
Periodicals of Engineering and Natural Sciences ISSN 2303-4521

Vol. 8, No. 3, July 2020, pp.1331-1344

 1331

Solving competitive traveling salesman problem using Gray Wolf

Optimization Algorithm

Mushreq Luay Taha1, Belal Al-Khateeb 2, Yasser F. Hassan 3, Ossama M.M. Ismail4, Ossama Abu Rawash5

1 Alexandrea University – Factually of Sciences

2,3,5University of Anbar – College of Computer Science and Information Systems
4 Arabic Academy for Sciences and Technology and Maritime Transport

ABSTRACT

 In this paper a Gray Wolf Optimization (GWO) algorithm is presented to solve the Competitive Traveling

Salesman Problem (CTSP). In CTSP, there are numbers of non-cooperative salesmen their goal is visiting a larger

possible number of cities with lowest cost and most gained benefit. Each salesman will get a benefit when he visits

unvisited city before all other salesmen. Two approaches have been used in this paper, the first one called static

approach, it is mean evenly divides the cities among salesmen. The second approach is called parallel at which all

cities are available to all salesmen and each salesman tries to visit as much as possible of the unvisited cities. The

algorithms are executed for 1000 times and the results prove that the GWO is very efficient giving an indication of the

superiority of GWO in solving CTSP.

Keywords: Gray Wolf Optimization, CTSP, TSP, Random Neighbour

Corresponding Author:

Mushreq Luay Taha

Computer Science
Alexandrea University
Egypt, Alexandrea

E-mail: mushrik8888@gmail.com

1. Introduction

The Traveling Salesman Problem (TSP) is an important classical problem, it is (NP-hard) problem at

which there is no polynomial time to solve it and find exact solution [1, 2] .Researchers used many

algorithms in order to find a best solution. TSP idea is finding the shortest tour for salesman that must

visit a number of cities exactly once and then return to the start city (ie, a Hamiltonian cycle) and between

each city there is a distance represents the cost of moving form node or city to another one[3, 4]. TSP is

one of the most studied combinatorial optimization problems that have many applications such as routing,

operation research, scheduling and transportation routing. TSP has some of types such as Multi Traveling

Salesman Problem (mTSP) and Competitive Traveling Salesman Problem (CTSP), asymmetric TSP,

clustered TSP [5, 6]. CTSP is proposed by Fekete in (2004), is a complex non-cooperative problem where

non-cooperative means that every salesman works to his advantage competitively with other salesmen as

each salesman looking for increasing profits by trying to travel to the largest possible number of cities that

have not been visited before by knowing the paths used by the rest of the salesmen[7]. The first salesman

who arrives at a city will got the benefit and the others will get nothing and they loss the distance cost and

if more than one salesmen arrives at same time they will share the benefit so that the salesmen aim to

obtain highest benefit by visiting highest number of cities[8-11].

2. Competitive traveling salesman problem model

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1332

 The interaction behavior and the dynamicity of CTSP, there are a number of agents Let M= {1……m} can

be considered as set related to non-cooperative agents. Those agents must visit (n) cites therefor N= {1….n}

of cites.

- Benefit (Bi): with regard to each one of the cities i ∈ {1,….n }, also there have been continuous

benefits for each city.

The first agent arriving at a city will obtains the benefit and the other receives zero if they arrived after him

and if two or more agents visit the same city at same time, they will share the benefits.

- Cost: when agents travel from city i to city j they have to pay a cost Cij.

Payoff: it is calculated for each agent by compute the rewards of visiting unvisited sites and calculate the cost

of traveling and it is computed as:

 𝑢 = ∑ 𝐵𝑗
𝑘0
𝑗=1 − ∑ 𝐶 𝑖(𝑖+1) − 𝐶𝑘1

𝑘−1
𝑖=1 (1)

∑ 𝑩𝒋
𝒌𝟎
𝒌=𝟏 refers to the aggregation reward from 𝑘0 (𝑘0 < 𝑘) cites

• Path: Initially, the salesmen are positioned in various cities. They should be travelling between cities

and they might not be changing the destination as soon as starting the trip. For completing the travel,

they must be returning to their departure city.

• Trip Speed: all salesmen have constant trip’s speed 𝑉𝐾.

• Common Knowledge: there are a set of knowledge contains the speed, cost of this direction, path

traveled, rewards and costs.

The aim of all agents is maximizing the reward and decrease the cost and each agent choses his tour

independently [4][12].

3. Related works

 In 2004, Fekete et.al introduced the Competing Salesmen Problem (CSP) as a new variant of traveling

salesman problem. They suggested that multiple salesmen compete against each other to visit the largest

number of nodes instead of cooperating in finding the shortest route. At any given time, all salesmen know

their opponents’ positions. A salesman wins when he visits more cities than his competitors[13].

In 2013, Kendall and Li have offered new type related to TSP, where a few salesmen are planning on

visiting a few cities, also the relation between then have been non-cooperative. The salesman gets award if he

visits a city that has not been visited by other salesmen. They have to pay the cost of traveling to a city. The

aim of each salesman is to visit the largest number of cities that have not been visited before with minimum

travel traveling distance. All salesman must be predicting the competitor’s tours in the case when they plan

their tour. The researchers provided hyper-heuristic algorithm for the purpose of solving such problem, such

includes low-level heuristic could be utilized for building tour, also high-level heuristics utilized for choosing

among low-level heuristic at each one of the decision points. The simulation results of the study indicated that

the suggested algorithms achieved good results in computing CTSP’s approximate solutions, also the

algorithm has the ability for inheriting excellent features related to low-level heuristic [14].

Mohtadi and Nogondarian in 2014 presented a game theoretic approach to solve TSP in the competitive

situations. Furthermore, they used game theory as a mathematical model to test the problems. They used

genetic and tabu search algorithms. Experimental results showing that the computational error has been in in

sensible range. Furthermore, Tabu search algorithm created certain solutions with optimum quality, also not

much time has been required [4][15, 16].

In 2015, Li and Kendall presented hyper-heuristic approach for generating games’ adaptive strategies. On

the basis of low-level heuristic, the hyper-heuristic game player has the ability of generating the strategies that

are adapting to co-player’s behavior as well as dynamics of the game, also introduced hyper-heuristic game

player for three games iterated prisoner dilemma (IPD), CTSP, as well as the repeated Go of spiel. The study

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1333

alpha

beta

delta

omega

utilized RN+2opt, RN, NN+2opt, as well as NN. High-level algorithm has been identifying heuristics that

have been used through the other agents and after that selecting from the low-level heuristics. Furthermore,

the study’s computational results indicated that the hyper-heuristic game player outperforming the low-level

heuristic in the dynamic as well as repeated games and also the hyper-heuristic game player generating

adaptive approaches in the case when low-level heuristics have been deterministic. The straightforward

heuristic selection approaches could be utilized for construing automated game players in various games[17,

18].

In 2016 Mohannad Abdul-Sattar and Belal Al-Khateeb applied ant colony optimization algorithm for solve

CTSP. They used two different approaches to solve the CTSP, the first approach divided the cities among

salesmen in order to approve the ability of ACO algorithm in solving the CTSP and then compared the

obtained results with Nearest Neighbors (NN) and Random Neighbors (RN) algorithms, the obtained results

prove that ACO algorithm was better than the other strategies. The second approach uses unspecified number

of cities as each salesman will try to visit as much as possible cities according to the salesman’s strategy. In

this approach, two directions are taken, the first one uses the same plan for each salesman, while the other

uses an update plan, for each salesman, ACO algorithm results were better than another algorithm (NN & RN

& ACS algorithm with the first approach) [3].

4. Difficulty of CTSP

 In CTSP the salesmen behavior is not corporative each salesman dose not known the other salesmen plan

and each salesman wont to obtain maximum benefit by visiting the largest number of unvisited nodes so that

we need efficient tools to find the optimal track that achieves the largest revenues rapidly, traditional approach

has been extremely slow to find the exact solutions so that we proposed using heuristic approach to find

approximate salutations, this approach is simple and easy: because it is inspired from very simple biological

behavior and flexible because it can be applied without change in its structure, also it is a derivation-free

mechanisms and can avoid local optima because of its stochastic nature. One of the heuristics approaches is

swarm intelligence, it is term that describes the collective behavior of autonomic decentralized systems, it

deals with the simulation of the behavior of less intelligent pings with limited possibilities such as ant, birds

and fish, which at a same time exhibit a highly intelligent social behavior. It preserves information that is

related to search space throughout iteration, sometimes utilizing memory for saving optimum solution and

typically having not much parameters to alter[19-22]. GWO is one of swarm intelligence algorithms that will

used in this paper to solve the competitive travelling salesmen problem.

5. GWO algorithm

 This algorithm simulates the hierarchy as well as the mechanism of hunting of the gray wolves which have

been suggested via Ali Mirjalili in 2014. There have been four gray wolves’ types (alpha, beta, delta as well as

omega) simulating the steps to hung, encircle as well as attack. The Figure 1 shows the strict social hierarchy

of gray wolves

.

Figure 1. The hierarchy related to The Gray Wolves Groups

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1334

The alpha represents the optimal solution and the second is beta then delta and omega at last. Grey wolves

mostly search according to the position of the alpha, beta, and delta. They diverge from each other to search

for prey and converge to attack prey. The search agent may be in any location between the current location

and the prey’s location and the pseudo code of GWO in figure 2 explain how the algorithm solve the

optimization problems. [23-26].

• Initialize the population of the gray wolf 𝑋𝑖 (I =1,2,…..n)

• Initialize a, A,C

• Calculate every search agent’s fitness

• 𝑋𝛼represents the optimal search agent

• 𝑋𝛽 represents the second optimal search agent

• 𝑋𝛿represents the third optimal search agent

While (t is smaller than the maximum number of iterations)

 For every one of the search agents

• Update the current search agent’s positions according to the equation 8.2

• End For

• Update a,A,C

• Calculate the fitness values for each search agent

• Update 𝑋𝛼, 𝑋𝛽&𝑋𝛿

• i=i+1

• End While

• Output 𝑋𝛼

Figure 2. GWO pseudo code

6. Problem representation

CTSP can be represented as a graph, where nodes represent the cites that each salesman will visit and the

arrows represent the ways that each salesman used to move from one city to another and the length of them

represents the distances or cost.

7. GWO solution generation

The construction of solution consists of some stages that are started with determining the time, restrictions

and predefined relationship and then creates initial population that represented as the pack of wolves that

spread among nodes; this called initial system case for solution[27, 28].

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1335

After solution construction, the system begins to work through movement of wolves from node (city) to

another in order to build solutions and in hope to find the best solution, the memory saves three optimal

solutions and update it when find better solutions.Building solutions process will continue until finding the

best possible solution or achieve stop condition; the gray wolf optimization is a dynamic algorithm because it

avoids local solutions by the ability to changing locations within the hierarchy such as the alpha may be

converting to delta if he be very old and beta candidate to be alpha.

8. Proposed Gray Wolf System (GWOS)

 Two approaches to solve competitive traveling salesman problem are taken. The first one is static and the

second one is dynamic, the static means dividing cites among salesmen or agents equally and the dynamic

means no dividing of nodes (cities) and each agent tries to visit largest numbers of cites as possible according

his strategy.

8.1 Initialization

 It is an important stage in solution construction. It provides data and other requirements and then submits it

in acceptable form to algorithm to be able to start its function.

8. 2 Preparing

 It consists of multi sages; the first stage is reading the problem dataset information. In the dataset, each city

has two points, one of them on X-axis and the second on the Y-axis. The distance between each city and other

cites calculates by the following equation:

Dis (i,j) = √(𝑋 𝑖 − 𝑋 𝑗)
2 + (𝑌 𝑖 − 𝑌 𝑗)

2 (2)

𝑋 𝑖 and 𝑦𝑖 represents the city (I) points on x-axis and y-axis so 𝑋 𝑗 and 𝑌 𝑗 represent the city (J) points on x-

axis and y-axis, this equation will used to compute the distances between all cites. The result of this step is

two dimensional array that contains values that represent the distances between cites, in this step the salesmen

will know the number of cities that they must be visit it.

After collecting knowledge about the problem such as number of cities and distances of it, the wolves pack

distributes randomly, this step represents the population.

The population is firstly initialized randomly and then uses the equation below to determine the destination.

D⃗⃗ =ǀC ⃗⃗⃗ . 𝑋𝑝 (t) − x ⃗⃗ (t)ǀ (3)

Where: 𝑋𝑝 Represents the prey’s position vector. A, C represent the vector of the coefficient. X represents the

gray wolves’ position vector.

𝐴 =2𝑎 ⃗⃗⃗ . 𝑟 ⃗⃗ 1 − 𝑎 (4)

𝐶 ⃗⃗ ⃗=2𝑟 ⃗⃗ 2 (5)

𝑎 ⃗⃗⃗ = 2 (1 −
𝑖𝑡

𝑁
) (6)

Where the component of 𝑎 linearly decrease from 2 to 0 throughout the iterations, it represents the initialized

value and N is maximum iterations number, and 𝑟1⃗⃗⃗⃗ , 𝑟2⃗⃗⃗⃗ random vectors [0-1].[29, 30].

Because of there are three candidate solutions in this algorithm we must use equation for the best three types

so that we shall use the equations below to create population:

D⃗⃗ α = ǀC1
⃗⃗⃗⃗ . X ⃗⃗⃗ α − X⃗⃗ ǀ , D⃗⃗ β = ǀC⃗ 2 . X⃗⃗ β − X ⃗⃗⃗ ǀ , D⃗⃗ δ = ǀC⃗ 3. X⃗⃗ δ − X⃗⃗ ǀ (7)

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1336

X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1. (D⃗⃗ α), X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2. (D⃗⃗ β), X⃗⃗ 3 = X⃗⃗ δ − A⃗⃗ 3. (D⃗⃗ δ) (8)

(X⃗⃗ t+1) =
X⃗⃗ 1+X⃗⃗ 2 +X⃗⃗ 3

3
 (9)

The wolves change their position in accordance with the alpha and the prey’s position until achieves the

optimal tour or number of iterations condition or exploring for another prey better than the last.

After initializing and preparing the number of cities for each salesman, then the cities will be divided equally

among salesmen and number of wolves for each salesman [26].

8.3 Solution construction by GWO

After initialization and preparing stages, the algorithm starts to move from the start node to other nodes

that determined for each salesman in initialization stage.

The wolves move from node to another until amount to prey (the goal node) and then return to start node. To

create a path from start node to goal node wolves will use the equation below in order to determine the next

node in particular node

 X⃗⃗ (t+1) = {
ǀC ⃗⃗⃗ . XP(t) − A ⃗⃗ ⃗. D ⃗⃗ ⃗if A ⃗⃗ ⃗ < 1 explotation

 else A ⃗⃗ ⃗ ≥ 1 exploraton
 (10)

Where X⃗⃗ (t+1) is the next position or updating position for each wolf after use the equation (7) and C ⃗⃗⃗ a

coefficient vector contain random values simulate the impact of the obstacles to the approaching preys in the

nature calculated by equation (5), and 𝐴 ⃗⃗ ⃗ represent as a coefficient vectors it is also random value and

calculated by equation (4) and D ⃗⃗ ⃗ is the direction of prey finally XP the position of prey. After determining the

city to be traveled and the salesman the wolves' locations are updated based on current locations and using the

equation (7). The using of random values with 𝐴 ⃗⃗ ⃗ greater than 1 or less than 1 to compel wolves of diverging

from the prey to emphases explorations and allow search globally and diverge from prey for the sake of

finding a better prey [27][28][29].

8.4 Position updating

 After searching and finding the best location by alpha and determining the next city, salesman traveling to it

and all other wolves changes its direction based on the alpha wolf. Algorithm1 shows the proposed static

GWO method, where (L) represents the number of unvisited cities that determined for each salesman and (S)

represent the visited city of it. Algorithm 1 shows the proposed static GWO method, where (L) represents the

number of unvisited cities that determined for each salesman and (S) represent the visited city of it.

Algorithm 1: Static GWOS.

 INPUT: get the dataset information

1. Compute the distances between cities according to the equation (2).

2. Set the number of salesmen.

3. Setting the number of cities for every salesman.

4. Setting the number of wolves for each salesman.

5. Setting the start city for each salesman.

Solution

6. Find the tour for each salesman (L)

 For i = 1 to the number of the salesmen

 For j = 1 to the number of the cities

 For k =1 to the number of the wolves

 Find the next city (S) by equation (8)

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1337

 The best agent is alpha

 The 2nd best agent is beta

 The 3rd best agent is delta

 End for

 L=L-S

 Update city (S) by equation (9)

 Tour =S

 Return to start city

 End for

 End for

 Find the best tour by equation (1) for each salesman

End

OUTPUT: the best tour.

Algorithm 2 shows the proposed parallel GWO method, where (L) represents the number of unvisited cities

that determined for each salesman and (S) represent the visited city of it.

 Algorithm 2: Parallel GWOS.

1. Compute the distances between cities according to the equation (2).

2. Set the number of salesmen.

3. Set the number of cities

4. Set the number of wolves for each salesman.

Solution

5. Find the start city for each salesman

6. Find the first move for each salesman

For i= 0 to number of salesman

 Find the next cities according to equation (8)

 Calculating the fitness of every one of the agents

Xα represents the optimal search agent

Xβ represents the second optimal agent

Xδ represents the third optimal agent

Update position of the current search agent by equation (9)

7. Find the tour for each salesman

 Number of city = number of city -1

 While (number of city >0)

 Identify which salesman begin first according equation (2)

 Find the next city by equation (8)

 Update position by equation (9)

 Number of cites = number of cites -1

 End while

 Return to start city

 For i= 1 to the number of the salesmen

 For j=1 to the number of the cities

 Update position by equation (9)

 End for

 End for

OUTPUT: best tour for each salesman

9. Experimental setup and results

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1338

 This section presents the experimental results of the proposed system. Several tests are applied to evaluate

the performance of the proposed system.

9.1 General system implementation

The proposed system will apply set of tests on a dataset that is presented by Li and Kendal with 20 cities,

the system contains two parts

- Static Gray Wolf Optimization.

- Parallel Gray Wolf Optimization.

The first step to test gray wolf optimization is load cities from dataset, then the system will compute

distances between all cities using equation (2). The next step is to specify start city for each salesman then the

system will generate path for each salesman by using algorithm 1.

The last step is to find the best path with maximum sales by using equation (1), in this step, the system gets

the information for each salesman then compute fitness function between summation of path and summation

of sales, the maximum value that means this salesman has the best path and best sales. Table (1) shows the

distances between dataset cities.

Table 1. Distances between cities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 97 55 21 49 70 63 33 61 85 78.4 21 71 43 79 27.9 54.6 48.2 94.9 79.25

2 97 0 53 100 62 29 35 95 56 32.3 40.1 80 78 58 75 71.8 48.8 73.7 30.2 58.25

3 55 53 0 67 51 38 21 42 57 31.2 59.5 34 80.4 14 36 41.4 41.7 61.7 41.2 27.66

4 21 100 67 0 42 72 70 54 54 94.9 74.1 37 57.1 54 96 29.1 53 37 104 94.01

5 49 62 51 42 0 34 41 67 12 67.5 31.6 44 29.7 40 87 22.1 14.1 12 75 77.82

6 70 29 38 72 34 0 17 74 30 38 22.7 55 54.6 36 71 43.8 20.2 45.9 43.4 56.73

7 63 35 21 70 41 17 0 60 42 27 39.7 45 66.6 23 54 40.9 27.5 52.5 35.4 40.36

8 33 95 42 54 67 74 60 0 78 72.5 90 24 95.3 38 52 46.1 66.4 72 82.2 57.45

9 61 56 57 54 12 30 42 78 0 67.1 20.5 55 25.1 47 93 34 14.9 19.2 73.3 81.27

10 85 32 31 95 67 38 27 72 67 0 59.6 65 92 42 43 66.5 53.9 79.4 10 26.17

11 78 40 60 74 32 23 40 90 21 59.6 0 68 38.2 54 93 50.6 24.3 39.7 63.5 79.4

12 21 80 34 37 44 55 45 24 55 64.7 68.3 0 71.6 23 60 22.4 44 48.4 74.6 58.55

13 71 78 80 57 30 55 67 95 25 92 38.2 72 0 69 117 49.2 39.4 23.4 98 106

14 43 58 14 54 40 36 23 38 47 42.5 54.1 23 69.3 0 48 27.5 32.6 49.1 52.4 41.59

15 79 75 36 96 87 71 54 52 93 43.2 93.5 60 117 48 0 74.8 77.8 97.4 49.2 17.03

16 28 72 41 29 22 44 41 46 34 66.5 50.6 22 49.2 27 75 0 26.8 26.1 75.7 69.05

17 55 49 42 53 14 20 28 66 15 53.9 24.3 44 39.4 33 78 26.8 0 26.1 61.1 66.57

18 48 74 62 37 12 46 52 72 19 79.4 39.7 48 23.4 49 97 26.1 26.1 0 87 88.77

19 95 30 41 104 75 43 35 82 73 10 63.5 75 98 52 49 75.7 61.1 87 0 32.39

20 79 58 28 94 78 57 40 57 81 26.2 79.4 59 106 42 17 69.1 66.6 88.8 32.4 0

The first row and first column in this table represent the number of cities (nodes), the other cells represent

distances between these nodes depending on the location of node using x-axes and y-axes.

9.2 Experimental Results: This section shows all the obtained results for static and parallel gray wolf

optimization methods that are proposed to solve the CTSP problem.

9.2.1 Number of Wolves: In order to determine the most number of wolves to be used in the experiments,

different number of wolves are tested. The obtained results with 1000 iterations indicate that the best number

of wolves is 4-7 wolves for 10 cities and 3-5 for 20 cities as shown in the table (2) and Figure (3).

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1339

Table 2. The effects of the numbers of wolves in GWOS

Number of

Cities for

Each

Salesman

Number of

Salesmen

Numbers of

Wolves Best Track Cost Benefit

10 2 3 1 422.6184 1025

10 2 4 2 541.94 1175

10 2 5 2 541.94 1175

10 2 6 2 541.94 1175

10 2 7 2 573.2 1250

10 2 8 2 541.94 1000

10 2 9 2 474.395 1000

10 2 10 1 422.618 1050

10 2 11 1 422.618 1050

10 2 12 1 422.618 1050

20 2 3 2 850.337 2100

20 2 4 2 909.85 2175

20 2 5 2 909.85 2175

20 2 6 1 729.342 1825

20 2 7 1 729.342 2025

20 2 8 1 729.342 2025

20 2 9 1 729.342 1825

20 2 10 1 729.342 2025

20 2 11 1 729.342 2025

20 2 12 1 729.342 1950

Form table 2 that above various numbers of cities and salesman we can denote the best results obtained when

the number of wolves (4-7) wolf for various number of cities and the Figure 3 show the carve of benefits

based on number of wolves.

Figure 3. The number of wolves benefits (2 Salesmen and 10 Cities)

0

200

400

600

800

1000

1200

1400

12345678910

number of wolves

benefit

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1340

The orange carve represents benefit and the blue for number of wolves, from this Figure we can denote the

proposed system achieve the maximum benefit when the number of wolves (4-7).

From all above it is possible to conclude that the use of a large number of wolves (more than 7 wolves) with a

few cities leads to negatively affects the exploration and exploitation properties of the algorithm and adopt

local solutions therefore, we notice an increase in total costs when increasing the number of wolves and a

decrease in total benefits.

The number of wolves is an important factor to obtaining the optimal possible solution and most influences in

problems which the number of cities is large.

9.2.2 Static Gray Wolf Optimization System (GWOS)

 In this method, each salesman has the same number of cites at which each salesman has 10 cities from the

20 city CTSP, where the benefit is set to 150 for each city. The obtained results are then compared with Ant

Colony Optimization, Nearest Neighbors (NN) and Random Neighbors (RN).

The Nearest Neighbor Algorithm (NN) Examines all the cities that have not been visited before and chooses

the nearest one.

The Random Neighbor Algorithm (RN) Randomly selects the next city from the list of unvisited cities.

The results that are shown in tables (3), (4) and (5) prove the performance of GWOS as it has outperformed

the other selected algorithms in best and average results for all tests, which proves the ability of GWOS in

solving CTSP in static situation.

Table 3. Best results of two salesmen with 20 static cites and 1000 iteration

Algorithms Benefit

Salesman 1 Salesman 2

NN NN 869.82 945.99

NN RN 869.82 696.65

NN ACS 869.82 1034.14

RN NN 805.77 945.99

RN RN 805.77 696.65

RN ACS 805.77 1034.14

ACS NN 1029.47 945.99

ACS RN 1029.47 757.74

ACS ACS 1029.47 1034.14

GWOS NN 1175 945.68

GWOS RN 1000 757.74

GWOS ACS 1175 1034.14

GWOS GWOS 1575 1050

NN GWOS 869.82 1050

RN GWOS 805.77 900

ACS GWOS 1029 1175

Table 3 shows the results of using GWOS and compare it with other algorithms that uses same dataset.

GWOS outperformed the rest of other algorithms, this reflect the efficiency of GWOS to solve CTSP.

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1341

Table 4. Best results of 1000 executions for two salesmen and static 20 cities

Algorithm Best benefit

Nearest Neighbor (NN) 945.99

Random Neighbor (RN) 869.82

Ant Colony System (ACS) 1043

Gray Wolf Optimization System (GWOS) 1575

Table 4 above show the best results for each algorithms that uses same dataset, the results show GWOS

achieve higher benefit than other algorithms that uses the same dataset and then ACS in second level the NN

and RN.

Table 5. Average Results of 1000 Executions for Two Salesmen with 20 Static Cities

Algorithm Average of benefit

Nearest Neighbor (NN) 945.99

Random Neighbor (RN) 869.82

Ant Colony System (ACS) 1043

Gray Wolf Optimization (GWOS) 1052.885

In table 5 the average of benefits that obtained when applying algorithms on the same dataset. It is show the

GWOS exceed on other algorithms and obtain higher benefits than others.

9.2.3 Parallel Gray Wolf Optimization System (GWOS)

 In this approach, all cities are available for all salesmen. Each salesman will choose the next city form the

available cities list. The salesman who arrives firstly will get all benefit and the others will lose the cost of

travel therefore the salesmen must avoid visiting the visited cities, if more than one salesman coincides in

same city at same moment the benefit will divided among them. The results of GWOS are compared with RN,

NN and ACS algorithms. Nine salesmen and 20 parallel CTSP will uses and the compares with the results of

the other algorithms. The results are shown in tables (6) and (7).

Table 6. Best Results of 1000 Executions for Nine Salesmen for 20 Parallel Cities

Algorithm Benefit

Nearest Neighbor (NN) 1634.28

Random neighbor (RN) 1152

Ant Colony System(ACS) 1826

Gray Wolf Optimization System (GWOS) 2175

Table 7. Average Results of 1000 Executions for Nine Salesmen with 20 Parallel Cities

Algorithm Average of Benefit

Nearest Neighbor (NN) 1569.43

Random neighbor (RN) 1113.62

Ant Colony System(ACS) 1560.42

Gray Wolf Optimization System (GWOS) 1951.633

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1342

The results in tables (6) and (7) reflect the efficiency and superiority of GWOS. Those results prove

the ability and success of GWOS in solving CTSP over than NN, RN and ACO in parallel situation.
Table (6) shows the best results that obtained when applying multi algorithms that used same dataset. The

results show GWOS achieved the best benefit.

Table (7) shows the average of obtained benefit for each algorithm, GWOS achieved the highest benefit than

other algorithms. This clearly reflects the superiority of GWOS.

9.3 Statistical Results of GWOS and the Selected Algorithms

 To verify the obtained results in tables (3) and (6). T-test applied for two samples in order to check the

efficiency (GWOS) with the highest payoff compared with other algorithms. The T-value will be compared

with T-critical value, if the t-value is smaller than the t-critical value, the null hypothesis will be rejected.

Alpha level assumed (0.05) it is the stander value of alpha for these tests. Assume the null hypotheses is there

are no statistical differences between the (GWOS) and other algorithms. The results shown in tables (8) and

(9).

Table 8. T-test for GWOS and Other Selected Algorithms in Static System

t-Test: Two-Sample Assuming Equal Variances

 GWOS OTHERS

Mean 1116.667 912.52

Variance 10208.33 19923.9292

Observations 3 3

Pooled Variance 15066.13

Hypothesized Mean Difference 0

Df 4

t Stat 2.036981

P(T<=t) one-tail 0.055663

t Critical one-tail 2.131847

P(T<=t) two-tail 0.111325

t Critical two-tail 2.776445

From table (8), we can notice the value of t Stat < t critical for one tail and two tail and the value of P(t<=t)

two tail > alpha (0.05) that means the results of GWOS are better than other algorithms in static system.

Table 9. T-test for GWOS and other selected algorithms in parallel system

t-Test: Two-Sample Assuming Equal Variances

 GWOS Others

Mean 1728.333 1537.426667

Variance 214658.3 120604.4261

Observations 3 3

Pooled Variance 167631.4
Hypothesized Mean Difference 0

Df 4
t Stat 0.57107

P(T<=t) one-tail 0.299253
t Critical one-tail 2.131847
P(T<=t) two-tail 0.598506

t Critical two-tail 2.776445

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1343

The results in table (9) show that t Stat < t critical for one tail and two tail and the value of P(t<=t) two tail >

0.05, this show that GWOS results is statically better than other algorithms for solving CTSP in parallel

system.

10. Conclusion

 In this paper we used GWOS to solve CTSP, at which GWOS has been created and implemented. Two

methods are used to prove efficiency of GWOS, the first one is the static method, its idea is to divide cites

evenly among salesmen and each salesman must find the best track that increases benefits and decreases the

cost. The tests and results proves the efficiency of our system compared with other selected algorithms

(Nearest Neighbors, Nearest Random and Ant Colony System) and the results are shown in tables (3, 4, and

5).

The parallel method, in this manner all cites is available to all salesman but the salesman must visit the

unvisited city in order to obtain full benefit of this city. If the salesman visits a visited city, he will pay the

cost of arrive only and not obtain any benefit and if more than one salesman coincides at same city the benefit

will be divided among them. Many datasets were tested and the experiments results prove the superiority of

GWOS over others, to increase the dynamics of exploration and exploitation salesmen are used in the

experiments and the results was validating our expectations and are shown in tables (6 and 7). The salesmen

visited all cites to obtain grater benefits unlike other algorithms that visited less number of cities.

Based on above we can have concluded that GWOS algorithm proved its ability and efficacy in solving CTSP

providing a new and good way to find the optimal path with the lowest costs, time and highest returns that can

be used in many areas.

11. References

[1] M. J. u. G. R. G. Rinaldi, "THE TRAVELING SALESMAN PROBLEM," in Handbooks in

Operations Research and Management Science Amsterdam: North-Holland, 1994, pp. 1-115.

[2] N. S. Alseelawi, E. K. Adnan, H. T. Hazim, H. Alrikabi, and K. Nasser, "Design and Implementation

of an E-learning Platform Using N-Tier Architecture," 2020.

[3] P. M. Hariyadi, Phong Thanh Nguyen , Iswanto Iswanto ,Dadang Sudrajat. (2020, Jan) Traveling

Salesman Problem Solution using Genetic Algorithm. Journal of Critical Reviews , ISSN-2394-5125

Vol 7, Issue 1, 2020. 56-61.

[4] N. Hussien, I. Ajlan, M. M. Firdhous, and H. Alrikabi, "Smart Shopping System with RFID

Technology Based on Internet of Things," 2020.

[5] H. Demez, Combinatorial Optimization: Solution Methods of Traveling Salesman Problem.

Gazimağusa,North Cyprus: Eastern Mediterranean University, 2013.

[6] A. E. Muyassar Dalli Hamad, Walid Abdelmoez ,Mahmoud M. El-Borai. (2016, Oct) Considering

Stakeholders’ Feedback in Requirements Prioritization using Social Network Analysis. International

Journal of Computer Science and Engineering volume 3 Issue 10. 66-81.

[7] B. A.-K. Mohannad Abdul-Sattar Hameed, Solving Competitive Traveling Salesmen Problem Using

Ant Colony Algorithm. Ramadi - Iraq: University of Anbar- College of Computer Science and

Information Technology, 2016.

[8] k. N. Mohammad Mahdi Mohtadi. (2014) Solving TravelingSalesman Problem in Competitive

Situations Using The Game Theory. Applied Mathematics In Engneering ,Management and

technology2(3). 311-325.

[9] M. Y. Belal Al-Khateeb. (2019, june) SOLVING MULTIPLE TRAVELING SALESMAN

PROBLEM BY MEERKAT SWARM OPTIMIZATION ALGORITHM. JOURNAL OF

SOUTHWEST JIAOTONG UNIVERSITY. Vol.54 No.3 1-10.

[10] B. A.-K. Mohammed Yousif. (2018) A Novel Metaheuristic Algorithm for Multiple Traveling

Salesman Problem. Jour of Adv Research in Dynamical & Control Systems, Vol. 10. 2113-2122.

[11] Y. F. Hassan. (2018, Feb 27) Multi-level thinking cellular automata usinggranular computing title.

IET Intelligent Transport Systems Vol. 12 Iss. 6, pp. 440-448.

 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344

1344

[12] J. L. Graham Kendall. (2012, April) competitive traveliing salesman problem : A Hyper Heurisitc

approach. journal of the operational research society 12-37.

[13] R. F. S ́andor P. Fekete, Aviezri Fraenkel,Matthias Schmitt. (2004, Feb 19) Traveling salesmen in the

presence of competition. ELSEVIER. Volume 313, Issue 3 377-392.

[14] H. T. Alrikabi, A. H. M. Alaidi, A. S. Abdalrada, and F. T. J. I. J. o. E. T. i. L. Abed, "Analysis the

Efficient Energy Prediction for 5G Wireless Communication Technologies," vol. 14, no. 08, pp. 23-

37, 2019.

[15] A. S. Abdullah, M. A. Abed, and I. Al Barazanchi, “Improving face recognition by elman neural

network using curvelet transform and HSI color space,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 430–

437, 2019.

[16] A. Alaidi, I. Aljazaery, H. Alrikabi, I. Mahmood, and F. Abed, "Design and Implementation of a

Smart Traffic Light Management System Controlled Wirelessly by Arduino," 2020.

[17] J. K. Li, G. (2015) Hyper-Heuristic Methodology to Generate Adaptive Strategies for Games. IEEE

Transactions on Computational Intelligence and AI in Games. 1-10.

[18] B. Mohammed, R. Chisab, and H. Alrikabi, "Efficient RTS and CTS Mechanism Which Save Time

and System Resources," 2020.

[19] B. K. T. Sujata Dash, Atta ur Rahman, Handbook of Research on Modeling, Analysis, and Application

of Nature. Hershey PA, USA: IGI Global, 2018.

[20] G. K. Jiawei Li. (2017, march) A Hyperheuristic Methodology to GenerateAdaptiveStrategies for

Games. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. VOL.

9, NO. 1 pp1-11.

[21] B. Alkhateeb. (2018) The Selection of Particle Swarm Optimization learning Factors Values in

Solving Multiple Travelling Salesman Problem jour of Adv Research in Dynamical &Control Systems

vol10 no7 439-445.

[22] Y. F. H. Ayah M Hassan, Mohamed H Kholief. (2018, Jul.) A Deep Classification System forMedical

Data Analysis. Journal of Medical Imaging and Health Informatics. 250-256.

[23] V. P. S. a. N. P. Tapan Parkash. (2019) Gray Wolf Optimization - Based Controller Design for Two

Tank System. Springer- Applicatins of Artificial Intelligence Techniques. 501-507.

[24] B. A. M. Radwan Basim Thanoon. (2019, March) Modified Grey Wolf Optimization Algorithm by

using Classical Optimization Methods. International Journal of Computer Networks and

Communications Security. 49-61.

[25] S. I. A. Dibbendu Singha Sopto, M. A. H. Akhand,N. Siddique, "Modified Grey Wolf Optimization to

Solve Traveling Salesman Problem," in 2018 International Conference on Innovation in Engineering

and Technology (ICIET), Dhaka, Bangladesh, 2018.

[26] S. M. M. Seyedali Mirjalili, Andrew Lewis. (2014, March) Grey Wolf Optimizer. ELSEVIER.

Advances in Engineering Software 69:46–61.

[27] S. Rashid, A. Ahmed, I. Al Barazanchi, and Z. A. Jaaz, “Clustering algorithms subjected to K-mean

and gaussian mixture model on multidimensional data set,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp.

448–457, 2019.

[28] M. M. a. B. Al-Khateeb. (2019, Sep) The blue monkey: A new nature inspired metaheuristic

optimization. Periodicals of Engineering and Natural Sciences Vol. 7, No. 3. 1054-1066.

[29] U. s. Nitin Mittal, Balwinder singh sohi. (2016) Modified Gray Wolf Optimizer for Global

Engneering Optimization. hindawi - Applied Computational Intelligence and Soft Computing. 1-16.

[30] Z.-M. G. a. J. Zhao. (2019) An Improved Gray Wolf Optimization Algorithm with Variable Wieghts.

Hindawi - Computitional Intelligence and Neuroscience. 1-13.

