°C and 

the minimum data was 14.9°C. In this simulation, it can be observed that the results of the prediction of 

temperatures have a similarity with the real data, except in longitude 3 to 8 where the model overestimates the 

real data. 

 
Figure 3.  Temperatures (°C) calculated from the model vs. real for a day at 1829 m. a. s. l. 
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In Figure 4 is presents the comparison of the real data and the average calculated data for a day at 2473 

m. a. s. l. where the vertical axis represents the temperatures in degrees Celsius for a day. The maximum value 

for the calculated data was 10.96°C, and the minimum data was 9.98°C, for the real data, the maximum was 

10.2°C, and the minimum data was 9.8°C. In this simulation, it can be observed that the results of the prediction 

of temperatures have a similarity with the real dates, except in longitude 3 to 8 where the model overestimates 

the real data.  

 
Figure 4.  Temperatures (°C) calculated from the model vs. real for a day at 2743 m. a. s. l. 

 

In Figure 5 is presents the comparison of the real data and the average calculated data for a day at 3658 m.a.s.l. 

where the vertical axis represents the temperatures in degrees Celsius for a day. The maximum value for the 

calculated data was 6.7°C and the minimum data was 5.54°C, for the real data the maximum data was 5.98°C, 

and the minimum data was 5.5°C.  In this simulation, it can be observed that the results of the prediction of 

temperatures overestimate the real data. 

 
Figure 5.  Temperatures (°C) calculated from the model vs. real for a day at 3658 m. a. s. l. 

 

 1 
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In Figure 6 the comparison of the real data and the calculated average temperature data for a day at 4572 m.a.s.l 

is observed, where the vertical axis represents the temperatures in degrees Celsius. The maximum value for the 

calculated data was 2.1°C and the minimum was 1.39°C and for the real data the maximum was 1.51°C and the 

minimum was 1.1°C. In this simulation, it can be observed that the results of the prediction of temperatures 

overestimate the real data. The temperature range is much lower because this is the highest level, and its behavior 

tends to be more uniform [24]. 

 

 
Figure 6.  Temperatures (°C) calculated from the model vs. real for a day at 4572 m. a. s. l. 

 

 

4.1.  Validation of the model for the Pamplonita River basin. 

In Figure 7 is observed the comparison of the data obtained from the meteorological prediction model and the 

real data of the database at 2, 1829, 2743, 3685 and 4572 m. a. s. l., where similar dynamics for real and predicted 

data are observed, with low error percentages. Specifically, at 2 m. a. s. l. the error obtained was 0,75%, which 

indicates the model's effectiveness to predict in this altitude and time (1 day) is elevated for 1 day at 1289 and 

2743 m. a. s. l.  the error percentages obtained were 3.43 and 2.81 %, respectively, indicating that the prediction 

model's effectiveness for these heights and time is elevated (Table 1). The variations maximum of 0.3°C is 

present in the distances 5 and 7 at 2743 m. a. s. l.  (Figure 7). 

In the same way, Figure 8 shows the predicted versus real temperature values at 3658 and 4572 m. a. s. l. with 

error values of 9.39 and 38.52%, respectively (Table 1), so the model is considered to have a moderate 

effectiveness at 3658 m. a. s. l.while the error at 4572 m. a. s. l. is considered high. The variations generated in 

the prediction versus the real at 3658 m. a. s. l. and 5467 m. a. s. l. in 1-day prediction (Figure 8), are mainly due 

to the turbulence generated by the non-linear nature of the meteorological prediction model, these variations are 

of 0.6°C. 

The error values of the prediction model at 1 day for every evaluated height show a good prediction for 2, 1829 

and 2743 m. a. s. l.  at the same time, a moderate prediction is shown at 3658 and 4572 m. a. s. l. Ahowever, the 

temperature values presented a very low oscillation and varied in less than 1°C. Table 1 shows the error 

percentage of the prediction model for 1, 4 and 10 days; the results show a high effectiveness for the predictions 

at 2, 1829, 2743 and 3658 m. a. s. l. Nevertheless, the prediction at 4572 m. a. s. l. was of moderate effectiveness. 

 1 



 PEN Vol. 9, No. 3, July 2021, pp.428-438 

435 

And it was possible to analyze that the model has good stability, even when the error generated by the temporal 

variation increases with time. 

 

Table 1. Error percentage of the prediction model for each altitude studied for 1, 4 and 10 days 

Altitude  

(m.a.s.l.) 

% Error (°C) 

1 Day 4 Days 10 Days 

2 0,76 0,17 18,27 

1829 3,43 2,10 1,92 

2743 2,81 0,19 5,98 

3658 9,39 4,65 7,36 

4572 38,52 12,10 25,10 

 

 

 
Figure 7. Real versus calculated temperature at 2, 1829, and 2743 m. a. s. l. for 1 day 
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Figure 8. Real versus calculated temperature at 3658 and 4572 m. a. s. l. for 1 day 

 

5.  Conclusions 

From the five sigma layers that represented the atmosphere in this work, it was observed how in the troposphere 

the temperatures are inversely proportional to altitude. Hthat represented the atmosphere in this work, it was 

observed how in the troposphere the temperatures are inversely proportional to altitude. Its value in degrees 

Celsius descends very quickly at different distances at the level of the surface. Due to this oscillation, it becomes 

more difficult the predictions as the values range are smaller. 

 

The numerical prediction of the meteorological variables increases its complexity every day, due to the fact that 

the interaction with atmospheric pollution, geography and the ecosystems is constantly changing. Therefore, it 

is necessary to develop more robust prediction models, where equation systems integrate as many variables as 

possible and increase their effectiveness. 

 

The meteorological prediction model obtained a maximum error of 38,52% for the temperature variable at 4572 

m. a. s. l. on 1 day and a minimum error of 0,17% at 2 m. a. s. l. in a 4 day prediction, which shows the 

effectiveness of the model to predict the temperature variable, and the variation of said effectiveness due to the 

non-linear nature of the system. Continued improvements are needed for the meteorological prediction system, 

which may include predicting more meteorological variables, mainly to accomplish precipitation predictions, 

which will generate a more robust system with greater precision on different space-time variations. 
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