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ABSTRACT

It is a challenging task to classify and detect various geographical features from the
satellite imagery of the Earth as well as the celestial bodies. This paper puts forward
several pixel based classification algorithms to classify geographical features from
the satellite images of the Earth. The recorded experimental results, from a total of
606 satellite images to classify miscellaneous geographical features, demonstrate that
the maximum algorithmic performances can approximate to 87%. This paper also
addresses a simple algorithm based on edge approximation and circular Hough trans-
formation to detect craters from the satellite imagery of celestial bodies. An online
available dataset to detect craters evaluates the performance of the algorithm. In gen-
eral, all the proposed algorithms are straightforward but in many ways effective.
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1. Introduction

It is a difficult work to classify and detect miscellaneous geographical features from the satellite imagery of the
Earth as well as the celestial bodies. For example, Figure 1 shows sample satellite images of the Bosnian city
of Banja-Luka [1]. We need to classify geographical features (e.g., cemeteries, fields, houses, industries, rivers,
streets, forests, mountains, and so on) from those images. Cemeteries would contain lots of small and white
patches or rectangles, while the industrial class might be quite varied and much more difficult to detect. Houses
in the housing class may have red roofs, which would make the classification process a bit easy after extracting
necessary features properly. But forests and rivers are not easy to classify because of their similar nature. Many
researchers tried to solve the existing problem of classifying geographical features from the satellite images of
the Earth with great accuracy [2–5]. For examples, Haralick et al. [2] addressed how texture plays a vital role
in image classification of satellite imagery, photographic imagery, and photomicrograph of 1:20000 scales with
the maximum accuracy of 83%. Cleve et al. [3] compared pixel and made object based classifications using high
resolution aerial photographic images with an accuracy score of approximately 40%. Risojevic et al. [4] analyzed
the importance of texture in remote image classification by employing the Gabor wavelet coefficients [6] and
support vector machines [7] with an accuracy score of 85%. Risojevic [5] suggested how the images can be
classified by dint of convolutional neural networks with the maximum accuracy of 99%.
Weih et al. [8] claimed that the object based classification is better than the pixel based classification. But in
this paper, we are interested in pixel based classification algorithms - by motivating the proposition that the pixel
based methods analyze the spectral properties of every pixel within the area of interest [9]. With this vein, we
propose several pixel based classification algorithms to classify geographical features from the satellite images
of the Earth. As experimental dataset, we utilize the satellite imagery of the Bosnian city of Banja-Luka to
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Figure 1. Sample satellite images from Banja-Luka dataset [1]. How to classify the geographical features (e.g.,
cemetery, fields, houses, industry, river, and trees) from those images?

Figure 2. A sample satellite image of the Mars. How to detect the number of craters from this image?

classify geographical features. The Banja-Luka dataset [1] consists of 28 cemetery images, 178 field images,
143 houses images, 75 industry images, 77 river images, and 105 tree images. We also apply WEKA1 to train
neural networks for classifying geographical features.
A crater can be defined as a cavity on the surface of the Earth or any celestial body marking the orifice of a
volcano. To provide ground truth of the craters in satellite imagery is a challenging task. If a dataset of satellite
images from a celestial body is available, then one would interest to count the number of craters that exist in every
image. For example, Figure 3 shows a sample satellite image of Mars. We wish to detect the number of existing
craters on it. It is very hard to verify the algorithmic results if no ground truths are available. Besides, craters
come in all shapes and sizes. Thus it is really a difficult task to detect them. The size is one of main problems,
since some craters can be a few pixels wide while others can be hundreds of pixels wide. Craters can be inside
of other craters. They can be cut in half due to the size of the image. Color of the craters can play a significant
role. Distinct celestial bodies usually have different surface colors. For instance, the Mars is more orange and
red in color, while its moon the Phobos [10] is grayer in color. Shades of craters play an important role, i.e.,
craters can contain shades due to neighboring hills or mountains. The detection of such craters is extremely hard.
Another problem is that there exist no ground truths for the dataset of celestial bodies. Explicitly, no dataset ever
mentions the exact number of craters. An approximate ground truth has been put for each dataset by using
manual detection and counting. Like events detection (e.g., [11–13]), the crater detection became key interests
of many computer vision researchers [14, 15]. For instance, Honda et al. [14] added a variant of the genetic
algorithm to form a candidate of craters before using a self-organizing mapping to categorize the craters from
non-craters. Meng et al. [15] constructed candidate areas that might contain craters using Hough transforms.
The performance of their algorithm was not bad, but viability became a problem (e.g., false positive) when the
craters did not contain a clear edge. Mu et al. [16] used cell algorithms to detect craters on celestial bodies with
86% accuracy. Upadhyay et al. [17] tried to detect the boundary of crater using functions from MATLAB.
We propose a simple algorithm based on edge approximation and circular Hough transform to detect craters
from the satellite imagery of celestial bodies. It minimizes color and shape related problems of the craters. It is
tested against an online available dataset [18] and its performance cannot be eschewed.

1Waikato Environment for Knowledge Analysis (WEKA) is a suite of machine learning software written in Java, developed at the
University of Waikato, http://www.cs.waikato.ac.nz/ ml/. It provides a series of tools for pre-processing, classification, visualization, etc.
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The rest of the paper is organized as follows. Section 2. illustrates necessary implementation steps. Section 3.
reports experimental results followed by some hints for future work. Finally, Section 4. concludes the paper.

2. Implementation Steps

In this section, five key algorithms to classify satellite imagery and an algorithm to detect craters are discussed.

2.1. Algorithms to classify satellite imagery

2.1.1. PRGB : Sum of Red-Green-Blue (RGB) pixels

The sum of all RGB pixel values for each image can be a straightforward algorithm to classify various geograph-
ical features from satellite images. The RGB pixel values of an image can distinguish between certain features
quite easily. For example, cemetery images usually have large amounts of white pixels due to the gravestones,
which could be seen from a high count of all RGB features. The river images do not contain many red pixels.
But housing images possess a lot of red pixels because of their many red roofs. The images of field and forest
have many green pixels, but they have much less red and blue pixels. Taking into account these common cases,
a simple but somewhat effective classifier can be proposed.

2.1.2. PWGR : White-Green-Red (WGR) pixels count

The addition of all RGB pixel values is not sufficient for a good classifier. Consequently, it is a good idea to
count exactly how many WGR pixels exist in a given image. A white pixel cannot be considered as apparently
red even though it contains a high level of red. Henceforth, it can be counted how many WGR pixels exist
according to the following threshold conditions:

1. A pixel is considered as white if it contains RGB pixels greater than 200. And then the average of the
three RGB pixel values is deemed.

2. A pixel is considered as green if it contains: a red pixel value smaller than 100, a blue pixel value smaller
than 150, and a green pixel value greater than 100.

3. A pixel is considered as red if it contains: a red pixel value greater than 190, a green pixel value smaller
than 200, and a blue pixel value not greater than 200.

The aforementioned constant values (i.e., 200, 100, 150, 100, 190, and 200) are experimentally defined to get
good performance of the algorithm, so no theoretical reasoning is explained herewith.

2.1.3. DT : Texture (T) difference in certain colors and images

Normally, there is no formal mathematical definition of texture. One of the first quantitative or physiological
texture description can be found in [19], where six basic textural features, namely, coarseness, contrast, direction-
ality, line-likeness, regularity, and roughness were approximated in computational. Bharati et al. [20] discussed
various methods for image texture analysis. However, an image texture can be a series of metrics computed in
image computation intended to measure the sensed texture of an image. Image texture provides knowledge about
the spatial organisation of color or image intensities or exclusive domain of an image. The texture differences in
certain colors and images can be implemented.

2.1.4. CWR : White-Rectangle (WR) count

Due to the count of how many white shapes exist on a given image, the cemeteries are much easier to classify
by employing WR count. A flood fill algorithm is implemented to go from one white pixel to another and then
count the number of white pixels. The following steps for CWR are used:

1. Convert an image to a gray image using a simple averaging method.

2. Convert the gray image into a binary image considering a simple thresholding technique that distinguishes
pixels between extremely white, e.g., higher than 230 in its gray value, and non-white pixels.
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3. Flood every fifth pixel with respect to width and height. The flooding is recursive with the stopping criteria
being the edges of image, not going into another indexed flood fill and if it hits a non-white pixel.

4. A map is made that displays how many pixels should contain each index, i.e., how many pixels should
each flood-fill make.

5. Indexes that have a moderate pixel count (e.g., between 5 and 30) are regarded as white rectangles.

The aforementioned constant values (i.e., 230, 5, and 30) are experimentally defined to get good performance of
the algorithm, so no theoretical reasoning is explained hereby.

2.1.5. CRP : River-Pixel (RP) count

One of the simplest ways to classify river images is to look at the individual pixels present in the image. The
existing pixels on images of rivers are unique. The final status of a pixel whether it will be considered as a river
pixel or not, it depends on the following a few sessions of analysis:

1. The absolute difference between green and blue values is negligible.

2. The absolute difference between green and red is considered.

3. The green value is considered.

2.1.6. Training of neural networks

WEKA is used to train neural networks. Its following classification methods to train neural networks are used.

1. Multilayer Perceptron (MulPer): It gives evidence of a neural network with feed forward capabilities and
back propagation those results in a better learning outcome.

2. Logistic Regression (LogReg): It shows one of the possible regression models in which dependent vari-
ables are grouped but not continuous.

3. Sequential Minimal Optimization (SeqOpt): It makes clear and visible that one of the solutions to quadratic
programming problems which presents in the training of support vector machines.

4. Random Forest (RanFor): It gives evidence of an algorithm in which a series of random decision trees are
constructed and then giving statistical information such as mode or mean.

2.2. Algorithm to detect craters in celestial bodies

We have proposed a crater detection algorithm based on circular Hough transformation to detect craters from
images of celestial bodies. The algorithm is simple but in many ways effective. The Hough transform is a
technique that can be used to distinguish the parameters of a curve which best fits a set of given edge points.
Under normal conditions, this edge description can be come into the possession of either a Roberts cross operator
[21] or a Sobel filter [22] or a Canny edge detector [23]. Nevertheless, these edge detectors would be noisy and
lacking in restraint as there exist multiple edge fragments corresponding to a single whole feature. The output
of an edge detector exclusively ascertains the whereabouts of features in an image, and then Hough transform
determines both kind of features and how many of them exist in the image. Notwithstanding, these properties
of Hough transform give a rational assortment to recognize crater without circumscribing the possibilities to one
astronomical object. It models candidate objects that resemble the looked for objects, whether they are perfectly
or imperfectly shaped. The candidates are given preference to the basis as a local maximum in the parameter
space. Both the standard Hough transform and the circular Hough transform are used in many computer vision
applications. The standard Hough transform utilises the parametric representation of a line to detect straight line.
Under normal conditions, its input is a binary image containing the edge pixels. During the transformation, it
iterates through the edge points and calculate all e.g., angle, distance pairs for them. Each sinusoid curve belongs
to a point. The crossing of two sinusoids suggests that their corresponding points belong to the same line. The
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more sinusoids cross a given point, the more edge points are on the identical line. In spite of that, it can be taken
into account the circular Hough transform to detect astronomical objects such as craters. The circular Hough
transform relies on equations for circles. Consequently, it has three parameters namely the radius of the circle
as well as the x and y coordinates of the center. A larger computation time and memory for storage are required
to compute these parameters. As a result, it increases the complexity of extracting information from an image.
For this reason, the radius of the circle would be fixed at a constant value. For each edge point, a circle can be
drawn with that point as origin and radius. The circular Hough transform also uses a three-dimensional array,
where the first two dimensions point out the coordinates of the circle and the last third specifying the radius. The
values in the array are increased every time a circle is drawn with the desired radius over every edge point. The
array, which kept counting of how many circles pass through coordinates of each edge point, proceeds to a vote
to find the highest count. The coordinates of the center of the circles in the images are the coordinates with the
highest count. The Listing 1 illustrates our proposed crater detection algorithm.

Listing 1. Our proposed crater detection algorithm
1 r g b I = imread ( ' Image0001.png ' ) ; % Get a camera view RGB i m a g e .
2 f i g u r e
3 imshow ( r g b I ) ; % The I be a 3D image b u t we need 2D i m a g e .
4 [ h e i g h t , width , d imens ion ] = s i z e ( r g b I ) ;
5 x = s p r i n t f ( ' An o r i g i n a l camera view image of s i z e %d x %d x %d ' , h e i g h t , width , d imens ion ) ;
6 s e t ( gca , ' f o n t s i z e ' , 2 1 ) ; % S e t f o n t s i z e .
7 d i s p ( t i t l e ( x ) ) ; % Dsplay
8 g r a y I = r g b 2 g r a y ( r g b I ) ; % Conve r t from 3D t o 2D u s i n g a w e i g h t e d mean of RGB c h a n n e l s .
9 f i g u r e

10 imshow ( g r a y I ) ;
11 [ h e i g h t , width , d imens ion ] = s i z e ( g r a y I ) ;
12 x = s p r i n t f ( ' Conve r t ed g r a y s c a l e i n t e n s i t y image of s i z e %d x %d x %d ' , h e i g h t , width , d imens ion ) ;
13 s e t ( gca , ' f o n t s i z e ' , 2 1 ) ; % S e t f o n t s i z e .
14 d i s p ( t i t l e ( x ) ) ;
15 b i = edge ( g r a y I , ' canny ' ) ; %C r e a t e a b i n a r y image of g r a y I u s i n g Canny a p p r o x i m a t i o n .
16 f i g u r e
17 imshow ( b i ) ;
18 s e t ( gca , ' f o n t s i z e ' , 2 1 ) ; % S e t f o n t s i z e .
19 t i t l e ( ' The found edges i n t h e g r a y s c a l e i n t e n s i t y image u s i n g Canny a p p r o x i m a t i o n . ' ) ;
20 r a d i i = 1 0 : 1 : 3 0 ; % S ea r ch r a d i i from 10 t o 30 p i x e l s i n s t e p s o f 1 p i x e l .
21 [ h , margin ]= c i r c l e h o u g h ( bi , r a d i i , ' same ' , ' n o r m a l i s e ' ) ; %Hough t r a n s f o r m f o r c i r c l e s .
22 f i g u r e
23 s e t ( gca , ' f o n t s i z e ' , 2 1 , ' LineWidth ' , 3 , ' Co lo r ' , ' g r e e n ' ) ;
24 f o r i =1 : l e n g t h ( h ( 1 , : ) )
25 i f ( ( h ( 1 , i ) ˜ = 0 ) | | ( h ( 2 , i ) ˜ = 0 ) | | ( h ( 3 , i ) ˜ = 0 ) )
26 x ( i ) = h ( 1 , i ) ;
27 y ( i ) = h ( 2 , i ) ;
28 r ( i ) = h ( 3 , i ) ;
29 d ( i ) = r ( i ) * 2 ;
30 px ( i ) = x ( i )− r ( i ) ;
31 py ( i ) = y ( i )− r ( i ) ;
32 r e c t a n g l e ( ' P o s i t i o n ' , [ px ( i ) py ( i ) d ( i ) d ( i ) ] , ' C u r v a t u r e ' , [ 1 , 1 ] ) ;
33 d a s p e c t ( [ 1 , 1 , 1 ] ) ;
34 end
35 ho ld on
36 x l a b e l ( ' x−c o o r d i n a t e ' ) ;
37 y l a b e l ( ' y−c o o r d i n a t e ' ) ;
38 t i t l e ( ' The c i r c l e s on Hough t r a n s f o r m i m a g e . ' ) ;
39 end
40 peaks = c i r c l e h o u g h p e a k s ( h , r a d i i , ' npeaks ' , 1 3 ) ; % S e l e c t any number ( say 13) o f p r o m i n e n t p e a k s .
41 f i g u r e
42 s e t ( gca , ' f o n t s i z e ' , 2 1 ) ;
43 xy = [ peaks ( 1 , : ) ' , peaks ( 2 , : ) ' ] ;
44 h i s t 3 ( xy , [ max ( peaks ( 3 , : ) ) max ( peaks ( 3 , : ) ) ] ) ;
45 s e t ( g e t ( gca , ' c h i l d ' ) , ' FaceCo lo r ' , ' i n t e r p ' , ' CDataMode ' , ' a u t o ' ) ; % Colo r t h e b a r s based on h e i g h t .
46 x l a b e l ( ' x−p i x e l v a l u e s ' ) ;
47 y l a b e l ( ' y−p i x e l v a l u e s ' ) ;
48 z l a b e l ( ' R a d i i v a l u e s ' ) ;
49 t i t l e ( ' 13 p r o m i n e n t peaks on t h e Hough t r a n s f o r m i m a g e . ' ) ;
50 peaks = c i r c l e h o u g h p e a k s ( h , r a d i i , ' npeaks ' , 2 ) ; % Get any number ( say 2 ) o f most p r o m i n e n t p e a k s .
51 f i g u r e
52 s e t ( gca , ' f o n t s i z e ' , 2 1 ) ;
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53 imshow ( r g b I ) ;
54 ho ld on ;
55 f o r peak = peaks
56 [ x , y ] = c i r c l e p o i n t s ( peak ( 3 ) ) ;
57 p l o t ( x+peak ( 1 ) , y+peak ( 2 ) , ' r− ' , ' L ineWidth ' , 5 , ' Co lo r ' , ' r e d ' ) ;
58 end
59 t i t l e ( ' The most p r o m i n e n t 2 peaks have been l o c a t e d on t h e o r i g i n a l i m a g e . ' ) ;
60 ho ld o f f

The circle hough(bi, radii,’same’,’normalise’) is one of the MATLAB (MATrix LABoratory) built-in functions.
It takes a binary two dimensional image bi and a vector radii giving the radii of circles to detect. It returns the
three dimensional accumulator array h, and an integer margin such that h(i,j,k) contains the number of votes for
the circle centred at bi(i-margin, j-margin), with radius radii(k). Circles which pass through bi but whose centres
are outside bi receive votes. Each feature in bi is allowed 1 vote for each circle. The option same returns only
the part of h corresponding to centre positions within the image. In this case h(:,:,k) has the same dimensions
as bi, and margin = 0. This option should not be used if circles whose centres are outside the image are to be
detected. The option normalise multiplies each slice of h, h(:,:,k), by 1/radii(k). This may be useful because
larger circles get more votes, roughly in proportion to their radius. The circle houghpeaks(h,radii,’npeaks’,15)
be another MATLAB built-in function. It locates the positions of 15 peaks in the return of circle hough function.
The result peaks is a 3 × N array, where each column gives the position and radius of a possible circle in the
original array. The first row of peaks has the x-coordinates, the second row has the y-coordinates, and the third
row has the radii. Assume that Figure 3 (a) demonstrates an image of the Moon surface. We are interested to
look for specific patterns which exist on its surface. Especially, there exists a visual crater in it. How can we
detect that? The images of Figure 3 (b)-(f) depict the algorithmic output of Listing 1 to detect craters. Figure 3
(f) displays that our algorithm in Listing 1 detected correctly the existing two craters in Figure 3 (a).

3. Experimental Results

3.1. Experimental setup

Primarily, we have performed experiments on a computer of 8-Core CPUs at 3.50 GHz with 16 GB RAM.
WEKA was used to train neural networks. Satellite images of both Banja-Luka dataset [1] and one of the online
available crater datasets [18] were used to verify the performance of our algorithms. The number of hidden layers
in the MulPer was considered as 3. The default values of WEKA algorithms are used for other parameters, e.g.,
learning rate and configuration of MLP (number of neurons per layer).

3.2. Results of geographical features classification

Table 1 depicts the results of our algorithms to classify various geographical features from Banja-Luka dataset
without using the classification algorithms of WEKA. Algorithm CRP performed the best average of 86.66%
among its alternative individual algorithms of PRGB , PWGR, DT , and CWR. This is widely due to the images of
fields, houses, industries, rivers, and trees highly matched the following three cases: (i) The absolute difference
between green and blue values has been neglected; (ii) The absolute difference between green and red has been
taken in account; (iii) The green value has been taken in account. But those conditions did not suit very well for
the case of cemetery images. Besides, cemeteries have huge amounts of white pixels because of gravestones.
The number of white pixels is very high as compared to the number of other RGB pixels. Thus the algorithm
CRP resulted the worst performance (78%) in the case of cemetery classification. The combined algorithm
PRGB+PWGR+DT+CWR+CRP demonstrated the best performance as 86.83% from Banja-Luka dataset without
using the classification algorithms of WEKA. Notwithstanding, from Table 1 it is noticeable that the average
performance of the algorithm PRGB+PWGR+DT+CWR+CRP without using the classification algorithms of
WEKA is slightly greater than that of CRP .
Table 2 presents the performances of our various algorithms to classify various geographical features from Banja-
Luka dataset using the classification algorithms of WEKA. The gain with respect to the PRGB algorithmic
performance in Table 2 indicates the performance increment or decrement when we add or remove any new
feature to the existing features of an algorithm. Approximately 70% average success rate was resulted in the
cases of individual algorithms either PRGB or PWGR or DT or CWR or CRP . But the combined algorithm
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Figure 3. A sample output of the algorithm on the Listing 1.

PRGB+PWGR+DT+CWR+CRP performed the best success rate of 87.34% from Banja-Luka dataset using the
classification algorithms of WEKA. Using the sequential minimal optimization of WEKA classification algo-
rithm, the gains of the algorithms of PWGR, DT , and CWR were decreased with the amount of 1.45%, 3.37%,
and 2.28%, respectively. But the gain of CRP was increased by 13.16%. The gains of the algorithms PWGR, DT ,
CWR, and CRP were not reported for multilayer perceptron, logistic regression, and random forest. In case of
the algorithm of PRGB+PWGR+DT+CWR+CRP , the gains were increased up to 30.18%, 21.44%, 21.48%, and
26.67% for sequential minimal optimization, multilayer perceptron, logistic regression, and random forest, re-
spectively. The comparative performance factor for the algorithm of PRGB+PWGR+DT+CWR+CRP without us-
ing WEKA or using WEKA is not significant. This is widely due to the fact that PRGB+PWGR+DT+CWR+CRP

without using WEKA is already presented its optimal performance. Consequently, no optimization options have
significant effect on its further performance increment. Normally, performance would be increased if WEKA
classification algorithms are used. But this proposition may not be true for optimal cases. For example, the
performance would be decreased if WEKA classification algorithms are used. The average performance of the
algorithm CRP without using WEKA classification algorithms was 86.66% but after using WEKA classification
algorithms its performance became to 70%, i.e., approximately 19.22% performance degradation. Similarly,
about 8% mean performance degradation can be observed in case of the algorithm PRGB .
As a concluding remark we would say, the overall performance of our proposed algorithms demonstrate that
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Table 1. Performance of our algorithms to classify various geographical features without using WEKA.

Algorithms
Items and their qualitative analysis of performance

Cemeteries Fields Houses Industries Rivers Trees Average

PRGB 69% 72% 77% 80% 73% 86% 76.17%

PWGR 65% 68% 71% 60% 62% 67% 65.50%

DT 58% 53% 55% 47% 58% 64% 55.83%

CWR 70% 64% 65% 64% 69% 60% 65.33%

CRP 78% 94% 95% 84% 79% 90% 86.66%

PRGB+PWGR+DT +CWR+CRP 84% 91% 92% 83% 81% 90% 86.83%

Table 2. Performance of our algorithms to classify various geographical features using WEKA.

Normalized performance of numerous classification algorithms

Algorithms SeqOpt MulPer LogReg RanFor Mean

Success Gain Success Gain Success Gain Success Gain Value

PRGB 62.62% 0 73.78% 0 72.81% 0 70.87% 0 70.02%

PWGR 61.71% -1.45% 73.78% 0 72.81% 0 70.87% 0 70.02%

DT 60.51% -3.37% 73.78% 0 72.81% 0 70.87% 0 70.02%

CWR 61.19% -2.28% 73.78% 0 72.81% 0 70.87% 0 70.02%

CRP 70.86% 13.16% 73.78% 0 72.81% 0 70.87% 0 70.02%

PRGB+PWGR+DT +CWR+CRP 81.52% 30.18% 89.60% 21.44% 88.45% 21.48% 89.77% 26.67% 87.34%

they can play some sort of important role in the machine learning and computer vision applications including
classification of miscellaneous geographical features from satellite imagery.

3.3. Comparison with state-of-the-art method

The method of Risojevic et al. [4] produced 85% correct classification results from Banja-Luka dataset. The
average performances of our proposed algorithms CRP and PRGB+PWGR+DT+CWR+CRP as well as the algo-
rithmic performance of Risojevic et al. [4] have been demonstrated in Table 3. It appears to exist that our simple
algorithms having up to 87% correct classification results function more or less in parallel with the state-of-the-
art method (e.g., Risojevic et al. [4]) without any serious concern of effectiveness.

Table 3. Performance comparison for classifying various geographical features from Banja-Luka dataset.

Algorithms Success Rate
Risojevic et al. [4] 85.00%

CRP without WEKA [Ours] 86.66%
PRGB+PWGR+DT+CWR+CRP without WEKA [Ours] 86.83%
PRGB+PWGR+DT+CWR+CRP using WEKA [Ours] 87.34%

3.4. Results of craters detection

Figure 4 depicts a sample of input image (a), edge detection (b), circular Hough transformation (c), and the best
performance for the detection of craters (d) using the algorithm as depicted in the Listing 1. Figure 5 displays
a sample of input image (a), edge detection (b), circular Hough transformation (c), and the worst performance
for the detection of craters (d) using the algorithm as depicted in the Listing 1. It seems that our crater detection
algorithm worked well in many case but with modest average results. In general, many craters were detected
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Figure 4. A sample of one of the best detection results of craters using our proposed algorithm.

Figure 5. A sample of one of the worst detection results of craters using our proposed algorithm.

correctly by our proposed algorithm. But small craters, the craters which were on the border, as well as many
non-crater-like objects made a serious challenge of our algorithm.

3.5. Future works

Our straightforward classification algorithms need less processing time to extract simple features. On the aver-
age, their accuracy was recorded more than 70% from the Banja-Luka dataset. This performance would arouse
attention for many applications related to computer vision and pattern recognition. But more advanced features
(e.g., features regarding texture and object recognition) could be extracted. If more features would be extracted
and utilized, then dimensionality reduction techniques (e.g., principal component analysis) should be employed
to find exactly which features will not affect the solution. Only 606 satellite images were used to test our clas-
sification algorithms. It is important to test them with a large series of other datasets. More data means more
possible observations to make in order to enhance the algorithm. To improve the algorithmic results further,
the algorithms would need to be analyzed and their functionalities learnt to see which model fits datasets the
best. Areas under the receiver operating characteristic curves [13] and multiple comparisons with statistical
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tests [24] would be performed by considering the proposed algorithms and state-of-the-art algorithms. Time
complexity [25] of each algorithm with cache memory effect [26, 27] would be computed and compared.

4. Conclusion

Our first aim was to classify geographical features of a large dataset with high-resolution images in a short
amount of time. With this vein, we proposed several pixel based classification algorithms to classify geographical
features from the satellite images of the Earth. The recorded experimental results of the algorithms from the
Banja-Luka dataset showed their highest effectiveness approximately 87%. Our second aim was to detect craters
from the images of the other planets rather than the Earth by proposing a simple but effective algorithm. Its
output from an online available crater dataset showed the partial fulfilment of our aim. Craters come in different
colors, shapes, and sizes. Our algorithm minimizes the problems related to surface color and shape of the
craters. But the size problem of craters remains for the future investigation. Future study would also include
further improvement of the algorithmic performances along with error analysis and time complexity.
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